Publications

Below you can find a list of publications that used CESM in their research as well as how to acknowledge CESM if you use in your publications. These publications include AGU CESM2 Virtual Special Issue and all publications that used CESM simulations or data.

Quick Menu

AGU CESM2 Virtual Special Issue

Below you can find a list of manuscripts that are published, in press, and submitted from the AGU CESM2 Virtual Special Issue, or view the complete AGU CESM2 Virtual Special Issue

To understand CESM2 and the AGU CESM2 Special Issue more, you can view the EOS piece by Gokhan Danabasoglu and Jean-François Lamarque

Special Issue Planned Manuscripts

View the complete list of anticipated publications for each CESM Working Group

Citation
Bacmeister J. T., Hannay C., Medeiros B., Gettelman A., Neale R., Fredriksen H. B., Lipscomb W. H., Simpson I., Bailey D. A., Holland M., Lindsay K., Otto-Bliesner B. (2020). CO2 increase experiments using the Community Earth System Model (CESM): Relationship to climate sensitivity and comparison of CESM1 to CESM2. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems.

View PDF
Bailey D. A., Holland M. M., DuVivier A. K., Hunke E. C., Turner A. K. (2020). Impact of a New Sea Ice Thermodynamic Formulation in the CESM2 sea ice component. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems.

View PDF
Bonan, G. B., Lombardozzi, D. L., Wieder, W. R., Oleson, K. W., Lawrence, D. M., Hoffman, F. M., & Collier, N. (2019). Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon Cycle (1850–2014). Global Biogeochemical Cycles, 33.

https://doi.org/10.1029/2019GB006175 CLM
Castruccio, F. S., Karspeck, A., Danabasoglu, G., Hendricks, J., Hoar, T., Collins, N., Anderson, J. (2020). An EnOI-based Data Assimilation System with DART for a High-Resolution Version of the CESM2 Ocean Component. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems.

View PDF
Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y., Larson, S. M. (2019). ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems.

View PDF
Danabasoglu, G., Lamarque, J. -F., Bachmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kember, B., Kay, J. E., Kinnison, D., Kushner, P. J., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., Strand, W. G. The Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12

https://doi.org/10.1029/2019MS001916
DeRepentigny, P., Jahn, A., Holland, M. M., Smith, A. (2020) Arctic Sea Ice in Two Configurations of the Community Earth System Model Version 2 (CESM2) During the 20th and 21st Centuries. JGR: Oceans, 125, e2020JC016133.

https://doi.org/10.1029/2020JC016133
Devanand, A., Huang, M., Lawrence, D. M., Zarzycki, C. M., Feng, Z., & Lawrence, P. J., et al. (2020). Land use and land cover change strongly modulates land‐atmosphere coupling and warm‐season precipitation over the central United States in CESM2‐VR. Journal of Advances in Modeling Earth Systems, 12, e2019MS001925.

https://doi.org/10.1029/2019MS001925 CLM
DuVivier, A. K., Holland, M. M., Kay, J. E., Tilmes, S., Gettelman, A., Bailey, D. A. (2019) Arctic and Antarctic sea ice state in the Community Earth System Model Version 2. Manuscript submitted to JGR: Oceans.

View PDF
Emmons, L. K., Orlando, J. J., Tyndall, G., Schwantes, R. H., Kinnison, D., Lamarque, J. -F., Marsh, D., Mills, M., Tilmes, S., Buchholtz, R. R., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R., Pétron, G. The Chemistry Mechanism in the Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12.

https://doi.org/10.1029/2019MS001882
Feng, R., Otto‐Bliesner, B. L., Brady, E. C., Rosenbloom, N. (2020). Increased climate response and Earth system sensitivity from CCSM4 to CESM2 in mid‐Pliocene simulations. Journal of Advances in Modeling Earth Systems, 12, e2019MS002033.

https://doi.org/10.1029/2019MS002033
Fisher, R. A., Wieder, W. R., Sanderson, B., Koven, C. D., Oleson, K. W., Xu, C., et al. (2019). Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. Journal of Advances in Modeling Earth Systems, 11.

https://doi.org/10.1029/2019MS001609 CLM
Gettelman, A., Callaghan, P., Larson, V. E., Zarzycki, C. M., Bacmeister, J. T., Lauritzen, P. H., et al. (2018). Regional climate simulations with the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 10, 1245– 1265.

https://doi.org/10.1002/2017MS001227 PDF
Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., et al. (2019). High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 46, 8329– 8337.

https://doi.org/10.1029/2019GL083978
Gettelman, A., Truesdale, J. E., Bacmeister, J. T., Caldwell, P. M., Neale, R. B., Bogenschutz, P. A., & Simpson, I. R. (2019). The Single Column Atmosphere Model version 6 (SCAM6): Not a scam but a tool for model evaluation and development. Journal of Advances in Modeling Earth Systems, 11, 1381– 1401.

https://doi.org/10.1029/2018MS001578 PDF
Gettelman, A., M. J. Mills, D. E. Kinnison, R. R. Garcia, A.K. Smith, D.R. Marsh, S. Tilmes, F. Vitt, C. G. Bardeen, J. McInerny, H.-L. Liu, S. C. Solomon, L. M. Polvani, L. K. Emmons, J.-F. Lamarque, J. H. Richter, A. S. Glanville, J. T. Bacmeister, A. S. Phillips, R. B. Neale, I. R. Simpson, A. K. DuVivier, A. Hodzic, W. J. Randel (2019). The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124, 12380– 12403.

https://doi.org/10.1029/2019JD030943
Herrington A., Lauritzen, P. H., Reed, K. A., Goldhaber, S., & Eaton, B. E. (2019). Exploring a lower‐resolution physics grid in CAM‐SE‐CSLAM. Journal of Advances in Modeling Earth Systems, 11, 1894– 1916

https://doi.org/10.1029/2019MS001684 PDF
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., & Gentine, P. (2019). Implementing plant hydraulics in the Community Land Model, version 5. Journal of Advances in Modeling Earth Systems, 11, 485– 513.

https://doi.org/10.1029/2018MS001500 CLM
Lenaerts, J. T., Gettelman, A., Va Tricht, K., van Kampenhout, L., Miller, N. B., Impact of cloud physics on the Greenland Ice Sheet surface climate: a study with the Community Atmosphere Model. Journal Geophysical Research: Atmospheres, 125

https://doi.org/10.1029/2019JD031470
Lauritzen, P. H., Nair, R. D., Herrington, A. R., Callaghan, P., Goldhaber, S., Dennis, J. M., et al. (2018). NCAR release of CAM‐SE in CESM2.0: A reformulation of the spectral element dynamical core in dry‐mass vertical coordinates with comprehensive treatment of condensates and energy. Journal of Advances in Modeling Earth Systems, 10, 1537– 1570.

https://doi.org/10.1029/2017MS001257 PDF
Lauritzen, P. H., & Williamson, D. L. (2019). A total energy error analysis of dynamical cores and physics‐dynamics coupling in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, 11, 1309– 1328.

https://doi.org/10.1029/2018MS001549 PDF
Lawrence, D.M. R.A. Fisher, C.D. Koven, K.W. Oleson, S.C. Swenson, G. Bonan, N. Collier, B. Ghimire, L. van Kampenhout, D. Kennedy, E. Kluzek, P.J. Lawrence, F. Li, H. Li, D. Lombardozzi, W.J. Riley, W.J. Sacks, M. Shi, M. Vertenstein, W.R. Wieder,, C. Xu, A.A. Ali, A.M. Badger, G. Bisht, M. van den Broeke, M.A. Brunke, S.P. Burns,, J. Buzan, M. Clark, A. Craig, K. Dahlin, B. Drewniak, J.B. Fisher, M. Flanner, A.M. Fox, P. Gentine, F.Hoffman, G. Keppel-Aleks, R., Knox, S. Kumar, J. Lenaerts, L.R. Leung, W.H. Lipscomb, Y. Lu, A., Pandey, J.D. Pelletier, J. Perket,, J.T. Randerson, D.M. Ricciuto, B.M. Sanderson, A. Slater, Z.M. Subin, J. Tang, R.Q. Thomas, M. Val Martin, and X. Zeng, 2019. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11.

https://doi.org/10.1029/2018MS001583 CLM
Lombardozzi, D. L., Lu, Y., Lawrence, P. J., Lawrence, D. M., Swenson, S., & Oleson, K. W., et al. (2020). Simulating agriculture in the Community Land Model Version 5. JGR: Biogeosciences, 125, e2019JG005529.

https://doi.org/10.1029/2019JG005529M CLM
Lofverstrom, D., Fyke, J., Thayer-Calder, K., Muntjewerf, L., Vizcaino, M., Sacks, W.J., Lipscomb, W.H., Otto-Bliesner, B., Bradley, S.L. An efficient ice-sheet/Earth system model spin-up procedure for CESM2.1 and CISM2.1: description, evaluation, and broader applicability. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems

View PDF
McIlhattan, E. A., Kay, J.E., & L’Ecuyer, T.S. (2020) Arctic Clouds and Precipitation in the Community Earth System Model Version 2. Manuscript submitted to JGR: Atmospheres

View PDF
Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., Medeiros, B., Bacmeister, J., DeRepentigny, P., Rosenbloom, N., Shields, C., Hu, A., Teng, H., Mills, M. J., Strand, G. (2019). Characteristics of Future Warmer Base States in CESM2. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems

View PDF
Meehl, G. A., Shields, C.,Arblaster, J. M., Annamalai, H., Neale, R. (2020). Intraseasonal, seasonal, and interannual characteristics of regional monsoon simulations in CESM2. Journal of Advances in Modeling Earth Systems, 12.

https://doi.org/10.1029/2019MS001962
Muntjewerf, L., R. Sellevold, M. Vizcaíno, C. Ernani da Silva, M. Petrini, K. Thayer-Calder, M. D. W. Scherrenberg, S. L. Bradley, J. G. Fyke, W. H. Lipscomb, M. Löfverström, B. Sacks, Accelerated Greenland Ice Sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1, Journal of Advances in Modeling Earth Systems, 12, e2019MS002031.

https://doi.org/10.1029/2019MS002031
Muntjewerf, L., M. Petrini, M. Vizcaíno, C. Ernani da Silva, R. Sellevold, M. D. W. Scherrenberg, K. Thayer-Calder, S. L. Bradley, J. T. M. Lenaerts, W. H. Lipscomb, M. Löfverström (2019), Greenland Ice Sheet contribution to 21st century sea level rise as simulated by the coupled CESM2.1-CISM2.1, Geophysical Research Letters, 47, e2019GL086836.

https://doi.org/10.1029/2019GL086836
Oleson, K.W. and J. Feddema, (2019). Parameterization and surface data improvements and new capabilities for the Community Land Model Urban (CLMU). Journal of Advances in Modeling Earth Systems, 11.

https://doi.org/10.1029/2018MS001586
Otto-Bliesner B. L., Brady E. C., Tomas R. A., Albani S., Bartlein P. J., Mahowald N. M., Shafer S. L., Kluzek E., Lawrence P. J., Leguy G., Rothstein M., Sommers A. (2020). A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanography and Paleoclimatology, 35, e2020PA003957

https://doi.org/10.1029/2020PA003957
Raphael M. N., Handcock M. S., Holland M. M., Landrum L. L. (2020). An assessment of the temporal variability in the annual cycle of daily Antarctic sea ice in the NCAR Community Earth System Model, Version 2: A comparison of the historical runs with observations. Manuscript submitted for publication to JGR: Atmospheres/Oceans.

View PDF
Sellevold, R., and M. Vizcaíno, Global warming threshold and mechanisms for accelerated Greenland Ice Sheet surface mass loss, Manuscript submitted to J. Adv. Model. Earth Syst.

* Manuscript is available from Miren Vizcaino [ M.Vizcaino@tudelft.nl ] upon request
Simpson, I. R., Bacmeister, J., Neale, R.B., Hannay, C., Gettelman, A., Garcia, R.R., Lauritzen, P.H., Marsh, D.R., Mills, M.J., Medeiros, B., Richter, J.H. An evaluation of the large scale atmospheric circulation and its variability in the Community Earth System Model 2 (CESM2) and other CMIP models. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems

View PDF View Supplemental Material
Singh, A., Kumar, S., Akula, S., Lawrence, D. M., & Lombardozzi, D. L. (2020). Plant growth nullifies the effect of increased water‐use efficiency on streamflow under elevated CO2 in the Southeastern United States. Geophysical Research Letters, 47, e2019GL086940.

https://doi.org/10.1029/2019GL086940 CLM
Singh H. K. A., Landrum L., Holland M. M. (2020) An Overview of Antarctic Sea Ice in the CESM2:2Analysis of the Seasonal Cycle, Predictability, and3Atmosphere-Ocean-Ice Interactions. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems.

View PDF
Sommers, A. N., Otto-Bliesner, B.L., Lipscomb, W.H., Lofverstrom, M., Shafer, S.L., Bartlein, P.J., Brady, E.C., Kluzek, E., Leguy, G., Thayer-Calder, K.,Tomas, R.A. (2021) Retreat and Regrowth of the Greenland Ice Sheet During the Last Interglacial as Simulated by the CESM2-CISM2 Coupled Climate-Ice Sheet Model. Paleoceanography and Paleoclimatology, 36 https://doi.org/10.1029/2021PA004272
Sun, Q., M.M. Whitney, F.O. Bryan, & Y.-H Tseng, (2019). Assessing the skill of the improved treatment of riverine freshwater in the Community Earth System Model (CESM) relative to a new salinity climatology. Journal of Advances in Modeling Earth Systems, 11, 1189– 1206.

https://doi.org/10.1029/2018MS001349 PDF
S. Tilmes, A. Hodzic, L. K. Emmons, M. J. Mills, A. Gettelman, D. E. Kinnison, M. Park, J.-F. Lamarque, F. Vitt, M. Shrivastava, P. Campuzano Jost, J. Jimenez, X. Liu. Climate forcing and trends of organic aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 11, 4323-4351.

https://doi.org/10.1029/2019MS001827
van Kampenhout, L., Lenaerts, J. T. M., Lipscomb, W. H., Lhermitte, S., Nöel, B., Vizcaino, M., Sacks, W. J., van den Broeke, M. R. Greenland ice sheet climate and surface mass balance in CESM2. Manuscript submitted for publication to JGR: Earth Surface

View PDF
Wieder, W. R., Butterfield, K., Lindsay, K., Lombardozzi, D. L., Keppel-Aleks, G. (2020) Seasonal drivers of carbon cycle interannual variability represented by the Community Earth System Model (CESM2). Manuscript submitted for publication to Global Biogeochemical Cycles.

View PDF View Supporting Information CLM
Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J., Goodale, C. L., et al (2019). Beyond static benchmarking: Using experimental manipulations to evaluate land model assumptions. Global Biogeochemical Cycles, 33.

https://doi.org/10.1029/2018GB006141 CLM
Woelfle, M. D., Bretherton, C. S., Hannay, C., & Neale, R. (2019). Evolution of the double‐ITCZ bias through CESM2 development. Journal of Advances in Modeling Earth Systems, 11, 1873– 1893.

https://doi.org/10.1029/2019MS001647 PDF
Webster M. A., DuVivier A. K., Holland M. M., Bailey D. A. (2020) Snow on Arctic sea ice in a warming climate as simulated in CESM2. Manuscript submitted for publication to Journal of Advances in Modeling Earth Systems

View PDF View Supporting Information
Zhu, J., Otto‐Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E., Lofverstrom, M., & DiNezio, P. (2021). Assessment of equilibrium climate sensitivity of the Community Earth System Model version 2 through simulation of the Last Glacial Maximum. Geophysical Research Letters, 48, e2020GL091220.

https://doi.org/10.1029/2020GL091220 CESM2

All Publications

Below you can find a list of publications that use CESM simulations or data as well as how to acknowledge CESM if you use in your publications.

Citation
Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10591-10607, doi:10.5194/acp-13-10591-2013.
Abe-Ouchi, A., et al., 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 3621-3637.
Abbot, D. S., M. Huber, G. Bousquet, and C. C. Walker, 2009: High-CO2 cloud radiative forcing feedback over both land and ocean. Geophys. Res. Lett., L05702, doi:10.1029/2008GL036703.
Abiodun, B. J., J. M. Prusa, and W. J. Gutowski, 2008: Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: Comparison of dynamics cores in aqua-planet simulations. Clim. Dynamics, 31, 795-810 doi:10.1007/s00382-008-0381-y.
Abiodun, B. J., W. J. Gutowski, and J. M. Prusa, 2008: Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part II: Dynamical Influences on ITCZ behavior and tropical precipitation. Clim. Dynamics, 31, 811-822, doi:10.1007/s00382-008-0382-x.
Abiodun, B. J., W. J. Gutowski, A. A. Abatan, and J. M. Prusa, 2011: CAM-EULAG: A non-hydrostatic atmospheric climate model with grid stretching. Acta Geophysica, 59, 1158-1167, doi:10.2478/s1160-011-0032-2.
Acosta Navarro, J. C., V. Varma, I. Riipinen, O. Seland, A. Kirkevag, H. Struthers, T. Iversen, H. -C. Hansson, and A. M. L. Ekman, 2016: Amplification of Arctic warming by past air pollution reductions in Europe. Nature Geoscience, 9, doi:10.1038/ngeo2673.
Acosta, R. P., and M. Huber, 2017: The neglected Indo-Gangetic Plains low-level jet and its importance for moisture transport and precipitation during the peak summer monsoon. Geophys. Res. Lett., 44, 8601–8610, doi:10.1002/2017GL074440.
Aghedo, A. M., K. W. Bowman, H. M. Worden, S. S. Kulawik, D. T. Shindell, J.-F. Lamarque, G. Faluvegi, M. Parrington, D. B. A. Jones, and S. Rast, 2011: The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models. J. Geophys. Res., 116, D01304, doi:10.1029/2010JD014637.
Akkermans, T., W. Thiery, and N. P. M. van Lipzig, 2014: The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Climate, 27, 2714-2734, doi:10.1175/JCLI-D-13-00361.1.
Albani, S., N. M. Mahowald, A. T. Perry, R. A. Scanza, N. G. Heavens, C. S. Zender, V. Maggi, J. F. Kok, and B. L. Otto-Bliesner, 2014: Improved dust representation in the Community Atmosphere Model. Journal of Advances in Modeling Earth Systems, 06, 541-570, doi: 10.1002/2013MS000279.
Albani, S., et al., 2015: Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives. Clim. Past, 11, 869-903.
Alexander, L. V., and J. M. Arblaster, 2009: Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol., 29, 417-435, doi:10.1002/joc.1730.
Alexander, M. A., U. S. Bhatt, J. Walsh, M. Timlin, and J. Miller, 2004: The atmospheric response to realistic arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890-905.
Alexander, M., J. Yin, G. Branstator, A. Capotondi, C. Cassou, R. Cullather, Y-O. Kown, J. Norris, J. Scott, and I. Wainer, 2006: Extratropical atmosphere-ocean variability in CCSM3. J. Climate, 19 (11), 2496-2525.
Alexander, M. A., R. Tomas, C. Deser, and D. M. Lawrence, 2010: The atmospheric response to projected terrestrial snow changes in the late 21st Century. J. Climate, doi:10.1175/2010JCLI3899.1.
Alexander, M. J., et al., 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q. J. of the Royal Met. Soc., 136 (650), 1103-1124, doi:10.1002/qj.637.
Alexander M. A., J. D. Scott, K. D. Friedland, K. E. Mills, J. A. Nye, A. J. Pershing, and A. C. Thomas, 2018: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa: Science of the Anthropocene, 6, doi: 10.1525/elementa.191.
Alexeef, S., D. Nychka, S. R. Sain, and C. Tebaldi, 2016: Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate experiments. Climatic Change, 1-15, doi:10.1007/s10584-016-1809-8.
Alexeev, V. A., D. J. Nicolsky, V. E. Romanovsky, and D. M. Lawrence, 2007: An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophys. Res. Lett, 34, L09502, doi:10.1029/2007GL029536.
Ali, J., and M. Huber, 2010: Mammalian biodiversity on Madagascar controlled by ocean currents. Nature, 463, 653-656, doi:10.1038/nature08706.
Allen, R. J., and O. Ajoku, 2016: Guture aerosol reductions and widening of the northern tropical beld. J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD024803.
Allstadt, A. J., S. J. Vavrus, P. J. Heglund, A. M. Pidgeon, W. E. Thogmartin, and V. C. Radeloff, 2015: Changes in spring onset and false springs in the conterminous U.S. during the 21st century. Env. Res. Lett., doi:10.104008.
Alo, C., and G. L. Wang, 2008: Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs. J. Geophys. Res. – Biogeosciences, 113, G03011, doi:10.1029/2007JG000598.
Alo, C., and G. L. Wang, 2008: Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J. Geophys. Res. – Biogeosciences, 113, G01004, doi:10.1029/2007JG000528.
Alo, C. A., and G. L. Wang, 2010: Role of vegetation dynamics in regional climate predictions over western Africa. Clim. Dyn., 35, 907-922, doi:10.1007/s00383-010-0744-z.
Alterskjær, K., J. E. Kristjánsson, and C. Hoose, 2010: Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic? J. Geophys. Res., 115, D22204, doi:10.1029/2010JD014015.
Ammann, C., G. A. Meehl, W. M. Washington, and C. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, doi:10.10292003GL016875RR.
Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc. National Academy Sci., 104, 3713-3718.
Ammann, C. M., W. M. Washington, G. A. Meehl, L. Buja, and H. Teng, 2010: Climate engineering through artificial enhancement of natural forcings: Magnitudes and implied consequences. J. Geophys. Res., 115, D22109, doi:10.1029/2009JD012878.
Amstrup, S. C., E. DeWeaver, D. C. Douglas, B. G. Marcot, G. M. Durner, C. M. Bitz, D. A. Bailey, 2010: Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature, doi:10.1038/nature09654.
Anderson, B. T., and E. D. Maloney, 2006: Interannual tropical Pacific sea-surface temperatures and their relation to preceding sub-tropical sea level pressures in the NCAR CCSM2.0. J. Climate, 19, 998-1012.
Anderson, G. B., K. W. Oleson, B. Jones, and R. D. Peng, 2016: Classifying heatwaves: Developing health-based models to predict high-mortality versus moderate United States heatwaves. Climatic Change, doi:10.1007/s10584-016-1776-0.
Anderson, G. B., K. W. Oleson, B. Jones, and R. D. Peng, 2016: Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities. Climatic Change, doi:10.1007/s10584-016-1779-x.
Anderson, J. L., 2009: Ensemble Kalman filters for large geophysical applications. IEEE Control Systems Magazine, 29 (3), 66-82.
Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A Community Facility. Bulletin of the American Meteorological Society, 90 (9), 1283-1296.
Anderson, R. G., M. -H. Lo, S. Swenson, J. S. Famiglietti, Q. Tang, T. H. Skaggs, Y. –H. Lin, and R. –J. Wu, 2015: Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models. Geosci. Model Dev., 8, 3021-3031, doi:10.5194/gmd-8-3021-2015.
Andersson, M. E., P. T. Verronen, D. R. Marsh, S. M. Paivarinta, and J. M. C. Plane, 2016: WACCM-D – Improved modeling of nitric acid and active chlorine during energet particle precipitation. J. Geophys. Res.-Atmos., doi:10.1002/2015JD024173.
Angelil, O., D. A. Stone, M. Tadross, F. Tummon, M. Wehner, and R. Knutti, 2014: Attribution of extreme weather to anthropogenic greenhouse gas emissions: Sensitivity to spatial and temporal scales. Geophysical Review Letters, 41, 2150-2155, doi:10.1002/2014GL059234.
Angelil, O., S. Perkins-Kirkpatrick, L. Alexander, D. Stone, M. Donant, M. Wehner, H. Shiogama, A. Ciavarella, and N. Christidis, 2016: Comparing regional precipitation and temperature extremes in climate model and reanalysis products. Weather and Climate Extremes, 13, 35-53, doi:10.1016/j.wace.2016.07.001.
Angelil, O., D. Stone, M. Wehner, C. J. Paciorek, H. Krishnan, and W. Collins, 2017: An independent assessment of anthropogenic attribution statements for recent extreme weather events. J. Climate, 30, 5-16, doi:10.1175/JCLI-D-16-0077.1.
Angelil, O., D. Stone, S. Perkins-Kirkpatrick, L. Alexander, M. Wehner, H. Shiogama, P. Wolski, A. Ciavarella, and N. Christidis, 2017: On the nonlinearity of spatial scales in extreme weather attribution statements. Clim. Dyn., doi:10.1007/s00382-017-3768-9.
Angert, A., J. E. Lee, and D. Yakir, 2008: Seasonal variations in the isotopic composition of near surface water vapor in the Eastern-Mediterranean. Tellus B, 60B, 674-684 doi:10.1111/j.1600-0889.2008.00357.x.
Arain, M. A., E. J. Burke, Z.-L. Yang, and W. J. Shuttleworth, 1999: Implementing surface parameter aggregation rules in the CCM3 global climate model: Regional responses at the land surface. Hydrology and Earth System Sciences, 3 (4), 463-476.
Aranibar, J. N., J. A. Berry, W. J. Riley, D. E. Pataki, B. E. Law, and J. R. Ehleringer, 2006: Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Global Change Biology, 12, ISI:000236549600010710-730.
Arblaster, J. M., G. A. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Clim. Dyn., 18, 519-531.
Arblaster, J. M., and G. A. Meehl, 2006: Contribution of various external forcings to trends in the Southern Annular Mode. J. Climate, 19, 2896–2905.
Arblaster J. M., G. A. Meehl, and D. J. Karoly, 2011: Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 38, L02701, doi:10.1029/2010GL045384.
Arblaster, J. M., and L. V. Alexander, 2012: The impact of the El Nino-Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett., 39(20), L20702, doi:10.1029/2012GL053409.
Archer, C. L., and K. Caldeira, 2009: Global assessment of high-altitude wind power.Energies, 2 (2), 307-319; doi:10.3390/en20200307.
Archibald, R. K., K. J. Evans, and A. G. Salinger, 2015: Accelerating time integration for climate modeling ssing GPUs. Procedia Computer Science, 51, 2046-2055.
Arellano, A. F., K. Raeder, J. Anderson, P. Hess, L. Emmons, D. Edwards, G. Pfister, T. Campos, and G. Sachse, 2007: Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission. Atmos. Chem. Phys., 7, 5695-5710.
Arellano, A. F., P. G. Hess, D. P. Edwards, and D. Baumgardner, 2010: Constraints on black carbon aerosol distribution from Measurement of Pollution In The Troposphere (MOPITT) CO. Geophys. Res. Lett., 37, L17801, doi:10.1029/2010GL044416.
Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett., 38, L16705, doi:10.1029/2011GL048739.
Armour, K. C., C. M. Bitz, and G. H. Row, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 4518-5434, doi:10.1175/jcli-d-12-11544.1.
Armour K. C., J. Marshall, J. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9, 549–554, doi:10.1038/ngeo2731.
Arnold, S. R., et al., 2015: Biomass burning influence on high-altitude tropospheric ozone and reactive nitrogen in summer 2008: A multi-model analysis based on POLMIP simulations. Atmos. Chem. Phys., 15, 6047-6068, doi:10.5194/acp-15-6047-2015.
Arnone, E., A. K. Smith, C. F. Enell, A. Kero, and B. M. Dinelli, 2014: WACCM climate-chemistry sensitivity to sprite perturbations. J Geophys Res-Atmos, 119(11), 6958–6970, doi:10.1002/2013JD020825.
Arora, V. K., et al., 2013: arbon-concentraiton and carbon-climate feedbacks in CMIP5 Earth System Models. J. Climate, 26, 5289-5314, doi:10.1175/JCLI-D-12-00494.1.
Arruda, R., P. H. R. Calil, A. A. Bianchi, S. C. Doney, N. Gruber, I. Lima, and G. Turi, 2015: Air-sea CO2 fluxes and the controls on ocean surface pCO2 seasonal variability in the coastal and open-ocean southwestern Atlantic Ocean: A modeling study. Biogeosciences, 12, 5793-5809, doi:10.5194/bg-12-5793-2015.
Asefi-Najafabady S., K. Vandekar, A. Seimon, P. Lawrence, D. Lawrence, 2018: Climate change, population and poverty: vulnerability and exposure to heat stress in East Africa. Climatic Change, doi:10.1007/s10584-018-2211-5.
Ault, T. R., J. E. Cole, J. T. Overpeck, G. T. Pederson, S. S. George, B. Otto-Bliesner, C. A. Woodhouse, and C. Deser, 2013: The continuum of hydroclimate variability in western North America during the last millennium. J. Climate, 26, 5863-5878.
Austin, J. et al., 2008: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J. Geophys. Res., 113, D11306, doi:10.1029/2007JD009391.
Austin, J., et al., 2009: Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophys. Res. Lett., 36, L13809, doi:10.1029/2009GL038462.
Austin, J., et al., 2010: The decline and recovery of total column ozone using a multi-model time series analysis. J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857.
Austin, J., et al., 2010: Chemistry climate model simulations of the Antarctic ozone hole. J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577.
Aydogdu, A., N. Pinardi, E. Ozsoy, G. Danabasoglu, O. Gurses, and A. Karspeck, 2018: Circulation of the Turkish Straits System under interannual atmospheric forcing. Ocean Sci., 14, 999-1019, doi: 10.5194/os-14-999-2018.
Back, L., K. Russ, Z. Liu, K. Inoue, J. Zhang, and B. Otto-Bliesner, 2013: Global hydrological cycle response to rapid and slow global warming. J. Climate, 26, 8781-8786.
Bacmeister, J., P. H. Lauritzen, A. Dai, and J. E. Truesdale, 2011: Assessing possible dynamical effects of condensate in high resolution climate simulations. Geophys. Res. Lett.,39, L04806, doi:10.1029/2011GL050533.
Bacmeister, J. T., R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. Caron, J. Truesdale, and M. Wehner, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 3073-3099. doi:10.1175/JCLI-D-13-00387.1.
Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. Truesdale, N. Rosenbloom, and M. Levy, 2018: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146, 547-560, doi:10.1007/s10584-016-1750-x.
Badlan, R. L., T. P. Lane, M. W. Moncrieff, and C. Jakob, 2017: Insights into convective momentum transport and its parameterization from idealized simulations of organized convection. Quart. J. Royal Meteor. Soc., 143, 2687-2702, doi:10.1002/qj.3118.
Badger, A. M., and P. A. Dirmeyer, 2015: Remote tropical and sub-tropical response to Amazon deforestation. Clim. Dyn., doi:10.1007/s00382-015-2752-5.
Badger, A. M., and P. A. Dirmeyer, 2015: Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrology and Earth System Sciences Discussions, 12(1), 879-910, doi:10.5194/hessd-12-879-2015.
Baer, F., H. Wang, J. J. Tribbia, and A. Fournier, 2006: Climate modeling with spectral elements. Mon. Wea. Rev., 134 (12), 3610-3624.
Baker, A. H., D. M. Hammerling, S. A. Mickelson, H. Xu, M. B. Stolpe, P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe, F. DeSimone, F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E. Kay, and P. Lindstrom, 2016: Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific Model Development, 9, 4381-4403, doi:10.5194/gmd-9-4381-2016.
Baker, A. H., Y. Hu, D. M. Hammerling, Y. Tseng, X. Hu, X. Huang, F. O. Bryan, and G. Yang, 2016: Evaluation statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0). Geoscientific Model Development, 9, 2391-2406, doi:10.5194/gmd-9-2391-2016.
Baker, A. H., et al., 2015: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0). Geosci. Model Dev., 8, 2829-2840, doi:10.5194/gmd-8-2829-2015.
Baker, A. H., H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, 2014: A methodology for evaluating the impact of data compression on climate simulation data. Proc. Of the 23rd International ACM Symposium on High Performance Parallel and Distributed Computing (HPDC14), Vancouver, Canada, pp. 203-214.
Baker, A. H., D. J. Milroy, D. M. Hammerling, and H. Xu, 2017: Quality assurance and error identification for the Community Earth System Model. In Proceedings of Correctness’17: First International Workshop on Software Correctness for HPC Applications (Correctness’17). ACM, New York, NY, USA, 6 pages doi:10.1145/3145344.3145491.
Baker, A. H., H. Xu, D. M. Hammerling, S. Li, and J. Clyne, 2017: Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data, in J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 30–42, doi:10.1007/978-3-319-67630-2_3.
Baker, D. F. et al., 2006: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003. Global Biogeochemical Cycles, 20 (1), doi:10.1029/2004GB002439.
Bakker, P., et al., 2013: Last interglacial temperature evolution: A model intercomparison. Climate of the Past, 9, 605-619, doi:10.5194/cp-9-605-2013.
Bakker, P., et al., 2014: Temperature trends during the Present and Last Interglacial periods - A multi-model-data comparison. Quaternary Science Reviews, 99, 224-243, doi:10.1016/j.quascirev.2014.06.031.
Bakker, P., A. Schmittner, J. T. M. Lenaerts, A. Abe-Ouchi, D. Bi, M. R. van den Broeke, W.-L. Chan, A. Hu, R. L. Beadling, S. J. Marsland, S. H Mernild, O. A. Saenko, D. Swingedouw, A. Sullivan, and J. Yin, 2016: Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett., 43, 12,252-12,260, doi:10.1002/2016GL070457.
Bala, G., K. Caldeira, A. Mirin, M. Wickett, and C. Delire, 2005: Direct effects of CO2-fertilization on climate. Tellus B, doi:10.1111/j.1600-0889.2006.00210.x.
Bala, G., K. Caldeira, A. Mirin, M. Wickett, and C. Delire, 2005: Multi-century changes to global climate and carbon cycle model: Results from a coupled climate and carbon cycle model. J. Climate, 18, 4531-4544.
Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proceeding of the National Academy of Sciences, 105(22), 7664-7669.
Bala, G., R. B. Rood, D. Bader, A. Mirin, D. Ivanova, and C. Drui, 2008: Simulated Climate near Steep Topography: Sensitivity to Dynamical Methods for Atmospheric Transport. Geophys. Res. Lett., 35, L14807, doi:10.1029/2008GL033204.
Bala, G., R. B. Rood, A. Mirin, J. McClean, K. Achutarao, D. Bader, P. Gleckler, R. Neale, and P. Rasch, 2008: Evaluation of a CCSM3 simulation with a finite volume dynamical core for the atmosphere at 1° latitude x 1.25° longitude resolution. J. Climate, 21, 1467-1486.
Bala, G., K. Calderia, and R. Nemani, 2009: Fast versus slow response in climate change: Implication to the global hydrological cycle. Clim. Dyn., doi:10.1007/s00382-009-0583-y.
Bala, G., K. Caldeira, R. Nemani, L. Cao, G. Ban-Weiss, and H. Shin, 2010: Albedo-enhancement of marine clouds to counteract global warming: Impacts on hydrology. Clim. Dyn., doi:10.1007/s00382-010-0868-1.
Bala, G., and B. Nag, 2011: Albedo enhancement over land to counteract global warming: Impacts on hydrological cycle. Clim. Dyn., doi:10.1007/s00382-011-1256-1.
Bala, G., S. Krishna, D. Narayanappa, L. Cao, K. Caldeira, and R. Nemani, 2013: An estimate of equilirium sensitivity of global terrestrial carbon cycle using NCAR CCSM4. Clim. Dyn., 40, 1672-1686, doi:10.1007/s00382-012-1495-9.
Bala, G., N. Devaraju, R. K. Chaturvedi, K. Caldeira, and R. Nemani, 2013: Nitrogen deposition: How important is it for global terrestrial carbon uptake? Biogeosciences Discussions, 10, 11,077-11,109, doi:10.5194/bgd-10-1107-2013.
Balaguru, K., S. C. Doney, L. Bianucci, P. J. Rasch, L. R. Leung, J. -H. Yoon, and I. D. Lima, 2018: Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate. PLoS ONE, 13(1), e0191509, doi:10.1371/journal.pone.0191509.
Ballantyne, A.P., Y. Axford, G.H. Miller, B.L. Otto-Bliesner, N. Rosenbloom, and J.W.C. White, 2013: The amplification of Arctic terrestrial surface temperatures by reduced sea-ice extent during the Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 59-67.
Ballester, J. D. Petrova, S. Bordoni, B. Cash, M. Garcia-Diez, and X. Rodo, 2016: Sensitivity of El Nino intensity and timing to preceding subsurface heat magnitude. Scientific Reports, 6, 36344, doi:10.1038/srep36344.
Ballester J, D. Petrova, S. Bordoni, B. Cash, and X. Rodó, 2017: Timing of subsurface heat magnitude for the growth of El Niño events. Geophys. Res. Lett., 44, 8501-8509, doi:10.1002/2017GL074557/abstract.
Banner, J. L., et al., 2010: Climate change impacts on Texas water: A white paper assessment of the past, present and future and recommendations for action. Texas Water Journal, 1 (1), 1-19.
Ban-Weiss, G. A., and K. Caldeira, 2010: Geoengineering as an optimization problem. Environmental Research Letters, 5, doi:10.1088/1748-9326/5/3/034009.
Ban-Weiss, G., G. Bala, L. Cao, J. Pongratz, and K. Caldeira, 2011: climate forcing and response to idealized changes in surface latent and sensible heat fluxes. Environmental Research Letters, doi:10.1088/1748-9326/6/3/034032.
Ban-Weiss, G., L. Cao, G. Bala, and K. Caldeira, 2012: Dependence of climate forcing and response on the altitude of black carbon aerosols. Clim. Dyn.,, 38, 897-911.
Ban-Weiss, G. A., L. Jin, S. E. Bauer, R. Bennartz, X. Liu, K. Zhang, Y. Ming, H. Guo, and J. H. Jiang, 2014: Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations. J. Geophys. Res., 119, 10,876-10,901, doi:10.1002/2014JD021722.
Barcikowska, M. J., S. J. Weaver, F. Feser, S. Russo, F. Schenk, D. A. Stone, M. F. Wehner, and M. Zahn, 2018: Euro-Atlantic winter storminess and precipitation extremes under 1.5°C versus 2°C warming scenarios. Earth System Dynamics, 9, 679-699, doi.org/10.5194/esd-9-679-2018.
Bardeen, C., O. B. Toon, E. J. Jensen, D. R. Marsh, V. L. Harvey, 2008: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. J. Geophys. Res, 113 (D17), D17202, doi:10.1029/2007JD009515.
Bardeen, C. G., O. B. Toon, E. J. Jensen, M. E. Hervig, C. E. Randall, S. Benze, D. R. Marsh, and A. Merkel, 2010: Numerical simulations of the three-dimensional distribution of polar mesospheric clouds and comparisons with Cloud Imaging and Particle Size (CIPS) experiment and the Solar Occultation For Ice Experiment (SOFIE) observations. J. Geophys. Res., 115, D10204, doi:10.1029/2009JD012451.
Bardin, A., F. Primeau, and K. Lindsay, 2014: An offline implicit solver for simulating prebomb radiocarbon. Ocean Modelling, 73, 45-58. doi:10.1016/j.ocemod.2013.09.008
Bardin, A., F. Primeau, K. Lindsay, and A. Bradley, 2016: Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age. Ocean Modelling, 105, 25-33.
Barnett, T. P., D. W. Pierce, H. G. Hidalgo, C. Bonfils, B. D. Santer, T. Das, G. Bala, A. W. Wood, T. Nozawa, A. A. Mirin, D. R. Cayan, and M. D. Dettinger, 2008: Human-induced changes in the hydrology of the western United States. Science, 319, 1080-1083.
Barnhart, K. R., C. R. Miller, I. Overeem, and J. E. Kay, 2016: Mapping the future expansion of Arctic open water. Nature Climate Change, doi:0.1038/nclimate2848.
Barrie, D., and D. B. Kirk-Davidoff, 2010: Weather response to a large wind turbine array. Atmos. Chem. Phys., 10, 769-775.
Barton, N. P., S. A. Klein, J. S. Boyle, and Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, doi:10.1029/2012JD017589.
Barton, N. P., S. A. Klein, and J. S. Boyle, 2014: On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability. J. Climate, 27(19), 7250-7269, doi:10.1175/Jcli-D.14-00126.1.
Bates, S. C., B. Fox-Kemper, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager, 2013: Mean biases, variability and trends in air-sea fluxes in sea surface temperature in the CCSM4. J. Climate, 25, 7781-7801.
Baumgaertner, A. J. G., J. P. Thayer, R. R. Neely III, and G. Lucas, 2013: Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations. J. Geophys. Res. Atmos., 118(16), 9221-9232, doi:10.1002/jgrd.50725.
Beale, C. A., E. M. Buzan, C. D. Boone, and P. F. Bernath, 2016: Near-global distribution of CO isotopic fractionation in the Earth’s atmosphere. J. Mol. Spec., 323, doi:10.1016/j.jms.2015.12.005.
Beaulieu, C. S. A. Henson, J. L. Sarmiento, J. P. Dunne, S. C. Doney, R. R. Rykaczewski, and L. Bopp, 2013: Factors challenging our ability to detect long-term trends in ocean chlorophyll. Biogeosciences, 10, 2711-2724, doi:10.5194/bg-10-2711-2013.
Becker, M., M. Karpytchev, M. Marcos, S. Jevrejeva, and S. Lennartz-Sassinek, 2016: Do climate models reproduce complexity of observed sea level changes? Geophys. Res. Lett., 43, doi:10.1002/2016GL068971.
Beer, C., et al., 2010: Terrestrial gross carbon dioxide uptake: Global distribution and co-variation with climate. Science, 329, 834-838, doi:10.1126/science.1184984.
Behrenfeld, M. J., et al., 2009: Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences, 6, 779-794.
Behrenfeld, M. J., S. C. Doney, I. Lima, E. S. Boss, and D. A. Siegel, 2013: Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Global Biogeochem. Cycles, 27, 526-540, doi:10.1002/gbc.20050.
Belcher, S., H. Hewitt, A. Beljaars, E. Brun, B. Fox-Kemper, J.-F. Kemieux, G. Smith, and S. Valcke, 2015: Ocean-waves-sea ice-atmosphere interactions. G. Brunet, S. Jones, and P. M. Ruti, Editors. In Seamless Prediction of the Earth System: From minutes to months, WMO-No. 1156. World Meteorological Organization, Geneva, Switzerland.
Bell, J., P. B. Duffy, C. Covey, and L. Sloan, 2000: Analysis of temperature variability in sixteen climate model simulations. Geophys. Res. Lett., 27, 261-264.
Benedict, J. J., and D. A. Randall, 2009: MJO Structure in the Superparameterized CAM. J. Climate, 66, 3277-3296.
Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 3327-3349.
Benedict, J. J., B. Medeiros, A. C. Clement, and A. G. Pndergrass, 2017: Sensitivities of the hydrologic cycle to model physics, grid resolution, and ocean type in the aquaplanet CAM. J. Adv. Model. Earth Syst., 9, 1307-1324, doi:10.1002/2016MS000891.
Bentsen, M., et al., 2013: The Norwegian Earth System Model, NorESM1-M. Part 1: Description and basic evaluation of the physical climate. Goesci, Model Dev., 6, 687-720.
Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, doi:10.1029/2004JD005504.
Berg, A. R., C. L. Heald, K. E. Huff Hartz, A. G. Hallar, A. J. H. Meddens, J. A. Hicke, J.-F. Lamarque, and S. Tilmes, 2013: The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in Western North America. Atmos. Chem. Phys., 13, 3149-3161, doi:10.5194/acp-13-3149-2013.
Berner, J., and G. Branstator, 2007: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Probability density functions. J. Atmos. Sci., 64, 117-136. doi: http://dx.doi.org/10.1175/JAS3822.1
Berner, R. A., and Z. Kothavala, 2001: GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301, 182-204.
Bertrand, F.,Y. Yuan, K. Chiu, andR. Bramley, 2005: An approach to parallel M x N communication. International Journal of High Performance Computing Applications, 19, 399-407.
Bhatt, U. S., J. Zhang, W. V. Tangborn, C. S. Lingle, and L. Phillips, 2007: Examinging glacier mass balances with a hierarchical modeling approach. Computing in Science and Engineering, 9 (2), 61-67.
Bhatt, U. S., M. A. Alexander, C. Deser, J. E. Walsh, J. S. Miller, M. Timlin, J. D. Scott, and R. Tomas, 2008. The atmospheric response to realistic reduced summer Arctic sea ice anomalies. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications. Geophys. Monogr. Ser, 180, E. T. DeWeaver, C. M. Bitz, and L. –B. Tremblay, Eds., AGU 91-110.
Bhattacharya, T., J. E. Tierney, and P. DiNezio, 2017: Glacial reduction of the North American monsoon via surface cooling and atmospheric ventilation. Geophys. Res. Lett., 44, 5113-5122, doi:10.1002/2017GL073632.
Bichet, A., P. J. Kushner, and L. Mudryk, L. Terray, and J. Fyfe, 2015: Estimating the sea surface temperature response to anthropogenic forcing using pattern scaling based methods. J. Climate, doi:10.1175/JCLI-D-14-00604.1.
Bichet, A., P. J. Kushner, and L. Mudryk, 2016: Estimating the continental response to global warming using pattern-scaled sea surface temperatures and sea ice. J. Climate, 29, 9125-9139, doi:10.1175/JCLI-D-16-0032.1.
Bilionis, I., B. A. Drewniak, and E. M. Constantinescu, 2015: Crop physiology calibration in CLM. Geoscientific Model Development, 8, 1071-1083.
Bishop, S. P., P. R. Gent, F. O. Bryan, A. F. Thompson, M. C. Long, and R. Abernathey, 2016: Southern Ocean overturning compensation in an eddy-resolving climate simulation. J. Phys. Oceanogr., 46, 1575-1592.
Bitz, C. M., M. M. Holland, E. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 2903-2921.
Bitz, C. M., P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19 (11), 2437-2450.
Bitz, C. M., J. C. H. Chiang, W. Cheng, and J. J. Barsugli, 2007: Rates of thermohaline recovery from freshwater pulses in modern, last glacial maximum and greenhouse warming climates. Geophys. Res. Lett., 34, L07708, doi:10.1029/2006GL029237.
Bitz, C. M., 2008: Some aspects of uncertainty in predicting sea ice retreat. In Arctic Sea Ice Decline: observations, projections, mechanisms, and implications. AGU Geophysical Monograph Series, 180, edited by E. deWeaver, C. M. Bitz, and B. Tremblay, pp. 63-76, American Geophysical Union.
Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, doi:10:1029/2012GL053393.
Bitz, C. M., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model Version 4. J. Climate, 25, 3059-3070.
Blackburn, M., et al., 2013: The Aqua Planet Experimente (APE): CONTROL SST simulation. J. Meteor. Soc. Japan, 914A, 17-56, doi:10.2151/jmsj.2013-A02.
Blackmon, M. B., et al., 2001: The Community Climate System Model. BAMS, 82 (11), 2357-2376.
Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea loss in the coupled climate system. J. Climate, 30, 2163-2185, doi:10.1175/JCLI-D-16-0257.1.
Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401-417, doi:10.1175/JCLI-D-15-0284.1.
Blanchard-Wrigglesworth, E., K. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231-250, doi:10.1175/2010JCLI3775.1.
Blanchard-Wrigglesworth, E., C. M. Bitz, and M. M. Holland, 2011: Influence of initial conditions and boundary forcing on predictability in the Arctic. Geophys. Res. Lett., 38, L18503, doi:10.1029/2011GL048807.
Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27, 8244-8258, doi:10.1175/JCLI-D-14-00345.1.
Blanchard‐Wrigglesworth, E., R. I. Cullather, W. Wang, J. Zhang, and C. M. Bitz, 2015: Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook. Geophys. Res. Lett., 42, 8042-8048, doi:10.1002/2015GL065860.
Blanchard‐Wrigglesworth, E., S. L. Farrell, T. Newman, and C. M. Bitz, 2015: Snow cover on Arctic sea ice in observations and an Earth System Model. Geophys. Res. Lett., 42, doi:10.1002/2015GL066049.
Blois, J. L., J. W. Williams, M. C. Fitzpatrick, S. Ferrier, S. D. Veloz, F. He, Z. Liu, G. Manion, and B. Otto-Bliesner, 2013: Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum. Ecography, 36, 460-473.
Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C. –C. Chen, 2018:
The Path to CAM6: Coupled Simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235-255, doi:10.5194/gmd-11-235-2018.
Bohn, T. J., et al., 2015: WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349, doi:10.5194/bg-12-3321-2015.
Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11, 1307-1326.
Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2002: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16 (2), 1021, doi:10.10292000GB001360.
Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15, 3123-3149.
Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology, 9, 1543-1566.
Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model. J. Climate, 19 (11), 2290-2301.
Bonan, D., M. Hartman, W. Parton, and W. Wieder, 2013: Evaluating litter decomposition in Earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Global Change Biology, 19, 957-974, doi:10.1111/gcb.12031.
Bonan, G. B., and S. C. Doney, 2018: Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359(6375), eaam8328, doi: 10.1126/science.aam8328.
Bones, D., J. Plane, and W. Feng, 2015: Dissociative Recombination of FeO+ with electrons: Implications for plasma layers in the ionosphere. J. Phys. Chem. (A), doi:10.1021/acs.jpca.5b04947.
Bond, T., et al., 2013: Bounding the role of black carbon aerosol in the climate system: A scientific assessment. J. Geophys. Res., 118, 1-173, doi:10.1002/jgrd.50171.
Bonfils, C., et al., 2008: Detection and attribution of temperature changes in the mountainous western United States. J. Climate, 21, 6404-6424.
Bonfils, C. J. W., T. J. Phillips, D. M. Lawrence, P. Cameron-Smith, W. J. Riley, and Z. M. Subin, 2012: On the influence of shrub height and expansion on northern high latitude climate, Environ Res Lett, 7, doi:10.1088/1748-9326/7/1/015503.
Bony, S., B. Stevens, D. Coppin, T. Becker, K. Reed, A. Voigt, and B. Medeiros, 2016: Thermodynamic control of anvil-cloud amount. P. Natl. Acad. Sci., doi:10.1073/pnas.1601472113.
Bopp, L., et al., 2013: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10, 6225-6245, doi:10.5194/bg-10-6225-2013.
Born, A., T. F. Stocker, C. C. Raible, and A. Levermann, 2013: Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Clim. Dyn., 40, 2993-3007.
Bothe, O., et al., 2015: Continental-scale temperature variability in the PMIP3 simulation ensemble and PAGES2K regional temperature reconstructions over the past millennium. Climate of the Past, 11, 2483-2555, doi:10.5194/cp-11-1673-2015.
Bouimetarhan, I., M. Prange, E. Schefuss, L. Dupont, J. Lippold, S. Mulitza, and K. Zonneveld, 2012: Sahel megadrought during Heinrich Stadial 1: Evidence for a three-phase evolution of the low- and mid-level West African wind system. Quaternary Science Reviews, 58, 66-76.
Bouimetarhan, I., C. M. Chiessi, C. González, L. Dupont, I, Voigt, M. Prange, K. Zonneveld, 2018: Intermittent development of forest corridors in northeastern Brazil during the last deglaciation: Climatic and ecologic evidence. Quaternary Science Reviews, 192, 86-96.
Bourne, S., 2008: A climate perspective of observed and modeled surface-based temperature inversions in Alaska. MS. Thesis, Dept. of Atmospheric Sciences, University of Alaska Fairbanks, 106 pp.
Bouskill, N. J., W. J. Riley, and J. Y. Tang, 2014: Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models. Biogeosciences, 11, 6969-6983, doi:10.5194/bg-11-6969-2014.
Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, Version One. J. Climate, 11, 1115-1130.
Boville, B. A., and J. W. Hurrell, 1998: A comparison of the atmospheric circulations simulated by the CCM3 and CSM1. J. Climate, 11, 1327-1341.
Boville, B. A., J. T. Kiehl, P. J. Rasch, and F. O. Bryan, 2001: Improvements to the NCAR CSM-1 for transient climate simulations. J. Climate, 14, 164-179.
Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 (11), 2184-2198.
Boyce, C. K., and J. E. Lee, 2010: A unique role for flowering plants in modifying tropical climate and biodiversity. Proceedings of Royal Society, B., doi:10.1098/rspb.2010.0485.
Boyce, C. K., J. E. Lee, T. J. Brodribb, T. S. Feild, and M. A. Zwieniecki, 2010: Angiosperms put the rain in the rainforests: The impact of plant physiological evolution on tropical biodiversity. Annal. Mo. Bot. Gard., 97, 527-540, doi:10.3417/2009143.
Boyd, P. W., S. C. Doney, R. Strzepek, J. Dusenberry, K. Lindsay, and I. Fung, 2008: Climate-mediated changes to mixed-layer properties in the Southern Ocean: Assessing the phytoplankton response. Biogeosciences, 5, 847-864.
Boyd, P. W., S. T. Lennartz, D. M. Glover, and S. C. Doney, 2015: Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 5, 71-79, doi:10.1038/nclimate2441.
Boyd, P. W., C. E. Cornwall, A. Davison, S. C. Doney, M. Fourquez, C. L. Hurd, I. D. Lima, and A. McMinn, 2016: Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biology, 22, 2633-2650, doi:10.1111/gcb.13287.
Boyle, J., S. A. Klein, G. Zhang, S. Xie, and X. Wei, 2008: Climate model forecast experiments for TOGA-COARE. Mon. Wea. Rev., 136, 808-¬832.
Boyle, J., and S. A. Klein, 2010: Impact of model horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.
Bozbiyik, A., M. Steinacher, F. Joos, T. F. Stocker, and L. Menviel, 2011: Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Climate of the Past, 7, 319-338.
Bracegirdle, T. J., N. Bertler, A. M. Carleton, Q. Ding, C. J. Fogwill, J. C. Fyfe, H. H. Hellmer, A. Y. Karpechko, K. Kusahara, E. Larour, P. A. Mayewski, W. N. Meier, L. M. Polvani, J. L. Russell, S. L. Stevenson, J. Turner, J. M. Van Wessem, W. J. Van de Berg, I. Wainer, 2015: A multi-disciplinary perspective on climate model evaluation for Antarctica. Bulletin of the American Meteorological Society, 1, p. 150526130853006-1.
Braconnot, P., et al., 2007: Results of the PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximu. Part I: Experiments and large scale features. Climate of the Past, 3, 261-277.
Braconnot, P., et al., 2007: Results of the PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximu. Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high-latitude heat budgets. Climate of the Past, 3, 279-296.
Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluatin of climate mofels using paleoclimatic data. Nature Climate Change, 2, 417-424.
Brady, E. C., and B. L. Otto-Bliesner, 2010: The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Clim. Dyn., 37, 1517-1532, doi:10.1007/s00382-010-0925-9.
Brady, E. C., B. L. Otto-Bliesner, J. E. Kay, and N. A. Rosenbloom, 2013: Sensitivity to glacial forcing in the CCSM4. J. Climate, 26, 1901-1925, doi:10.1175/JCLI-D-11-00416.1.
Brady, R. X., M. A. Alexander, R. R. Rykaczewski, and N. S. Lovenduski, 2017: Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett., 44, 5044-5052, doi:10.1002/2017GL072945.
Brakebusch, M., C. E. Randall, D. E. Kinnison, S. Tilmes, M. L. Santee, and G. L. Manney, 2013: Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005. J. Geophys. Res. Atmos., 118, 2673-2688, doi:10.1002/jgrd.50226.
Brandefelt, J., and B. L. Otto-Bliesner, 2009: Equilibration and variability in a last glacial maximum climate simulation with CCSM3. Geophys. Res. Lett., 36, L19712, doi:10.1029/2009GL040364.
Brasseur, G. P., A. Gettelman, M. Jacobson, P. Minnis, J. Penner, R. Prinn, H. B. Selkirk, N. Unger, H. –W. Song, D. J. Wuebbles, P. Yang, R. Halthore, and S. D. Jacob, 2013: Aviation Climate Change Research Initiative (ACCRI) Phase II Report. Federal Aviation Administration, Washington, D.C.
Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893-1910.
Branstator, G., and J. Frederiksen, 2003: The seasonal cycle of interannual variability and the dynamical imprint of the seasonally varying mean state. J. Atmos. Sci., 60, 1577-1592.
Branstator, G., and J. Berner, 2005: Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: phase space tendencies. J. Atmos. Sci., 62, 1792-1811. doi:10.1175/JAS3429.1.
Branstator, G., and F. Selten, 2009: Modes of variability and climate change. J. Climate, 22, 2639-2658. doi: doi:10.1175/2008JCLI2517.1
Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 6292-6311. doi:10.1175/2010JCLI3678.1
Branstator, G., H. Teng, G. A. Meehl, M. Kimoto, J. R. Knight, M. Latif, and A. Rosati, 2011: Systematic estimates of initial value decadal predictability for six AOGCMs. J. Climate, doi: 10.1175/JCLI-D-11-00227.1.
Branstator G., and H. Teng, 2012: Potential impacts of initialization on CMIP5 decadal predictions. Geophy. Res. Lett., 39, doi:10.1029/2012GL051974.
Branstator, G., and H. Teng, 2014: Is AMOC more predictable than North Atlantic heat content? J. Climate, 27, 3537-3550. doi: 10.1175/JCLI-d-13-00274.1.
Branstator, G, 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate, 27, 8809-8826.
Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 1513-1532, doi:10.1175/JAS-D-16-0305.1.
Branstetter, M. L., and D. J. Erickson, III, 2003: Continental runoff dynamics in the Community Climate System Model 2 (CCSM2) control simulation. J. Geophys. Res., 108 (D17), 45-50, doi:10.10292002JD003212.
Briegleb, B. P., and D. H. Bromwich, 1998: Polar climate simulation of the NCAR CCM3. J. Climate, 11, 1270-1286.
Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, Version Three. NCAR Tech. Note NCAR/TN-463+STR, 70 pp.
Briegleb, B. P., E. C. Hunke, C. M. Bitz, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: The sea ice simulation in the Community Climate System Model, Version Two. NCAR Tech. Note NCAR/TN-455+STR, 34 pp.
Brierly, C., and I. Wainer, 2017: Interannual Variability in the Tropical Atlantic from the Last Glacial Maximum into Future Climate Projections simulated by CMIP5/PMIP3. Climate of the Past Discussions, 1-34.
Brinkhuis, H., et al., 2006: Episodic fresh surface waters in the early Eocene Arctic Ocean. Nature,441, doi:10.1038/nature04692, 606-609.
Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 21-26.
Broecker, W. S., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278, 1582-1588.
Brooke, J., W. Feng, J. D. Carrillo-Sanchez, G. Mann, A. James, C. Bardeen, L. Marshall, S. S. Dhomse, and J. Plane, 2017: Meteoric smoke deposition in the polar regions: a comparison of measurements with global atmospheric models. J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD027143.
Brown, P. T., W. Li, and S. -P. Xie, 2015: Regions of significant influence on unforced global mean surface air temperature variability in climate models. J. Geophys. Res. Atmos., 120, 480-494, doi:10.1002/2014JD022576.
Brunke, M. A., X. Zeng, V. Misra, and A. Beljaars, 2008: Integration of a prognostic sea surface skin temperature scheme into weather and climate models. J. Geophys. Res. – Atmospheres, 113, D21117, doi:10.1029/2008JD010607.
Brunke, M. A., S. P. de Szoeke, P. Zuidema, and X. Zeng, 2010: A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck. Atmos. Chem. Phys., 10, 6527-6536, doi:10.5194/acp-10-6527-2010.
Brunke, M., S. Stegall, and X. Zeng, 2015: A climatology of tropospheric humidity inversions in five reanalyses. Atmos. Res., 153, 165-186, doi:10.1016/j.atmosres.2014.08.005.
Brunke, M. A., P. Broxton, J. Pelletier, D. Gochis, P. Hazenberg, D. M. Lawrence, L. R. Leung, G. -Y. Niu, P. A. Troch, and X. Zeng, 2016: Implementing and evaluating variable soil thickness in the Community Land Model, Version 4.5 (CLM4.5). J. Climate, 29, 3441-3461, doi:10.1175/JCLI-D-15-0307.1.
Bryan, F. O., 1998: Climate drift in a multicentury integration of the NCAR Climate System Model. J. Climate, 11, 1455-1471.
Bryan, F. O., G. Danabasoglu, P. R. Gent, and K. Lindsay, 2006: Changes in ocean ventilation during the 21st century in the CCSM3. Ocean Modelling, 15, 141-156.
Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D.-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19, 2382-2397.
Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal-scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277-6291.
Bryan, F. O., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411-425.
Buenning, N. H., D. C. Noone, W. J. Riley, C. J. Still, and J. W. C. White, 2011: Influences of the hydrological cycle on observed interannual variations in atmospheric CO(18)O. J. Geophys. Res.-Biogeosciences, 116, ISI:000295531600001, Artn G04001, doi:10.1029/2010jg001576.
Buenning, N., D. Noone, J. Randerson, W. J. Riley, and C. Still, 2014: The response of the O-18/O-16 composition of atmospheric CO2 to changes in environmental conditions. J. Geophys. Res.-Biogeosciences, 119,WOS:000333164700005, doi:10.1002/2013jg002312, 55-79.
Buentgen, U., C. C. Raible, D. Frank, S. Helama, L. Cunningham, D. Nievergelt, A. Verstege, N. C. Stenseth, and J. Esper, 2011: Causes and consequences of past and projected Scandinavial summer temperatures, 500-2100AD. PLOS One, 6, e25133.
Bühler, T., 2008: Atmospheric blocking events and extreme temperatures in climate simulations and data. Master/Diploma thesis.
Buizert, V., et al., 2014: Greenland temperature response to climate forcing during the last glaciation. Science, 345, 1177-1180.
Burke, E. J., W. J. Shuttleworth, Z. -L. Yang, S. L. Mullen, and M. A. Arain, 2000: The impact of the parameterization of heterogeneous vegetation on the modeled large-scale circulation in CCM3-BATS. Geophys. Res. Lett., 27 (3), 397-400.
Burls, N. J., L. Muir, E. M. Vincent, and A. V. Fedorov, 2016: Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Clim. Dyn., doi:10.1007/s00382-016-3435-6.
Burns, S. P., S. C. Swenson, W. R. Wieder, D. M. Lawrence, G. B. Bonan, J. F. Knowles, and P. D. Blanken, 2018: A comparison of the diel cycle of modeled and measured latent heat flux during the warm season in a Colorado subalpine forest. JAMES, 10, 617-651, doi.org/10.1002/2017MS001248.
Burt, M. A., D. A. Randall, and M. D. Branson, 2016: Dark warming. J Climate, 29, 705-719, doi:10.1175/JCLI-D-15-0147.1.
Butchart, N., et al., 2006: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim. Dyn., doi:10.1007/s00382-006-0162-4.
Butchart, N., et al., 2010: Chemistry-climate model simulations of 21st century stratospheric climate and circulation changes. J. Climate, doi:10.1175/2010JCLI3404.1.
Butler, T., A. Lupascu, J. Coates, and S. Zhu, 2018: TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2. Geosci. Model Dev., 11, 2825-2840, doi:10.5194/gmd-11-2825-2018.
Buzan, J. R., K. Oleson, and M. Huber, 2015: Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev., 8, 151-170, doi: 10.5194/gmd-8-151-2015.
Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3: Consequences of a Super-MJO. Geophys. Res. Lett., 37, L11701, doi:10.1029/2010GL043468.
Caballero, R., and M. Huber, 2013: State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Nat. Acad. Sci., doi:10.1073/pnas.1303365110.
Cai, Q., G. J. Zhang, and T. Zhou, 2013: Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 2417-2431.
Cai, Q., T. Zhou, and Z. Guo, 2016: Impacts of Shallow Convection on the Simulation of the Tropical Precipitation Diurnal Cycle. International Journal of Climatology, doi:10.1002/joc.4676.
Cai, W., T. Cowan, J. M. Arblaster, and S. Wijffels, 2010: On potential causes for an under-estimated global ocean heat content trend in CMIP3 models. Geophys. Res. Lett., 37, L17709, doi:10.1029/2010GL044399.
Caldeira, K., and L. Wood, 2008: Global and Arctic climate engineering: Numerical model studies. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366, 4039-4056, doi:10.1098/rsta.2008.0132.
Caldeira, K., N. P. Myhrvold, 2013: Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environmental Research Letters, 8 (3), 034039.
Caldeira, K., and I. Cvijanovic, 2014: Estimating the contribution of sea ice response to climate sensitivity in a climate model. J. Climate, 27, 8597-8607, doi:10.1175/JCLI-3-14-00042.1.
Caldwell, P., S. Chin, D. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling over California. Climatic Change, 95, 499-521.
Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. Klein, B. D. Santer, and B. M. Sanderson, 2014: Statistical significance of climate sensitivity predictors obtained by data mining. Geophys. Res. Lett., 41, 1803–1808, doi:10.1002/2014GL059205.
Calle, L., et al., 2016: Regional carbon fluxes from land use and land cover change in Asia, 1980-2009. Environmental Research Letters, 10, 074011, doi:10.1088/1748-9326/11/7/074011.
Calvo, N., and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 3184, doi:10.1175/2009JAS3085.1.
Calvo, N., R. R. Garcia, W. J. Randel, and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost stratosphere during warm ENSO events. J. Atmos. Sci., 67 (7), 2331-2340, doi:10.1175/2010JAS3433.1.
Calvo, N., L. M. Polvani, and S. Solomon, 2015: On the surface impact of Arctic ozone extremes. Environ. Res. Lett., 10, 094003.
Camenisch, C., K. M. Keller, M. Salvisberg, B. Amann, M. Bauch, S. Blumer, R. Brazdil, S. Bronnimann, U. Buntgen, B. M. S. Campbell, L. Fernandez-Donado, R. Glaser, F. Gonzalez-Rouco, M. Grosjean, R. C. Hoffmann, H. Huhtamaa, F. Joos, A. Kiss, O. Kotyza, F. Lehner, J. Luterbacher, N. Maughan, R. Neukom, T. Novy, K. Pribyl, C. C. Raible, D. Riemann,M. Schuh, and O. Wetter, 2016: The 1430s: A cold period of extraordinary internal climate variability during the early Sporer Minimum with social and economic impacts in north-western and central Europe. Climate of the Past, 12, 2107-2126, doi:10.5194/cp-12-2107-2016.
Campbell, P., M. Mills, and T. Deshler, 2014: The global extent of the mid stratospheric CN layer: A three-dimensional modeling study. J. Geophys. Res.-Atmos., 119(2), 1015 - 1030, doi:10.1002/2013JD020503.
Cao, D., Q. Wu, A. Hu, Y. Yao and S. Liu, 2018: Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability. Clim. Dyn., doi:10.1007/s00382-018-4127-1.
Cao, G. and G. J. Zhang, 2017: Role of vertical structure of convective heating in MJO simulation in NCAR CAM5. J. Climate, 30, 7423-7439, doi:10.1175/JCLI-D-16-0913.1.
Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2009: Climate response to physiological forcing of carbon dioxide simulated by the coupled Community Atmosphere Model (CAM3.1) and Community Land Model (CLM3.0). Geophys. Res. Lett., 36, L10402, doi:10.1029/2009GL037724.
Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proceedings of the National Academy of Sciences, 107(21), 9513-9518.
Cao, L., G. Bala, and K. Caldeira, 2012: Climate response on the timescale of days to changes in atmospheric carbon dioxide. Env. Rs. Letters, doi:10.1088/1748-9326/7/3/034015.
Cao, L., L, Duan, G. Bala, K. Caldeira, 2017: Simultaneous stabilization of temperature and precipitation through cocktail geoengineering. Geophys. Res. Lett., doi:10.1002/2017GL074281.
Capotondi, A., and W. R. Holland, 1998: Thermohaline circulation variability in the NCAR Climate System Model (CSM). NCAR Tech. Note NCAR/TN-445+STR, 58pp.
Capotondi, A., 2000: Oceanic wave dynamics and interdecadal variability in a climate system model. J. Geophys. Res., 105, 1017-1036.
Capotondi, A., and M. A. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31, 3496-3515.
Captondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima in the Pacific at 10S and 13N? J. Phys. Oceanogr., 33, 1549-1563.
Capotondi, A., M. A. Alexander, C. Deser, and M. McPhaden, 2005: Anatomy and decadal evolution of the Pacific Subtropical-Tropical Cells (STCs). J. Climate, 18, 3739-3758.
Capotondi, A., M. A. Alexander, C. Deser, and A. J. Miller, 2005: Low-frequency pycnocline variability in the northeast Pacific. J. Phys. Oceanogr., 35, 1403-1420.
Capotondi, A., A. Wittenberg, and S Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modelling, 15, 274-298.
Capotondi, A., 2008: Can the mean structure of the tropical pycnocline affect ENSO period in coupled climate models? Ocean Modelling, 20, 157-169.
Capotondi, A., V. Combes, A. A. Alexander, E. Di Lorenzo, and A. J. Miller, 2009: Low-frequency variability in the Gulf of Alaska from coarse and eddy-permitting ocean models, J. Geophys. Res., 114, C01017.
Capotondi, A., 2010: ENSO ocean dynamics: Simulation by coupled general circulation models. In Clim. Dyn.: Why does climate vary? AGU Monograph Series, D. -Z. Sun and F. Bryan Editors, 105-122.
Capotondi, A., and M. A. Alexander, 2010: Relationship between precipitation in the Great Plains of the United States and global SSTs: Insights from the IPCC-AR4 models. J. Climate, 23, 2941-2958.
Capotondi, A., M. A. Alexander, N. A. Bond, E. N. Curchitser, and J. D. Scott, 2012: Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res., 117, C04031, doi:10.1029/2011JC007409.
Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 4755-4770, doi:10.1002/jgrc.20335.
Capps, S. B., and C. S. Zender, 2008: Observed and CAM3 GCM sea surface wind speed distributions: Characterization, comparison, and bias reduction. J. Climate, 21 (24), 6569–6585, doi:10.1175/2008JCLI2374.1.
Carlson, A. E., D. J. Ulman, F. S. Anslow, F. He, P. U. Clark, Z. Liu, and B. L. Otto-Bliesner, 2012: Modeling the surface mass-balance response of the Laurentide Ice Sheet to bølling warming and its contribution to meltwater pulse 1A. Earth and Planetary Science Letters, 315-316, 24-29.
Carmichael, M. J., D. J. Lunt, M. Huber, M. Heinemann, J. Kiehl, A. LeGrande, C. A. Loptson, C. D. Roberts, N. Sagoo, C. Shields, P. J. Valdes, A. Winguth, C. Winguth, and R. D. Pancost, 2016: A model–model and data–model comparison for the early Eocene hydrological cycle. Clim. Past, 12, 455-481, doi:10.5194/cp-12-455-2016.
Carr, G. R. Jr., M. J. Cordery, J. B. Drake, M. W. Ham, F. M. Hoffman, and P. H. Worley, 2005: Porting and performance of the Community Climate System Model (CCSM3) on the Cray X1. In Proceedings of the 2005 Cray User Group (CUG) Conference.
Carrillo-Sanchez, J. D., J. Pland, W. Feng, D. Nesvorny, and D. Janches, 2015: On the size and velocity distribution of cosmic dust particles entering the atmosphere. Geophys. Res. Lett., doi:10.1002/2015GL065149.
Cash, B. A., E. K. Schneider, and L. Bengtsson, 2005: Origin of Regional Climate Differences: Role of boundary conditions and model formulation in two GCMs. Clim. Dyn.,, 25, 709-723, doi:10.1007/s00382-005-0069-5.
Cash, B. A., E. K. Schneider, and L. Bengtsson, 2007: Origin of climate sensitivity differences: Role of selected radiative parameterizations in two GCMs. Tellus, 59, 155-169, doi:10.1111/j.1600-0870.2006.00224.x.
Cassou, C., C. Deser, and M. A. Alexander, 2007: Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J. Climate, 20, 3510-3526.
Casty, C., C. C. Raible, T. F. Stocker, H. Wanner, and J. Luterbacher, 2007: A European pattern climatology 1766 – 2000. Clim. Dyn., 29, 791-805, doi:10.1007/s00382-007-0257-6.
Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of mid-latitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 8259-8268.
Chamenisch, C., et al., 2016: The early Spörer Minimum - a period of extraordinary climate and socio-economic changes in Western and Central Europe. Climate of the Past Discussions, 1-13.
Chandan, D., and W. R. Peltier, 2017: Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions. Clim. Past, 13, doi:10.5194/cp-13-1-2017.
Chandan, D., and W. R. Peltier, 2018: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures. Clim. Past, 14, 825-856.
Chandran, A., R. L. Collins, R. R. Garcia, D. R. Marsh, V. L. Harvey, J. Yue, and L. de la Torre, 2013: A climatology of elevated stratopause events in the whole atmosphere community climate model. J. Geophys. Res. Atmos., 118, 1234-1246, doi:10.1002/jgrd.50123.
Chandran, A., R. R. Garcia, R. L. Collins, and L. C. Chang, 2013: Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012. Geophys. Res. Lett., 40(9), doi:10.1002/grl.50373.
Chang, L., S. Palo, M. Hagan, J. Richter, R. Garcia, D. Riggin, and D. Fritts, 2008: Structure of the migrating diurnal tide in the WholeAtmosphere Community Model (WACCM). Adv. Space Res., 41 (9), 1397-1406.
Chao, H., and T. Zhou, 2014: The two interannual variability modes of the Western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Clim. Dyn.,, 43, 2455-2469, doi:10.1007/s00382-014-2068-x.
Chao, H., and T. Zhou, 2015: Responses of the Western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean - Tropical Western Pacific SST gradient. J. Climate, 28, 365-380.
Charlton, A. J., L. Polvani, J. Perlwitz, F. Sassi, E. Manzini, K. Shibata, S. Pawson, J. E. Nielsen, and D. Rind, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470-488.
Charlton-Perez, A. J., et al., 2010: Quantifying uncertainty in projections of stratospheric ozone over the 21st century. Atmos. Chem. Phys., 10, 9473-9486, doi:10.5194/acp-10-9473-2010.
Chartier, A. T., J. J. Makela, H. Liu, G. S. Bust, and J. Noto, 2015: Modeled and observed equatorial thermospheric winds and temperatures. J. Geophys. Res. Space Physics, 120, 5832-5844, doi:10.1002/2014JA020921.
Chau, J., L. P. Hoffmann, N. M. Pedatella, V. Matthias, and G. Stober, 2015: Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events. J. Geophys. Res. Space Physics, 120, 3084-3096, doi:10.1002/2015JA020998.
Chen, C. –C., and A. Gettelman, 2016: Simulated 2050 aviation radiative forcing from contrails and aerosols. Atmos. Chem. Phys., 16, 7317-7333, doi:10.5194/acp-16-7317-2016.
Chen, H., R. E. Dickinson, Y. Dai, and L. Zhou, 2010: Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Climate Dynamcis, doi:10.1007/s00382-010-0741-2.
Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 3657-3675.
Chen, H., E. K. Schneider, B. P. Kirtman, and I. Colfescu, 2013: Evaluation of weather noise and its role in climate model simulations. J. Climate, 26, 3766-3784, doi:10.1175/JCLI-D-12-00292.1.
Chen, H. and E. K. Schneider, 2014: Comparison of the SST forced responses between coupled and uncoupled climate simulations. J. Climate, 27, 740-756, doi:10.1175/jcli-d-13-00092.1.
Chen, H., E. K. Schneider, and Z. Zhu, 2016: Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean in a coupled GCM. Climate Dyn., 46, 1517-1546, doi:10.1007/s00382-015-2660-8.
Chen, L., Y. Yu, and D. -Z Sun, 2013: Cloud and water vapor feedbacks to El Nino warming: Are they still biased in CMIP5 models? J. Climate, 26, 4947-4961.
Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally-based metrics of biogeophysical feedback from land cover change to climate modeling. Env. Res. Lett., 11, 034002, doi: 10.1088/1748-9326/11/3/034002.
Chen, L. and P. A. Dirmeyer, 2017: Impacts of land use/land cover change on afternoon precipitation over North America. J. Climate, 30, 2121-2140, doi: 10.1175/JCLI-D-16-0589.1.
Chen, L. and P. A. Dirmeyer, 2018: The relative importance among anthropogenic forcings of land use/land cover change in affecting temperature extremes. Clim. Dyn., doi: 10.1007/s00382-018-4250-z.
Chen, L., P. A. Dirmeyer, A. Tawfik, and D. M. Lawrence, 2017: Sensitivities of land cover-precipitation feedback to convective triggering. Journal of Hydrometeorology, 18, 2265-2283, doi:10.1175/JHM-D-17-0011.1.
Chen, L., P. A. Dirmeyer, Z. Guo, and N. M. Schultz, 2018: Pairing FLUXNET sites to validate model representations of land use/land cover change. Hydrology and Earth System Sciences, 22, 111-125, doi: 10.5194/hess-22-111-2018.
Chen, M. T. J. Griffis, J. Baker, J. D. Wood, and K. Xiao, 2015: Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci., 120, 310-325, doi:10.102/2014JG002780.
Chen, X., and T. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res. - Atmospheres, 119, 13,043-13,066.
Chen, X., and T. Zhou, 2015: Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett., 42, 9433-9439.
Chen, Y., H. Wang, B. Singh, P.-L. Ma, P. J. Rasch, and T. C. Bond, 2018: Investigating the linear dependence of direct and indirect radiative forcing on emission of carbonaceous aerosols in a global climate model. J. Geophys. Res.: Atmospheres, 123, 1657-1672, doi:10.1002/2017JD027244.
Cheng, J., Z. Liu, F. He, P. W. Guo, Z. X. Chen, and B. Otto-Bliesner, 2010: Model evidence for climatic impact of thermohaline circulation on China at the century scale. Chinese Science Bulletin, 55, 3215-3221.
Cheng, J., Z. Liu, F. He, and B. Otto-Bliesner, 2011: Impact of North Atlantic - GIN Sea exchange on deglaciation evolution of Atlantic Meridional Overturning Circulation. Clim. Past, 7, 935-940.
Cheng, J., Z. Liu, F. He, B. Otto-Bliesner, and M. Wehrenberg, 2011: Simulated two-stage recovery of Atlantic Meridional Overturning Circulation during last deglaciation. Geophysical Monograph 193: Understanding the Causes, Mechanisms, and Extent of Abrupt Climate Change, 75-92.
Cheng, J., Z. Liu, F. He, B. Otto-Bliesner, E. Brady, and J. Lynch-Stieglitz, 2014: Model-proxy comparison for overshoot phenomenon of Atlantic thermohaline circulation at Bolling-Allerod. Chinese Science Bulletin, 59, 4510-4515.
Cheng, L., M. P. Hoerling, A. AghaKouchak, B. Livneh, X. W. Quan, and J. Eischeid, 2015: How has human-induced climate change affected California drought risk? J. Climate, 28, doi:10.1175/JCLI-D-15-0260.1.
Cheng, W., C. M. Bitz, and J. C. H. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. In Past and Future Changes of the Ocean's Meridional Overturning Circulation: Mechanisms and Impacts.
Cheng, W., E. Curchitser, C. Ladd, P. Stabeno, and M. Wang, 2014: Influences of sea ice on the Eastern Bering Sea: NCAR CESM simulations and comparison with observations. Deep Sea Research II, doi: 10.1016/j.dsr2.2014.03.002.
Cheng, W., E. Blanchard-Wrigglesworth, C. M. Bitz, C. Ladd, and P. Stabeno, 2016: Diagnostic sea ice predictability in the pan-Arctic and U. S. Arctic regional seas. Geophys. Res. Lett., 43, 11,688-11,696, doi:10.1002/2016GL070735.
Cheng, W., W. Weijer, W. M. Kim, G. Danabasoglu, S. G. Yeager, P. R. Gent, D. Zhang, J. C. H. Chiang, and J. Zhang, 2018: Can the salt-advection feedback be detected in interanal variability of the Atlantic meridonal overturning circulation? J. Climate, 31, 6649-6667, doi:10.1175/JCLI-D-17-0825.1.
Chiang, J. C. H., W. Cheng, and C. M. Bitz, 2008: Teleconnection mechanisms to the tropical Atlantic from an abrupt freshening of the North Atlantic ocean. Geophys. Res. Lett., 34, L07704, doi:10.1029/2008GL033292.
Chiang, J. C. H., I. Y. Fung, C. H. Wu, Y. J. Cai, J. P. Edman, Y. W. Liu, J. A. Day, T. Bhattacharya, Y. Mondal, and C. A. Labrousse, 2015: Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quaternary Science Reviews, 108, 111-129, doi:10.1016/j.quascirev.2014.11.009.
Chikamoto, M. O., A. Timmermann, Y. Chikamoto, H. Tokinaga, and N. Harada, 2015: Mechanisms and predictability of multiyear ecosystem variability in the North Pacific. Global Biogeochemical Cycles, 29, 2001-2019, doi:10.1002/2015GB005096.
Chikamoto, Y., A. Timmermann, S. Stevenson, P. DiNezio, and S. Langford, 2015: Decadal predictability of soil water, vegetation, and wildfire frequency over North America. Clim. Dyn., 45, 2213-2235, doi:10.1007/s00382-015-2469-5.
Chikamoto, M. O., A. Timmermann, M. Yoshimori, F. Lehner, A. Laurian, A. Abe-Ouchi, A. Mouchet, F. Joos, C. C. Raible, and K. M. Cobb, 2016: Intensification of tropical Pacific biological productivity due to volcanic eruptions. Geophys. Res. Lett., 43, 1-9, 10.1002/2015gl067359.
Chikamoto, Y., A. Timmermann, M. J. Widlansky, M. A. Balmaseda, and L. Stott, 2017: Multi-year predictability of climate, drought, and wildfire in southwestern North America. Scientific Reports, doi:10.1038/s41598-017-06869-7.
Chiodo, G., N. Calvo, D. R. Marsh, and R. Garcia-Herrera, 2012: The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, D06109, doi:10.1029/2011JD016393.
Chiodo, G., D. R. Marsh, R. Garcia-Herrere, N. Calvo, and J. A. Garcia: 2014: On the detection of the solar signal in the tropical stratosphere. Atmos. Chem. Phys., 14, 5251-5269, doi:10.5194/acp-14-5251-2014.
Chiodo, G., R. Garcia-Herrera, N. Calvo, J. A.Vaquero, Añel, and K.Matthes, 2016: The impact of a future solar minimum on climate change projections in the Northern Hemisphere. Environmental Research Letters, doi:10.1088/1748-9326/11/3/034015.
Chiodo, G., and L. M. Polvani, 2016: Reduction of climate sensitivity to solar forcing due to
stratospheric ozone feedback. J. Climate, 29, 4651-4663, doi:10.1175/JCLI-D-15-0721.1.
Chiodo, G., and L. M. Polvani, 2016: Reduced circulation response to quadrupled CO2 due to stratospheric ozone feedback. Geophys. Res. Lett., doi:10.1002/2016GL071011.
Chiodo, G., L. M Polvani, 2017: Large increase in incident shortwave radiation due to the ozone hole offset by high climatological albedo over Antarctica. J. Climate, doi:10.1175/JCLI-D-0842.1.
Chiodo, G, L. M. Polvani, D. R. Marsh, A. Stenke, W. Ball, S. Muthers, E. Rozanov, and K. Tsigaridis, 2018; The response of the ozone layer to quadrupled CO2 concentrations. J. Climate, doi:10.1175/JCLI-D-17-0492.1.
Chipperfield, M., et al., 2010: SPARC Report on the Evaluation of Chemistry Climate Models.
Chipperfield, M. P., et al., 2014: Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future. J. Geophys. Res.-Atmos., 119(2), 2555-2573, doi:10.1002/2013JD021097.
Chipperfield, M. P., et al., 2014: Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future. J. Geophys. Res.-Atmos., 119(2), 2555–2573, doi:10.1002/2013JD021097.
Chou, C., J. D. Neelin, C. –A. Chen, and J. –Y. Tu, 2009: Evaluating the rich-get-richer mechanism in tropical precipitation change under global warming. J. Climate, 22, 1982-2005.
Christensen, H. M., J. Berner, D. R. Coleman, and T.N. Palmer, 2017: Stochastic Parameterization and El Niño–Southern Oscillation. J. Climate, 30, 17–38, doi:10.1175/JCLI-D-16-0122.1.
Christensen, J. H. K., et al., 2013: Climate phenomena and their relevance for future regional climate change supplementary material. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Eds.
Christensen, J. H. K., et al., 2013: Climate phenomena and their relevance for future regional climate change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V.Bex, and P. m. Midgley, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Chu, S. N., Z. A. Wang, S. C. Doney, G. L. Lawson, and K. A. Hoering, 2016: Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade. J. Geophys. Res. Oceans, 121, 4618-4632, doi:10.1002/2016JC011775.
Chu, Y.-H., C. Y. Wang, K. H. Wu, K.-T. Chen, K. J. Tseng, C.-L. Su, W. Feng, and J. Plane, 2014: Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. J. Geophys. Res.-Space, doi:10.1002/2013JA019437.
Church, J. A., N. J. White, and J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 74-77.
Cionni, I., G. Visconti, and F. Sassi, 2004: Fluctuation-dissipation theorem in a General Circulation Model. Geophys. Res. Lett., 31, doi:10.1029/2004GL019739.
Clark, P. U., et al., 2012: A proxy-based synthesis of global climate evolution during the last deglaciation. PNAS, 109, E1134-E1142.
Clauzet, G., I. Wainer, A. Lazar, E. Brady, B. Otto-Bliesner, 2007: A numerical study of the South Atlantic circulation at the Last Glacial Maximum. Paleogeography, Paleoclimatology, Paleoecology, 253, 509-528.
Clauzet, G., I. Wainer, and M. Bicego, 2008: Validating NCAR-CCSM last glacial maximum sea surface temperature in the tropical and South Atlantic with proxy-data. Paleooceanography, Paleoclimatology, Paleoecology, 267, 153-160, doi:10.1016/j.palaeo.2008.06.004.
Clement A., 2008: Potential biosphere response to climate change and its impact on hydrology and regional climate prediction over western Africa. Ph.D. dissertation, 113 pages. University of Connecticut, Storrs, Connecticut.
Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460-426.
Cleveland, C. C., P. Taylor, D. Chadwick, K. Dahlin, C. E. Doughty, Y. Malhi, W. K. Smith, B. Sullivan, W. R. Wieder, and A. R. Townsend, 2015: A comparison of plot-based, satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 29, 626-644, doi:10.1002/2014gb005022.
Coburn, S., B. Dix, E. Edgerton, C. D. Holmes, D. Kinnison, Q. Liang, A. ter Schure, S. Wang, and R. Volkamer, 2016: Mercury oxidation from bromine chemistry in the free troposphere over the southeastern U.S. Atmos. Chem. Phys., 16, 3743-3760, doi:10.5194/acp-16-3743-2016.
Cocco, V., et al., 2013: Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences, 10, 1849-1868, 10.5194/bg-10-1849-2013.
Coelho, C. A. S., and L. Goddard, 2009: El Niño–induced tropical droughts in climate change projections. J. Climate, 22, 6456–6476, doi:10.1175/2009JCLI3185.1.
Cohen, J. B., R. G. Prinn, and C. Wang, 2011: The impact of detailed urban-scale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols. Geophys. Res. Lett., 38, L20808, doi:10.1029/2011GL047417.
Cohen, J. B., and C. Wang, 2014: Estmating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res., 119, 307-323, doi:10.1002/2013JD019912.
Cole, J. N. S., H. W. Barker, W. O’Hirok, E. E. Clothiaux, M. F. Khairoutdinov, and D. A. Randall, 2005: Atmospheric radiative transfer through global arrays of 2D clouds. Geophys. Res. Lett., 32, L19817, doi:10.1029/2005GL023329.
Cole, J. N., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. Clothiaux, 2005: Interactions between clouds and radiation at scales unresolved by global climate models. Geophys. Res. Lett., 32, L06703, doi:10.1029/2004GL020945.
Colfescu, I., E. K. Schneider, and H. Chen, 2013: Consistency of 20th century sea level pressure trends as simulated by a coupled and uncoupled GCM. Geophys. Res. Lett., 40, 3276-3280, DOI: 10.1002/grl.50545.
Colfescu, I., E. K. Schneider, and H. Chen, 2013: Consistency of 20th century sea level pressure trends as simulated by a coupled and uncoupled GCM. Geophys. Res. Lett., 40, 3276-3280, doi:10.1002/grl.50545.
Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang 2013: Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, doi: http://dx.doi.org/10.1175/JCLI-D-12-00498.1
Colleoni, S., A. Masina, A. Cherchi, A. Navarra, C. Ritz, V. Peyaud, and B. Otto-Bliesner, 2012: Modelling Northern Hemisphere ice sheets distribution during MIS5 and MIS7 glacial inceptions. Clim. Past, 10, 269-291.
Collier, J. C., and G. J. Zhang, 2005: U. S. warm-season rainfall in NCAR CAM3: An event-oriented perspective. Geophys. Res. Lett., 32, L20801, doi:10.1029/2005GL024217.
Collier, J. C., and G. J. Zhang, 2006: Simulation of the North American Monsoon by the NCAR CCM3 and its sensitivity to convection parameterization. J. Climate, 19, 2851-2866.
Collier, J. C., and G. J. Zhang, 2007: Effects of increased horizontal resolution on simulation of the North American monsoon in the NCAR CAM3: An evaluation based on surface, satellite, and reanalysis data. J. Climate, 20, 1851-1869.
Collier, J. C., and G. J. Zhang, 2009: Aerosol direct forcing of the summer Indian monsoon as simulated by the NCAR CAM3. Clim. Dyn., 32, 313-332, doi:10.1007/s00382-008-0464-9.
Collins, J. A., M. Prange, T. Caley, L. Gimeno, B. Beckmann, S. Mulitza, C. Skonieczny, D. Roche, and E. Schefuss, 2017: Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nature Communications, doi:10.1038/s41467-017-01454-y.
Collins, N. , G. Theurich, C. DeLuca, M. Suarez, A. Trayanov, V. Balaji, P. Li, W. Yang, C. Hill, and A. da Silva, 2005: Design and implementation of components in the Earth System Modeling Famework. International Journal of High Performance Computing Applications, 19 (3), 341-350.
Collins, W. D., 1998: A global signature of enhanced shortwave absorption by clouds. J. Geophys. Res., 103, 31669-31679.
Collins, W. D., 2001: Effects of enhanced shortwave absorption on coupled simulations of the tropical climate system. J. Climate, 14, 1147-1165.
Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci., 58, 3224-3242.
Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: A new parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, doi:10.1029/2000JD000032.
Collins, W. D., et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp
Collins, W. D., 2006: Unresolved issues in atmospheric solar absorption. Frontiers in the Science of Climate Modeling, J. T. Kiehl and V. Ramanathan, Eds., Cambridge University Press, 179-216.
Collins, W. D., et al., 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 (11), 2122-2143.
Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S-J. Lin, and M. Zhang, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 (11), 2144-2161.
Conrad, C., and N. S. Lovenduski, 2015: Climate-driven variability in the Southern Ocean carbonate system. J. Climate, 28, 5335-5350, doi:10.1175/JCLI-D-14-00481.1.
Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in Southern Africa. J. Climate, 19, 4198-4206.
Cook, B. I., G. B. Bonan, S. Levis, and H. E. Epstein, 2007: Rapid vegetation responses and feedbacks amplify climate model response to snow cover changes. Clim. Dyn., doi:10.1007/s00382-007-0296z.
Cook, B. I., G. B. Bonan, S. Levis, and H. E. Epstein, 2008: The thermoinsulation effect of snow cover within a climate model. Clim. Dyn, 31, 107-124, doi:10.1007/s00382-007-0341-y.
Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part 2: The African and American monsoons. J. Climate, 25, 2609-2621, doi:10.1175/JCLI-D-11-00185.1.
Cooley, H. S., W. J. Riley, M. S. Torn, and Y. He, 2005: Impact of agricultural practice on regional climate in a coupled land surface mesoscale model. J. Geophys. Res.-Atmospheres, 110, ISI:000227065800002D03113.
Cooley, S., H. L. Kite-Powell, and S .C. Doney, 2009: Ocean acidification’s potential to alter global marine ecosystem services. Oceanography, 22 (4), 172-180.
Cooley, S. R., N. Lucey, H. Kite-Powell, and S.C. Doney, 2012: Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish and Fisheries, 13(2), 182-215, doi:10.1111/j.1467-2979.2011.00424.x.
Covey, C., P. J. Gleckler, C. Doutriax, D. N. Williams, A. Dai, J. T. Fasullo, K. E. Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. J. Climate, doi:10.1175/JCLI-D-15-0664.1.
Coxall, H. K., C. Huck, M. Huber, C. H. Lear, A. Legarda-Lisarri, M. O’Regan, K. Sliwinski, T. van De Flierdt, A. De Boer, J. C. Zachos, and J. Backman, 2018. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nature Geo., 11, doi:10.1038/s41561-018-0069-9.
Craig, A., R. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and H. He, 2005: CPL6: The new extensible, high-performance parallel coupler for the Community Climate System Model. The International Journal of High Performance Computing Applications, 19 (3), 309-328, doi:10.1177/1094342005056117.
Craig, A. P., M. Vertenstein, and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. The International Journal of High Performance Computing Applications, 26(1), 31–42, doi:10.1177/1094342011428141.
Craig, A. P., S. Mickelson, e. C. Hunke, and D. A. Bailey, 2014: Improved parallel performance of the CICE model in CESM1. International Journal of High Performance Computing Applications, 1094342014548771.
Cuesta-Valero, F. J., A. Garcia-Garcia, H. Beltrami, and J. E. Smerdon, 2016: First assessment of continental energy storage in CMIP5 simulations. Geophys. Res. Lett., 43, 5326-5335, doi:10.1002/2016GL068496.
Cullens, C. Y., S. L. England, and R. R. Garcia, 2016: The 11 year solar cycle signature on wave-driven dynamics in WACCM. J. Geophys. Res. Space Physics, 121, 3484-3496, doi:10.1002/2016JA022455.
Curry, C. L., et al., 2014: A multi-model examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res., 119, 3900-3923, doi:10.1002/2013JD020648.
Cuzzone, J., 2010: The relationship between Arctic sea ice and cloud-related variables in ERA interim reanalysis and climate model data. Master’s Theses: Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison.
Cuzzone, J., and S. Vavrus, 2011: The relationships between Arctic sea ice and cloud-related variables in the ERA Interim Reanalysis and CCSM3. Env. Res. Lett., 6, doi:10.1088/1748-9326/6/1/014016.
Cvijanovic, I., and K. Caldeira, 2015: Atmospheric impacts of sea ice decline in CO2 induced global warming. Clim. Dyn., 1-14, doi:10.1007/s00382-015-2489-1.
Cvijanovic, I., K. Caldeira, and D. G. MacMartin, 2015: Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate. Environmental Research Letters, 10, 044020, doi:10.1088/1748-9326/10/4/044020.
Dagon, K., and D. P. Schrag, 2016: Exploring the effects of solar radiation management on water cycling in a coupled land-atmosphere model. J. Climate, 29, 2635-2650.
Dagon, K., and D. P. Schrag, 2017: Regional climate variability under model simulations of solar geoengineering. J. Geophys. Res.: Atmospheres, 122, 12106-12121, doi:10.1002/2017JD027110.
Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model simulated precipitation diurnal cycles over the contiguous United States. J. Geophys. Res., 104, 6377-6402.
Dai, A., G. A. Meehl, W. M. Washington, and T. M. L. Wigley, 2001: Climate changes in the 21st century over the Asia-Pacific region simulated by the NCAR CSM and PCM. Adv. Atmos. Sci., 18, 639-658.
Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. A. Arblaster, 2001: Ensemble simulation of 21st century climate changes: Business as usual vs. CO2 stabilization. Bull. Amer. Meteor. Soc., 82, 2377-2388.
Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the 20th and 21st centuries simulated by the NCAR Climate System Model. J. Climate, 14, 485-519.
Dai, A., T. M. L. Wigley, G. A. Meehl, and W. M. Washington, 2001: Effects of stabilizing atmospheric CO2 on global climate in the next two centuries. Geophys. Res. Lett., 28, 4511-4514.
Dai, Y., et al., 2003: The Common Land Model (CLM). Bull. Amer. Meteor. Soc., 84, 1013-1023.
Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis and stomatal conductance. J. Climate, 17, 2281-2299.
Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate 17, 930-951.
Dai, A., W. M. Washington, G. A. Meehl, T. W. Bettge, and W. G. Strand, 2004: The ACPI climate change simulations. Climatic Change, 62, 29-43.
Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled general circulation model: unforced variations vs. forced changes. J. Climate, 18, 2990-3013.
Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605-4630.
Dai, A., 2006: Recent climatology, variability and trends in global surface humidity. J. Climate, 19, 3589-3606.
Dai, A., T. Qian, K. E. Trenberth, and J. D Milliman, 2009: Changes in continental freshwater discharge from 1948-2004. J. Climate, 22, 2773-2791.
Daloz, A. S., et al., 2015: Cluster analysis of downscaled and explicitly simulated North Atlantic tropical cylcone tracks. J. Climate, 28, 1333-1361.
Dammann, D. O., U. S. Bhatt, P. L. Langen, J. Krieger, and X. Zhang, 2013: Impact of daily Arctic sea ice variability in CAM3.0 during fall and winter. J. Climate, 26(6), 1939-1955.
Danabasoglu, G., 1998: On the wind-driven circulation of the uncoupled and coupled NCAR Climate System Ocean Model. J. Climate, 11, 1442-1454.
Danabasoglu, G., and J. C. McWilliams, 2000: An upper-ocean model for short-term climate variability. J. Climate, 13, 3380-3411.
Danabasoglu, G., 2004: A comparison of global ocean general circulation model solutions with synchronous and accelerated integration methods. Ocean Modelling, 7, 323-341.
Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 2347-2365.
Danabasoglu G., R. Ferrari, and J. C. McWilliams, 2007: Sensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes. J. Climate, 21, 1192-1208.
Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modelling, 18, 122-141, doi:10.1016/j.ocemod.2007.03.006.
Danabasoglu, G., 2008: On multi-decadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3 (CCSM3). J. Climate, 21, 5524-5544, doi:10.1175/2008JCLI2019.1.
Danabasoglu, G., R. Ferrari, and J. C. McWilliams, 2008: Sensitivity of an ocean general circulation model to a parameterization of near-surface eddy fluxes. J. Climate, 21, 1192-1208.
Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 2494-2499, doi:10.1175/2008JCLI2596.1.
Danabasoglu, G., S. Peacock, K. Lindsay, and D. Tsumune, 2009: Sensitivity of CFC-11 uptake to physical initial conditions and interannually varying surface forcing in a global ocean model. Ocean Modelling, 29, 58-65, doi:10.1016/j.ocemod.2009.02.011.
Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.
Danabasoglu, G., S. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 Ocean Component. J. Climate, 25, 1361-1389, doi:10.1175/JCLI-D-11-00091.1.
Danabasoglu, G., S. G. Yeager, Y-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic Meriodional Overturning Circulation in CCSM4. J. Climate, 25, 5153-5172.
Danabasoglu, G., et al., 2014: North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean States. Ocean Modelling, 73, 76-107, doi:10.1016/j.ocemod.2013.10.005.
Danabasoglu, G., et al., 2016: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 97, 65-90, doi:10.1016/j.ocemod.2015.11.007.
Das, S., H. Harshvardhan, H. Bian, M. Chin, G. Curci, A. P. Protonotariou, T. Mielonen, K. Zhang, H. Wang, and X. Liu, 2017: Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. J. Geophys. Res. Atmos., 122, 6391-6415, doi:10.1002/2016JD026421.
Das, T., H. G. Hidalgo, M. D. Dettinger, D. R. Cayan, D. W. Pierce, C. Bonfils, T. P. Barnett, G. Bala, and A. Mirin, 2009: Structure and detectability of trends in hydrological measures over the western United States. J. Hydrometeorology, 10, 871-887.
Davin E. L., R. Stöckli, E. B. Jaeger, S. Levis, and S. I. Seneviratne, 2011: COSMO-CLM2: A new version of the COSMO-CLM model coupled to the Community Land Model. Clim. Dyn., 37, 1889-1907, DOI 10.1007/s00382-011-1019-z.
Davin, E. L., and S. I. Seneviratne, 2012: Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosciences, 9, 1695-1707, doi:10.5194/bg-9-1695-2012.
Davin, E. L., S. I. Seneviratne, P. Ciais, A. Olioso, and T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., 111, 9757-9761, doi:10.1073/pnas.1317323111.
Davin, E. L., E. Maisonnave, and S. I. Seneviratne, 2016: Is land surface processes representation a possible weak link in current Regional Climate Models? Environmental Research Letters, 11, doi:10.1088/1748-9326/11/7/074027.
Davis, R. N., J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell, 2013: The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric QBO: Studies with meteor radar, eCMAM and WACCM. Atmos. Chem. Phys. Disc., 13, 4785-4837, doi:10.5194/acpd-13-4785-2013.
Dawkins, E., J. M. C. Plane, M. P. Chipperfield, and W. Feng, 2015: The near-global mesospheric potassium layer: Observations and modelling. J. Geophys. Res., 10.1002/2015JD023212.
Dawkins, E. C. M., J. M. C. Plane, M. P. Chipperfield, W. Feng, D. R. Marsh, J. Höffner, and D. Janches, 2016: Solar cycle response and long-term trends in the mesospheric metal layers. J. Geophys. Res. Space Physics, doi:10.1002/2016JA022522.
de Boer, G., W. Chapman, J. Kay, B. Medeiros, M. D. Shupe, S. Vavrus, and J. Walsh, 2012: A characterization of the present-day Arctic atmosphere in CCSM4. J. Climate, 25, 2676-2695, doi:10.1175/JCLI-D-11-00228.1.
de Boer, G., O. Persson, M. D. Shupe, P. M. Caldwell, S. E. Bauer, J. S. Boyle, S. A. Klein, and M. Tjernström, 2014: Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmos. Chem. Phys., 14, 427–445, doi:10.5194/acp-14-427-2014.
deWit, R. J., R. E. Hibbins, P. J. Espy, Y. J. Orsolini, V. Limpasuvan, and D. E. Kinnison, 2014: Observations of gravity wave forcing of the mesopause region during the January 2013 major sudden stratospheric warming. Geophys. Res. Lett., doi:10.1002/2014GL060501.
Davini, P., C. Cagnazzo, R. B. Neale, and J. Tribbia, 2012: Coupling begween Greenland blocking and the North Atlantic Oscillation pattern. Geophys. Res. Lett., 39, L14701, doi:10.1029/2012GL052315.
Decker, M., and X. Zeng, 2009: Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5). Journal of advances in Modeling Earth Systems, 1, (5), 22 pp., doi:10.3894/JAMES.2009.1.5.
DeFlorio, J. J., D. W. Pierce, D. R. Cayan, and A. J. Miller, 2013: Western U.S. extreme precipitation events and their relation to ENSO and PDO in CCSM4. J. Climate, 26, 4231-4243.
DeFlorio, M. J., S. J. Ghan, B. Singh, A. J. Miller, D. R. Cayan, L. M. Russell, and R. C. J. Somerville, 2014: Semi-direct dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. J. Geophys. Res. - Atmospheres, doi: 10.1002/2013JD020997.
DeFlorio, M. J., I. D. Goodwin, D. R. Cayan, A. J. Miller, S. J. Ghan, D. W. Pierce, L. M. Russell, and B. Singh, 2016: Interannual modulation of subtropical Atlantic boreal summer dust interannual variability by ENSO. Clim. Dyn., 46, 585-599, doi:10.1007/s00382-015-2600-7.
DeKauwe, M. G., et al., 2013: Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19, 1759-1779.
DeKauwe, M. G., et al., 2014: Whee does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol, 203, 883-889, doi:10.1111/nph.12847.
de la Cámara, A., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017, Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., doi: 10.1175/JAS-D-17-0136.1
DeLand, M. T., and G. E. Thomas, 2015: Updated PMC trends derived from SBUV data. J. Geophys. Res. Atmos., 120, 2140-2166, doi:10.1002/2014JD022253.
De Lannoy, G. J. M., P. R. Houser, V. R. N. Pauwels, and N. E. C. Verhoest, 2006: Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res., 111, D10101, doi:10.1029/2005JD006367.
DelSole, T., X. Pan, P. A. Dirmeyer, M. Fennessy, and E. Altshuler, 2014: Seasonal predictability in a changing climate. J. Climate, 27, 300-311, doi:10.1175/JCLI-D-13-00026.1.
DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91-112.
DeMott, P. J., A. Prenni, and X. Liu et al., 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of USA, 107, 11217-11222, doi:10.1073/pnas.0910818107.
DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2010: Implied ocean heat transports in the standard and super-parameterized Community Atmosphere Models. J. Climate, 23, 1908-1928.
DeMott, C. A., C. Stan, D. A. Randall, J. L. Kinter III, and M. Khairoutdinov, 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 5134-5156.
DeMott, C. A., C. Stand, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim Reanalysis and SP-CCSM. J. Climate, 26, 1973-1992. doi:10.1175/JCLI-D-12-00191.1.
DeMott, C. A., C. Stan, D. A. Randall, and M. D. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 4970-4995.
Demuzere, M., K.W. Oleson, A.M. Coutts, G. Pigeon, and N.P.M. Van Lipzig, 2013: Simulating the surface energy balance over two contrasting urban environments using the Community Land Model Urban (CLMU). Int. J. Climate, 33, 3182-3205, doi:10.1002/joc.3656.
Demuzere, M., S. Harshan, L. Jarvi, M. Roth, C. S. B. Grimmond, V. Masson, K. W. Oleson, E. Velasco, and H. Wouters, 2017: Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Quart. J. R. Meteor. Soc., doi:10.1002/qj.3028.
Deng, Y., K. P. Bowman, and C. Jackson, 2007: Differences in rain rate intensities between TRMM observations and community atmosphere model simulations. Geophys. Res. Lett., 34, L01808, doi:10.1029/2006GL027246.
Dennis, J., A. Fournier, W. F. Spotz, A. St-Cyr, M. A. Taylor, S. J. Thomas, and H. Tufo, 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. International Journal of High Performance Computing Applications, 19 (3), 225-235.
Dennis, J., J. Edwards, K. J. Evans, O. N. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor, and P. H. Worley, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High. Perform. C.: 26, 74-89, doi:10.1177/1094342011428142.
Dennis, J. M., J. Edwards, R. Loy, R. Jacob, A. A. Mirin, A. P. Craig, and M. Vertenstein, 2012: An application-level parallel I/O library for Earth system models. International Journal for High Performance Computer Applications, 26, 43-53.
Dennis, J. M., M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Jacob, and S. A. Mickelson, 2012: Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model. International Journal for High Performance Computer Applications, 26 (1), 5-16.
Dennis, J. M., C. Kerr, A. H. Baker, B. Dobbins, K. Paul, R. Mills, S. Mickelson, Y. Kim, and R. Kumar, 2017: “Preparing the Community Earth System Model for Exascale Computing” in Exascale Scientific Applications: Programming Approaches for Scalability, Performance, and Portability, edited by Tjerk P. Straatsma, Katerina B. Antypas, and Timothy J. Williams, CRC Press, November 2017.
Denniston, R. F., C. C. Ummenhofer, A. D. Wanamaker, G. Villarini, M. S. Lachniet, Y. Asmeron, V. J. Polyak, J. Cugley, D. Woods, K. J. Passaro, N. Campbell, and W. F. Humphreys, 2016: Expansion and contraction of the Indo-Pacific tropical rain belt over the last three millennia. Scientific Reports, 6, doi:10.1038/srep34485.
Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 2451-2481.
Deser, C., and A. S. Phillips, 2006: Simulation of the 1976/1977 climate transition over the North Pacific: Sensitivity to tropical forcing. J. Climate, 19, 6170-6180.
Deser, C., R. A. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751-4767.
Deser, C., and A. S. Phillips, 2009: Atmospheric circulation trends, 1950-2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396-413, doi:10.1175/2008JCLI2453.1.
Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J. Climate, 23, 333-351, doi:10.1175/2009JCLI3053.1.
Deser, C., A. S. Phillips, R. A. Tomas, Y. M. Okumura, M. A. Alexander, A. Capotondi, J. D. Scott, Y-O Kwon, and M. Obha, 2012: ENSO and Pacific decadal variability in Community Climate System Model Version 4. J. Climate, 25, 2622-2651.
Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American Climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 2271-2296, doi:10.1175/JCLI-D-13-00451.1.
Deser, C., I. Simpson, K. A. McKinnon, and A. Phillips, 2016: The Northern hemisphere extra-tropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, doi:10.1175/JCLI-D-16-0844.1.
Deser, C., R. Guo, and F. Lehner, 2017: The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett., doi: 10.1002/2017GL074273.
Dessler, A. E., H. Ye, T. Wang, M. R. Schoeberl, L. D. Oman, A. R. Douglass, A. H. Butler, K. H. Rosenlof, S. M. Davis, and R. W. Portmann, 2016: Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st centure. Geophys. Res. Lett., 43, doi:10.1002/2016GL067991.
Devaraju, N., L. Cao, G. Bala, K. Caldeira, and R. Nemani, 2011: A model investigaton of vegetation-atmosphere interactions on a millennial time scale. Biogeosciences, 8, 3677-3686, doi:10.5194/bg-8-3677-2011,
Devaraju, N., G. Bala, K. Caldeira, and R. Nemani, 2015: A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition, and land use change on the global terrestrial carbon uptake in the historical period. Clim. Dyn., doi:10.1007/s00382-015-2830-8.
Devaraju, N., G. Bala, and A. Modak, 2015: Effects of large scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1423439112.
Devaraju, N., G. Bala, and R. Nemani, 2015: Modeling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant, Cell, and Environment, doi:10.1111/pce.12488.
Devaraju, N., N. de Noblet-Ducoudré, B. Quesada, and G. Bala, 2018: How important are indirect biophysical effects of land use and land cover changes compared to direct effects? J. Climate, doi: 10.1175/JCLI-D-17-0563.1.
DeWeaver, E., and C. M. Bitz, 2006: Atmospheric circulation and its effect on arctic sea ice in CCSM3 simulations at medium and high resolution. J. Climate, 19 (11), 2415-2436.
DeWeaver, E., E. Hunke, and M. M. Holland, 2008: Sensitivity of Arctic sea ice thickness to inter-model variations in surface energy budget simulation. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr. Ser., 180, edited by E. T. DeWeaver, C. M. Bitz, and L.-B. Tremblay, pp. 77-90, AGU, Washington, D. C.
Dickinson, R. E., et al., 1998: Interactive canopies for a climate model. J. Climate, 11, 2823-2836.
Dickinson, R. E., 2002: Widely awaited Community Climate System Model to be released soon. EOS, 83 (11), 119.
Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thorton, M. Vertenstein, Z- L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 (11), 2302-2324.
Dietze, M. C., et al., 2011: Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. J. Geophys. Res.-Biogeosciences, 116,ISI:000298497400001, Artn G04029; doi:10.1029/2011jg001661.
Diffenbaugh, N. S., 2005: Response of large-scale eastern boundary current forcing in the 21st century. Geophys. Res. Lett., 32, L19718, doi:10.1029/2005GL023905.
DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S. -K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J.Climate, 22, 4873-4892.
DiNezio, P. N., A. C. Clement, and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. EOS, Trans. AGU, 91 (16), 141-142.
DiNezio, P., A. Clement, G. Vecchi, B. Soden, A.J. Broccoli, B. Otto-Bliesner, and P. Braconnot, 2011: The Response of the Walker Circulation to LGM forcing: Implications for detection in proxies. Paleoceanography, 26, PA3217, doi:10.1029/2010PA002083.
DiNezio, P. N., B. J. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25 (21), 7399-7420.
DiNezio, P. N., A. C. Clement, and G. Vecchi, 2013: Detectability of changes in the Walker Circulation in response to global warming. J. Climate, 26(12), 4038-4048, doi:10.1175/JCLI-D-12-00531.1.
DiNezio, P. N. and J. Tierney, 2013: The effect of sea level on glacial Indo-Pacific climate. Nat. Geo. Sci., 6, 485-491, doi:10.1038/ngeo1823.
DiNezio, P. N., L. Barbero, M. Church, N. Lovenduski, and C. Deser, 2015: Anthropogenic changes in the tropical carbon cycle masked by Pacific Decadal Variability? CLIVAR Variations.
DiNezio, P. N., A. Timmermann, J. E. Tierney, F.-F. Jin, B. Otto-Bliesner, N. Rosenbloom, B. Mapes, R. Neale, R. F. Ivanovic, and A. Montenegro, 2016: The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography, 31, 866-894, doi:10.1002/2015PA002890.
DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Nina events in a coupled general circulation mode. Clim. Dyn., doi:10.1007/s00382-017-3575-3.
DiNezio, P. N., C. Deser, A. Karspeck, S. Yeager, Y. Okumura, G. Danabasoglu, N. Rosenbloom, J. Caron, and G. A. Meehl, 2017: A two-year forecast for a 60-80% change of La Nina in 2017-2018. Geophys. Res. Lett., 44, 11624-11635, doi:10.1002/2017GL074904.
Diodato, N., and G. Bellocchi, 2011: Discovering the anomalously cold Mediterranean winters during the Maunder minimum. Holocene, 12, doi: 10.1177/0959683611427336
Diodato, N., G. Bellocchi, G. B. Chirico, and N. Romano, 2011: How the aggressiveness of rainfalls in the Mediterranean lands is enhanced by climate change. Climatic Change, 108, 591-599.
Diodato, N., and G. Bellocchi, 2012: Decadal modelling of rainfall–runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices. Global and Planetary Change, 86-87, 79–91.
Diodato, N., and G. Bellocchi, 2013: Multiscale modelling of rainstorm-induced historical intermediate floods (June–November) in the Rhone River Basin. Natural Hazard, 65, 1465-1479.
Diodato, N., L. Brocca, G. Bellocchi, F. Fiorillo, and F. M. Guadagno, 2013: Complexity-reduction modelling for assessing the macro-scale patterns of historical soil moisture in the Euro-Mediterranean region. Hydrological Processes, 28, 3752–3760.
Diodato, N., J. Knight, and G. Bellocchi, 2013: Reduced complexity model for assessing patterns of rainfall erosivity in Africa. Global and Planetary Change, 100, 183-193.
Dirmeyer, P. A., et al., 2012: Simulating the hydrologic diurnal cycle in global climate models: Resolution versus parameterization. Climate Dyn, 39, 399-418, doi:10.1007/s00382-011-1127-9.
Dirmeyer, P. A., S. Kumar, M. J. Fennessy, E. L. Altshuler, T. DelSole, Z. Guo, B. Cash, and D. Straus, 2013: Model estimates of land-driven predictability in a changing climate from CCSM4. J. Climate, 26, 8495-8512, doi:10.1175/JCLI-D-13-00029.1.
Dirmeyer, P. A., Y. Jin, B. Singh, and X. Yan, 2013: Trends in land-atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829-849, doi:10.1175/JHM-D-12-0107.1.
Dirmeyer, P. A., Y, Jin, B. Singh, and X. Yan, 2013: Evolving land-atmosphere interactions over North America from CMIP5 simulations. J. Climate, 26, 7313-7327, doi:10.1175/JCLI-D-12-00454.1.
Dirmeyer, P. A., Z. Wang, M. J. Mbuh, and H. E. Norton, 2014: Intensified land surface control on boundary layer growth in a changing climate. Geophys. Res. Lett., 41, 1290-1294, doi:10.1002/2013GL058826.
Dirmeyer, P. A.,G. Fang, Z. Wang, P. Yadav, and A. Milton, 2014: Climate change and sectors of the surface water cycle in CMIP5 projections. Hydrol. Earth Sys. Sci., 11, 8537-8569, doi:10.5194/hess-18-5317-2014.
Dirmeyer, P. A., L. Chen, J. Wu, C. Shin, B, Huang, B. Cash, et al., 2018: Verification of land–atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. Journal of Hydrometeorology, 19, 375–392, doi:10.1175/JHM-D-17-0152.1.
DiVittorio, A. V., et al., 2014: From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations. Biogeosciences, 11, 6435-6450, doi:10.5194/bg-11-6435-2014.
Di Vittorio, A. V., J. Mao, X. Shi, L. Chini, G. Hurtt, and W.D. Collins, 2017: Quantifying the effects of historical land cover uncertainty on global carbon and climate estimates. Geophys. Res. Lett., doi: 10.1002/2017GL075124.
Docquier, D., W. Thiery, S. Lhermitte, and N. P. M. van Lipzig, 2016: Multi-year wind dynamics around Lake Tanganyika. Clim. Dyn., doi:10.1007/soo382-016-3020-z.
Dohrty, S. J., C. M. Bitz, and M. G. Flanner, 2014: Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs. Atmospheric Chemistry and Physics, 14, 11,697-11,709.
Dolan, A. M., et al., 2015: Using results from the PlioMIP ensemble to assess our understanding of the Greenland Ice Sheet during the warm Pliocene. Climate of the Past, 11, 403-424.
Done, J. M., D. PaiMazumder, E. Towler, and C. M. Kishtawal, 2015: Estimating impacts of North Atlantic tropical cyclones using an index of damage potential. Climatic Change, 1-13, doi:10.1007/s10584-015-1513-0.
Doney, S. C., W. G. Large, and F. O. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J. Climate, 11, 1420-1441.
Doney, S., C., K. Lindsay, and J. K. Moore, 2003: Global ocean carbon cycle modeling. Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change, M. J. R. Fasham, Ed., Springer-Verlag, 217-238.
Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams, 2003: Modeling oceanic interannual variability (1958-1997): Simulation design and model-data evaluation. NCAR Tech. Note NCAR/TN-452+STR, 48 pp.
Doney, S. C., et al., 2004: Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochemical Cycles, 18, GB3017, doi:10292003GB002150.
Doney, S. C., K. Lindsay, I. Fung, and J. John, 2006: Natural variability in a stable, 1000-year global coupled climate-carbon cycle simulation. J. Climate, 19, 3033-3054.
Doney, S. C., N. Mahowald, I. Lima, R. A. Feely, F. T. Mackenzie, J. -F. Lamarque, and P. J. Rasch, 2007: The impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the irorganic carbon system. Prod. Nat. Acad. Sci USA, 104, 14,580-14,585.
Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams, 2007: Mechanisms governing interannual variability of upper ocean temperature in a global ocean hindcast simulation. J. Phys. Oceanogr., 37, 1918-1938.
Doney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof, 2009: Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust. Deep-Sea Res. II, 56, 640-655.
Doney, S. C., I. Lima, J. K. Moore, K. Lindsay, M. J. Behrenfeld, T. K. Westberry, N. Mahowald, D. M. Glover, and T. Takahashi, 2009: Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. J. Mar. Systems, 76, 95-112, doi:10.1016/j.jmarsys.2008.05.015.
Doney, S. C., L. Bopp, and M. C. Long, 2014: Historical and future trends in ocean climate and biogeochemistry. Oceanography, 27(1), 108–119, doi:10.5670/oceanog.2014.14.
Dong, L., and T. Zhou, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the 20th Century: Competine forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 3348-3362.
Dong L., T. Zhou, and Xiaolong Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, doi:10.1002/2014GL062269.
Dong, L., and T. Zhou, 2014: The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO.
J. Geophys. Res. Atmos., 119, 11,272–11,287.
Dong, L., and T. Zhou, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the 20th century: Competing forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 3348–3362.
Dong L., T. Zhou, A. Dai, F. Song, B. Wu, and X. Chen, 2016: The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures. Scientific Reports, 6:21251, doi:10.1038/srep21251.
d’Orgeville, M., W. R. Peltier, A. R. Erler, and J. Gula, 2014: Climate change impacts on Great Lakes Basin precipitation extremes. J. Geophys. Res. Atmos, 119, 10,799-10,812, doi:10.1002/2014/JD021855.
Downes, S. M., et al., 2015: An assessment of Southern Ocean water masses and sea ice during 1988-2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 94, 67-94, doi:10.1016/j.ocemod.2015.07.022.
Dowsett, H. J., et al., 2012: Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Climate Change, 2, 365-371.
Dowsett, H. J., et al., 2013: Sea surface temperature of the mid-Piacenzian ocean: A data-model comparison. Nature Sci. Rep., 3, doi:10.1038/srep02013.
Drake, J. B., P. W. Jones, and G. R. Carr, Jr., 2005: Overview of the software design of the Community Climate System Model. International Journal of High Performance Computing Applications, 19(3), 177-186.
Drake, J. B., P. W. Jones, M. Vertenstein, J. B. White III, and P. H. Worley, 2007: Software Design for Petascale Climate Science. In Petascale Computing: Algorithms and Applications. Ed. D. Bader, Chapman & Hall / CRC Press, Taylor and Francis Group, 125-142 pp.
Drewniak, B., J. Song, J. Prell, V. R. Kotamarthi, and R. Jacob, 2013: Modeling agriculture in the Community Land Model. Geosci. Model Dev., 6, 495-515, doi:10.5194/gmd-6-495-2013.
Drewniak, B. A., U. Mishra, J. Song, J. Prell, and V. R. Kotamarthi, 2015: Modeling the impact of agricultural land use and management on US carbon budgets. Biogeosciences, 12, 2119-2129.
Duarte, H. F., B. M. Raczka, D. M. Ricciuto, J. C. Lin, C. D. Koven, P. E. Thornton, D. R. Bowling, C.-T. Lai, K. J. Bible, and J. R. Ehleringer, 2017: Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements. Biogeosciences, 14, 4315–4340. doi:10.5194/bg-14-4315-2017.
Duderstadt, K. A., J. E. Dibb, C. H. Jackman, C. E. Randall, S. C. Solomon, M. J. Mills, N. A. Schwadron, and H. E. Spence, 2014: Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event. J. Geophys. Res. Atmos., 119, 6938–6957, doi:10.1002/2013JD021389.
Duderstadt, K. A., J. E. Dibb, N. A. Schwadron, H. E. Spence, S. C. Solomon, V. A. Yudin, C. H. Jackman, and C. E. Randall, 2016: Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J. Geophys. Res. Atmos., 121, 2015JD023805, doi:10.1002/2015JD023805.
Duffy, P. B., J. Bell, C. Covey, and L. Sloan, 2000: Effect of flux adjustments on temperature variability in coupled models. Geophys. Res. Lett., 27, 763-766.
Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. B. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High resolution simulations of global climate, Part 1: Present climate. Clim. Dyn., 21, 371-390.
Dunker, T., U-P. Hoppe, W. Feng, J. M. C. Plane, and D. R. Marsh, 2015: Mesospheric temperatures and sodium properties measured with the ALOMAR Na lidar compared with WACCM. J. Atmos. Sol.-Terr. Phys., 127, 111-119, doi:10.1016/j.jastp.2015.01.003.
Durner, G. M., et al., 2009: Predicting the 21st century distribution of polar bear habitat from general circulation model projections of sea ice. Ecological Monographs, 79 (1), 25-58, doi:10.1890/07-2089.1.
Dutton, J. F., C. J. Poulsen, and J. L. Evans, 2000: The effect of global climate change on the regions of tropical convection in CSM1. J. Geophys. Res., 27 (19), 3049-3052.
Dwyer, J. G., J. R. Norris, and C. Ruckstuhl, 2010: Do climate models reproduce observed solar dimming and brightening over China and Japan? J. Geophys. Res.-Atmos., 115, D00K08, doi:10.1029/2009JD012945.
Ebi, K., and G. A. Meehl, 2007: Heatwaves and global climate change, the heat is on: Climate change and heatwaves in the Midwest. In Regional Impacts of Climate Change: Four Case Studies in the United States. Pew Center on Global Climate Change, Arlington, VA, 8-21.
Edburg, S. L., J. A. Hicke, D. M. Lawrence, and P. E. Thornton, 2012: Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. J. Geophys. Res., 116, G04033, doi: 10.1029/2011JG001786.
Eddebbar, Y. A., M. C. Long, L. Resplandy, C. Rodenbeck, K. B. Rodgers, M. Manizza, and R. F. Keeling, 2017: Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms. Global Biogeochem. Cycles, 31, doi:10.1002/2017GB005630.
Eden, C., M. Jochum, and G. Danabasoglu, 2009: Effects of different closures for thickness diffusivity. Ocean Modelling, 26, 47-59, doi:10.1016/j.ocemod.2008.08.004.
Edwards, D. P., A. F. Arellano, and M. N. Deeter, 2009: A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere. J. Geophys. Res.,114, D14304, doi:10.1029/2008JD011375.
Ekman, A. M. L., M. Hermann, P. Grob, J. Heintzenberg, D. Kim, and C. Wang, 2012: Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate movel. J. Geophys. Res., 117, D11202, doi:10.1029/2011JD016777.
Eldrett, J. S., D. R. Greenwood, I. Harding, and M. Huber, 2009: Increased seasonality in the latest Eocene to earliest Oligocene in northern high latitudes. Nature, 459, 969-973, doi:10.1038/nature08069.
Elliott, S., 2009: Dependence of DMS global sea-air flux distribution on transfer velocity and concentration field type. J. Geophys. Res. Biogeosciences, doi:10.1029/2008JG000710.
Emmons, L. K., et al., 2015: The POLARCAT Model Intercomparison Project (POLMIP): Overview and evaluation with observations. Atmos. Chem. Phys., 15, 6721-6744, doi:10.5194/acp-15-6721-2015.
England, M. R., T. A. Shaw, and L. M. Polvani, 2016: Troposphere-stratosphere dynamical coupling in the southern high latitudes and its linkage to the Amundsen Sea. J. Geophys. Res. Atmos., 121, 3776-3789, doi:10.1002/2015JD024254.
England, M., L. Polvani, and L. Sun, 2018: Contrasting the Antarctic and Arctic atmospheric response to projected sea ice loss in the late 21st Century. J. Climate, 31, 6353-6370, doi:10.1175/JCLI-D-17-0666.1.
English, J. M., O. B. Toon, and M. J. Mills, 2013: Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res. Atmos., 118, 1-16, doi:10.1002/jgrd.50196.
English, J. M., J. E. Kay, A. Gettelman, X. Liu, Y. Wang, Y. Zhang, and H. Chepfer, 2014: Contributions of clouds, surface albedos, and mixed-phase ice nucleation schemes to Arctic radiation biases in CAM5, J. Climate, 27, 5174–5197, doi:10.1175/JCLI-D-13-00608.1.
English, J. M., A. Gettelman, and G. R. Henderson, 2015: Arctic Radiative Fluxes: Present-day biases and future projections in CMIP5 models. J. Climate, 28, 6019-6038.
Erath, C., P. H. Lauritzen, J. H. Garcia, and H. M. Tufo, 2012: Integrating a scalable and efficient semi-Lagrangian multi-tracer transport scheme in HOMME. Procedia Computer Science, 9, 994-1003.
Erath, C., P. H. Lauritzen, and H. M. Tufo, 2013: On mass-conservation in high-order high-resolutin rigorous remapping schemes on the sphere. Mon. Wea. Rev., 141, 2128-2133.
Erler, A. R., W. R. Peltier, and M. D’Orgeville, 2014: Dynamically downscaled high-resolution hydroclimate projections for Western Canada. J. Climate, 28, 423-450, doi:10.1175/JCLI-D-14-00174.1.
Erler, A. R., and W. R. Peltier, 2016: Projected changes in precipitation extremes for Western Canada based on high-resolution regional climate simulations. J. Climate, 29, 8841-8863, doi:10.1175/JCLI-D-15-0530.1.
Erokhina, O., I. Rogozhina, M. Prange, P. Bakker, J. Bernales, A. Paul, and M. Schulz, 2017: Dependence of slope lapse rate over the Greenland ice sheet on background climate. Journal of Glaciology, 63(239), 568-572, doi:10.1017/jog.2017.10.
Evangelista, H., I. Wainer, A. Sifeddine, T. Correge, R. Cordeiro, S. Lamounier, D. Godiva, C. C. Shen, F. LeCornec, B. Turcq, C. E. Lazareth, and C. Hu, 2016: Ideas and perspectives: Southwestern tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica. Biogeosciences, 13, 2379-2386.
Evans, K. J., et al., 2012: A modern solver framework to manage solution algorithm in the Community Earth System Model. International Journal for High Performance Computer Applications, 26 (1),54-62.
Evans, K. J., P. Lauritzen, S. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689-709.
Evans, K. J., R. K. Archibald, D. Gardner, M. Norman, M. A. Taylor, C. S. Woodward, P. H. Worley, 2017: Performance analysis of fully-explicit and fully-implicit solvers within a spectral-element shallow-water atmosphere model. Int. J. High Perf. Comp. Apps., doi:10.1177/1094342017736373.
Eyring, V., et al., 2006: Assessment of coupled climate-chemistry models: Evaluation of dynamics, transport characteristics, and ozone. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.
Eyring, V., et al., 2007: Multi-model projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.
Eyring, V., et al., 2010: Multi-model assessment of ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys., 10, 9451-9472.
Eyring, V., et al., 2010: Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys. Res. Lett., 37, L16807, doi:10.1029/2010GL044443.
Eyring, V., et al., 2013: Long-term changes in tropospheric and stratospheric ozone and associated climate impacts in CMIP5 simulations. J. Geophys. Res., 18, 5029-5060, doi:10.1002/jgrd.50316.
Fadnavis, S., W. Feng, G. G. Shepherd, J. M. C. Plane, S. Sonbawane, C. Roy, S. Dhomse, and S. D. Ghude, 2016: Preliminary observations and simulation of nocturnal variations of airglow temperature and emission rates at Pune (18.5N), India. J. Atmos. Sol.-Terr. Phys., 149, 59-68, doi:10.1016/j.jastp.2016.10.002.
Fan, T., and O. B. Toon, 2010: Modeling sea-salt aerosol in a coupled climate and sectional microphysical model: Mass, optical depth and number concentration. Atmos. Chem. Phys. Discuss., 10, 24499–24561, doi:10.5194/acpd-10-24499-2010.
Fan, Y., O. Roupsard, M. Bernoux, G. LeMaire, O. Panferov, M. M. Kotowska, and A. Knohl, 2015: A sub-canopy structure for simulating oil palm in the Community Land Model: Phenology, allocation and yield. Geosci. Model Dev. Discuss., 8, 4545-4597, doi:10.5194/gmdd-8-4545-2015.
Fang, Y., M. Huang, C. Liu, H. Li, and L. Y. R. Leung, 2013: A generic biogeochemical module for Earth System Models: Next generation BioGeoChemical Module (NGBGC), Version 1.0. Geoscientific Model Development, 6(6), 1977–1988, doi:10.5194/gmd-6-1977-2013.
Farneti, R., et al., 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958-2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 93, 84-120, doi:10.1016/j.ocemod.2015.07.009.
Fasullo, J., and D. -Z. Sun, 2001: Radiative sensitivities to tropical water vapor under all-sky conditions. J. Climate, 14, 2798-2807.
Fasullo, J. T., D. Lawrence, and S. Swenson, 2016: Are GRACE-Era terrestrial water trends driven by anthropogenic climate change? Advances in Meteorology, doi:10.1155/2016/4830603.
Fasullo, J. T., and R. S. Nerem, 2016: Interannual variability in global mean sea level estimated from the CESM large and last millennium ensembles. Water, 8 (11), 491, doi:10.3390/w8110491.
Fasullo, J. T., R. S. Nerem, and B. Hamlington, 2016: Is detection of accelerated sea level rise imminent? Scientific Reports, 6, 31,245, doi:10.1038/srep31245.
Fasullo, J. T., and P. R. Gent, 2017: On the relationship between regional ocean heat content and sea surface height. J. Climate, 30, 9195–9211, doi:10.1175/JCLI-D-16-0920.1.
Fasullo, J. T., R. Tomas, S. Stevenson, B. Otto-Bleisner, E. Brady, and E. Wahl, 2017: The amplifying influence of increased ocean stratification on a future year without a summer. Nature Communications, doi: 10.1038/s41467-017-01302-z.
Feely, R. A., S .C. Doney, and S. R. Cooley, 2009: Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography, 22 (4), 36-47.
Felis, T., et al., 2012: Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1. Nature Communications, 3, 965, doi:10.1038/ncomms1973.
Feng, R., J. Li, and J. Wang, 2011: Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. J. Climate, 24, 3867-3877.
Feng, R., and C. J. Poulsen, 2014: Andean elevation control on tropical Pacific climate and ENSO. Paleoceanography, 29, 795-809.
Feng, R., B. L. Otto-Bliesner, T. L. Fletcher, C. R. Tabor, A. P. Ballantyne, and E. C. Brady, 2017: Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways. Earth and Planetary Science Letters, 466, 129-138.
Feng, W., D. R. Marsh, M. P. Chipperfield, D. Janches, D. Höffner, F. Yi., and J. M. C. Plane, 2013: A global atmospheric model of meteoric iron. J. Geophys. Res. Atmos., 118, 94569474, doi:10.1002/jgrd.50708.
Feng, W., J. Hoffner, D. R. Marsh, M. P. Chipperfield, E. C. M. Dawkins, T. P. Viehl, and J. M. C. Plane, 2015: Diurnal variation of the potassium layer in the upper atmosphere. Geophys. Res. Lett., 42, doi:10.1002/2015GL063718.
Feng, W., B. Kaifler, D. R. Marsh, J. Hoffner, U-P Hoppe, B. P. Williams, and J. M. C. Plane, 2017: J. Atmos. Sol.-Terr. Phys., doi:10.1016/j.jastp.2017.02.004.
Fernandez-Donado, L., et al., 2013: Large-scale temperature response to external forcing in simulations and reconstruction of the last millennium. Clim. Past, 9, 393-421. doi:10.519/cp-9-393-2013.
Fernandez, R. P., R. J. Salawitch, D. E. Kinnison, J.-F. Lamarque, and A. Saiz-Lopez, 2014: Bromine partitioning in the tropical tropopause layer, implications for stratospheric injection. Atmos. Chem. Phys., 14, 13,391-13,410, doi:10.5194/acp-14-13391-2014.
Ferrari, R., M. Jansen, J. Adkins, A. Burke, A.L. Stewart, and A. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci., 111, 8753-8758, doi:10.1073/pnas.1323922111.
Ferriera, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two timescale problem. J. Climate, 28, 1206-1226.
Field, P. R., A. Gettelman, R. B. Neale, R. Wood, P. J. Rasch, and H. Morrison, 2008: Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 5887-5903.
Fine, E. C., F. O. Bryan, W. G. Large, and D. A.Bailey, 2015: An initial estimate of the global distribtion of diurnal variation in sea surface salinity. J. Geophys. Res. Oceans, 120(5), 3211-3228, doi:10.1002/2014JC010483.
Finnis, J., M. M. Holland, M. C. Serreze, and J. J. Cassano, 2007: Response of Northern Hemisphere extratropical cyclone activity and associated precipitation to climate change as represented by CCSM3. J. Geophys. Res.,112, G04S55.
Finnis, J., J. Cassano, M. M. Holland, M. C. Serreze, and P. Uotila, 2009: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part I: The Mackenzie River Basin. Intl. J. of Clim., 29 (9), 1226-1243.
Finnis, J, J. Cassano, M. M. Holland, and M. C. Serreze, 2009: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models, Part 2: Eurasian watersheds. Intl J. of Clim., 29 (9), 1244-1261.
Fiorella, R. P, and N. D. Sheldon, 2017: Equable end Mesoproterozoic climate in the absence of high CO2. Geology, 45(3), 231-234, doi:10.1130/G38682.1.
Fischer, E. M., D. M. Lawrence, and B. M. Sanderson, 2010: Quantifying uncertainties in projections of extremes - a perturbed land surface parameter experiment. Clim. Dyn., doi:10.1007/s00382-010-0915-y.
Fischer, E. M., K.W. Oleson, and D. M. Lawrence, 2012: Contrasting urban and rural heat
stress responses to climate change. Geophys. Res. Lett., 39, L03705, doi:10.1029/2011GL050576.
Fischer, E.M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nature Climate Change, doi:10.1038/nclimate2051.
Fischer, E.M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., doi:10.1002/2013GL058499.
Fischer, G., O. Romero, U. Merkel, B. Donner, M. Iversen, N. Nowald, V. Ratmeyer, G. Ruhland, M. Klann, and G. Wefer, 2016: Deep ocean mass fluxes in the coastal upwelling off Mauritania from 1988 to 2012:
variability on seasonal to decadal timescales. Biogeosciences, 13, 3071-3090, doi:10.5194/bg-13-3071-2016.
Fischer, H., et al., 2018: Palaeoclimate constraints on a world with post-industrial warming of 2 degrees and beyond. Nature Geoscience, 10.1038/s41561-018-0146-0.
Fisher, J. A., S. R. Wilson, G. Zeng, J. E. Williams, L. K. Emmons, R. L. Langenfelds, P. B. Krummel, and L. P. Steele, 2015: Seasonal changes in the tropospheric carbon monoxide profile over the remove Southern Hemisphere evaluated using multi-model simulations and aircraft observations. Atmos. Chem. Phys., 15, 3217-3239, doi:10.5194/acp-15-3217-2015.
Fisher, R. A., et al., 2015: Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes. Geosci. Model Dev., 8, 3593-3619, doi:10.5194/gmd-8-3593-2015.
Fix, M, D. Cooley, S. Sain and C. Tebaldi, 2016: A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling. Climatic Change, doi:10.1007/s10584-016-1656-7.
Flanner, M. G., andC. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32 (6), L06501, doi:10.10292004GL022076.
Flanner, M. G., C. S. Zender, J. T. Anderson, and P. J. Rasch, 2007: Present day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.
Flanner, M. G., 2009: Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett., 36, L02801, doi:10.1029/2008GL036465.
Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 2481-2497.
Flanner, M., Luo, X., C. Zhou, and J. E. Penner, 2012: Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phy., 12, 4699-4721.
Flanner, M. G., 2013: Arctic climate sensitivity to local black carbon. J. Geophys. Res., 118, 1840-1851, doi:10.1002/jgrd.50176.
Flanner, M. G., A. S. Gardner, A. Stohl, and J. Perket, 2014: Aerosol radiative forcing from the 2010 Eyjafjallajokull volcanic eruptions. J. Geophys. Res. Atmos., 119, 9481-9491, doi:10.1002/2014JD021977.
Flanner, M. G., X. Huang, X. Chen, and G. Krinner, 2018: Climate response to negative greenhouse gas radiative forcing in polar winter. Geophys. Res. Lett., 45, 1997–2004, doi:10.1002/2017GL076668.
Fletcher, C., and I. Minokhin, 2015: Linear interference and the northern annular mode response to El Nino and climate change. Clim. Dyn.,, 1-15.
Fletcher, C. G., C. W. Thackeray, and T. M. Burgers, 2015: Evaluating biases in simulated snow albedo feedback in two generations of climate models. J. Geophys. Res. Atmos., 120, 12-26, doi:10.1002/2014JD022546.
Foereid, B., D. S. Ward, N. Mahowald, E. Paterson, and J. Lehmann, 2014: The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth Syst. Dynam., 5, 211-221, doi:10.5194/esd-5-211-2014.
Forbes, J. M., X. Zhang, and D. R. Marsh, 2014: Solar cycle dependence of middle atmosphere temperatures. J. Geophys Res-Atmos, 119, doi:10.1002/2014JD021484.
Fordham, D. A., F. Saltre, S. Haythorne, T. M. L. Wigley, B. L. Otto-Bliesner, K. C. Chan, and B. W. Brook, 2017: PaleoView: A tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography, 40, doi:10.1111/ecog.03031.
Forkman, P., P., Eriksson, A. Winnberg, R. R. Garcia, and D. Kinnison, 2003: Longest continuous ground-based measurements of CO. Geophys. Res. Lett., 30 (10), doi:10.1029/2003GL016931.
Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmospheric model: High-resolution parallel computation and response to regional forcing. Mon. Wea. Rev., 132, 726-748.
Fox-Kemper, B., G. Danabasoglu, R. Ferrari, and R. W. Hallberg, 2008: Parameterizing submesoscale physics in global climate models. CLIVAR Exchanges, 13, 3-5.
Fox-Kemper, B., G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39, 61-78.
Fox-Kemper, B., R. Lumpkin, and F. O. Bryan, 2013: Lateral transport in the ocean interior. G. Siedler, S. M. Griffies, J. Gould, and J. A. Church, Editors. In Ocean Circulation and Climate: A 21st Century Perspective, volume 103 of International Geophysics Series, chapter 8, pages 185-209. Academic Press (Elsevier Online).
Fraile, I., M. Schulz, S. Mulitza, U. Merkel, M. Prange, and A. Paul, 2009: Modeling the seasonal distribution of planktonic foraminifera during the Last Glacial Maximum. Paleoceanography, 24, PA2216, doi:10.1029/2008PA001686.
France, J. A., and V. L. Harvey, 2013: A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. J. Geophys. Res. Atmos., 118, 2241-2254, doi:10.1002/jgrd.50218.
France, J. A., V. L. Harvey, C. E. Randall, R. L. Collins, A. K. Smith, E. D. Peck, and X. Fang, 2015: A climatology of planetary wave-driven mesospheric inversion layers in the extratropical winter. J. Geophys. Res. Atmos., 120, 399-413, doi:10.1002/2014JD022244.
Frankignoul, C., G. Gastineau, and Y.-O. Kwon, 2017: Estimation of the SST response to anthropogenic and external forcing, and its impact on the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.
J. Climate, 30, 9871-9895, doi:10.1175/JCLI-D-17-0009.1
Frankland, V., A. James, W. Feng, and J. Plane, 2015: The uptake of HNO3 on meteoric smoke analogues. J. Atmos. Sol-Terr. Phys., doi:10.1016/j.jasto.2015.01.010.
Franks, P. J., J. A. Berry, D. L. Lombardozzi, G. B. Bonan. 2017. Stomatal function across temporal and spatial scales: Deep-time trends, land-atmosphere coupling and global models. Plant Physiology, 174, 583-602.
Freeman, N. M., N. S. Lovenduski, D. R. Munro, K. M. Krumhardt, K. Lindsay, M. C. Long, and M. Maclennan, 2018: The variable and changing Southern Ocean Silicate Front: Insights from the CESM Large Ensemble. Global Biogeochem. Cycles, doi:10.1029/2017GB005816.
Frey, W. R., Maroon, E. A., Pendergrass, A. G., and J. E. Kay, 2017: Do Southern Ocean cloud feedbacks matter for 21st century warming? Geophys. Res. Lett., doi:10.1002/2017GL076339.
Friedlingstein, P., et al., 2006: Climate-carbon cycle feedback analysis: Results from the CMIP4 model intercomparison. J. Climate, 19, 3337-3353.
Friedrichs, M. A. M., et al., 2009: Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J. Mar. Systems, 76, 113-133, doi:10.1016/j.jmarsys.2008.05.010.
Frieling, J., H. Gebhardt, M. Huber, O. A. Adekeye, S. O. Akande, G. J. Reichart, J. Middelburg, S. Schouten, M, and A. Sluijs, 2017: Extreme warmth and plankton regime shift in the tropics during the Palaeocene-Eocene Thermal Maximum. Sci. Adv., 3, doi:10.1126/sciadv.1600891.
Frigola, A., M. Prange, and M. Schulz, 2018: Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0). Geosci. Model Dev., 11, 1607-1626, doi:10.5194/gmd-11-1607-2018.
Frölicher, T. L., F. Joos, G. -K. Plattner, M. Steinacher, and S. C. Doney, 2009: Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Global Biogeochem. Cycles, 23, GB1003, doi:10.1029/2008GB003316.
Frölicher, T. L., and F. Joos, 2010: Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Clim. Dyn.,, 35, 7-8, 1439-1459, doi:10.1007/s00382-009-0727-0.
Frölicher, T. L., F. Joos, and C. C. Raible, 2011: Sensitivity of atmospheric CO2 and climate to explosive volcanic eruptions. Biogeosciences, 8, 2317-2339, doi:10.5194/bg-8-2317-2011.
Frölicher, T. L., F. Joos, and C. C. Raible, and J. L. Sarmiento, 2013: Atmospheric CO2 response to volcanic eruptions: The role of ENSO, season, and variability. Global Biogeochemical Cycles, 27/1, 239-251.
Fu, Q., L. Lin, J. Huang, S. Feng, and A. Gettelman, 2016: Changes in terrestrial aridity for the period 850-2080 from the Community Earth System Model. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024075.
Fu, R., R. E. Dickinson, and B. Newkirk, 1997: Response of the upper tropospheric humidity and moisture transport to changes of tropical convection. A comparison between observations and a GCM over an ENSO cycle. Geophys. Res. Lett., 24, 2371-2374.
Fu, R., B. Zhu, and R. E. Dickinson, 1999: How do atmosphere and land surface influence seasonal changes on convection in the tropical Amazon? Part 1. J. Climate, 12, 1306-1321.
Fung, I., S. C. Doney, K. Lindsay, and J. John, 2005: Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences, 102, 11,201-11,206.
Furrer, R., R. Knutti, S. R. Sain, D. W. Nychka, and G. A. Meehl, 2007: Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett., 34, L06711, doi:10.1029/2006GL027754.
Furrer, R., S. R. Sain, D. Nychka, and G. A. Meehl, 2007: Multivariate Bayesian analysis of atmosphere-ocean general circulation models. Environ. Ecol. Stat., 14 (3), 249-266.
Fyke, J. G., M. Vizcaino, W. Lipscomb, and S. Price, 2013: Future climate warming increases Greenland ice sheet surface mass balance variability. Geophys. Res. Lett., doi:10.1002/2013GL058172.
Fyke, J. G., W. J. Sacks, and W. H. Lipscomb, 2014: A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models. Geoscientific Model Development, 7, 1183-1195, doi:10.5194/gmd-7-1183-2014.
Fyke, J. G., M. Vizcaino, and W. H. Lipscomb, 2014: The pattern of anthropogenic signal emergence in Greenland ice sheet surface mass balance. Geophys. Res. Lett., 41, 6002-6008, doi:10.1002/2014GL060735.
Fyke, J., J. T. M. Lenaerts, and H. Wang, 2017: Basin-scale geterogeneity in Antarctic precipitation and its impact on surface mass variability. The Cryosphere, 11, 2595-2609, doi:10.5194/tc-11.
Galeotti, S., H. Brinkhuis, and M. Huber, 2004: Records of post cretaceous-tertiary boundary millennial-scale cooling from the western Tethys: A smoking gun for the impact-winter hypothesis. Geology, 32, 529-532.
Galeotti, S., A. von der Heydt, M. Huber, D. Bice, H. Dijkstra, T. Jilbert, L. Lanci,and G. J. Reichart, 2010: Evidence for active ENSO variability in the late Miocene greenhouse climate. Geology, 38, 419–422, doi:10.1130/G30629.1.
Ganguly, D., P. J. Rasch, H. Wang, and J. -H. Yoon, 2012: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys.Res., 117, D13209, doi:10.1029/2012JD017508.
Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon, 2012: Fast and slow response of the South Asian monsoon system to anthropogenic aerosols. Geophysical Research Letter, 39, L18804, doi:10.1029/2012GL053043.
Gantt, B., J. He, X. Zhang, Y. Zhang, and A. Nenes, 2014: Incorporation of Advanced Aerosol Activation Treatments into CESM/CAM5: Model Evaluation and Impacts on Aerosol Indirect Effects. Atmos.Chem.Phys., 14, 7485-7497.
Garcia, E. S., A. L. S. Swann, J. C. Villegas, D. D. Breshears, D. J. Law, S. R. Saleska, and S. C. Stark, 2016: Ecoclimate teleconnections from forest loss in disparate regions: Identifying differential responses, mechanisms, and synergies in affected areas. Plos One, 11(11), 1-12, doi:10.1371/journal.pone.0165042.
Garcia-Menendez, F., R. K. Saari, E. Monier, and N. E. Selin, 2015: U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. Environ. Sci. Technol., 49, 7580-7588, doi:10.1021/acs.est.5b01324.
Garcia, R. R., Herrera, R., N. Calvo Fernandez, and M. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two General Circulation Models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.
Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.
Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731-2739, doi:10.1175/2008JAS2712.1.
Garcia, R. R., M. López-Puertas, B. Funke, D. R. Marsh, D. E. Kinnison, A. K. Smith, and F. González-Galindo, 2014: On the distribution of CO2 and CO in the mesosphere and lower thermosphere. J. Geophys Res-Atmos, 119, 5700–5718, doi:10.1002/2013JD021208.
Garcia, R. R., M. Lopez-Puertas, B. Funke, D. E. Kinnison, D. R. Marsh, and L. Qian, 2016: On the secular trend of Cox and CO2 in the lower thermosphere. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024553.
Garcia, R. R., A. K. Smith, D. E. Kinnison, A. de la Camara, and D. Murphy, 2016: Modification of the gravity wave parameterization in the WACCM: Motivation and results. J. Atmos. Sci., doi:10.1175/JAS-D-16-0104.1.
Gardner, C. S., Liu, A. Z., D. R. Marsh, W. Feng, and J. M. C. Plane, 2014: Inferring the global cosmic dust influx to the Earth's atmosphere from lidal observations of the vertical flux of mesospheric Na. J. Geophys. Res. - Space Physics, doi:10.1002/2014JA020383, 2014.
Gardner, C. S., and A. Z. Liu, 2016: Chemical transport of neutral atmospheric constituents by waves and turbulence: Theory and observations. J. Geophys. Res. Atmos., 121, 494-520, doi:10.1002/2015JD023145.
Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. Atmos., 113, D18114, doi:10.1029/2008JD009920.
Garfinkel, C. I., and D. L. Hartmann, 2010: Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J. Geophys. Res., 115, D20116, doi:10.1029/2010JD014181, 2010.v3.1.9.
Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J.Climate, 23 (12), 3282-3299, doi:10.1175/2010JCLI3010.1, 2010.v3.5.
Garric, G., and M. Huber, 2003: Quasi-decadal variability in paleoclimate records: Sunspot cycles or intrinsic oscillations? Paleoceanography, 18, doi:10.10292002PA000869.
Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and interbasin transport of the passive and redistributive components of surface heating. J. Climate, 29, 7507-7527, doi:10.1175/JCLI-D-16-0138.1.
Garuba, O. A., and B. A. Klinger, 2018: The role of individual surface flux components in the passive and active ocean heat uptake. J. Climate, 31, 6157-6173, doi:10.1175/JCLI-D-17-0452.1.
Gaubert, B., H. M. Worden, A. F. J. Arellano, L. K. Emmons, S. Tilmes, J. Barré, S. Martínez Alonso, F. Vitt, J. L. Anderson, F. Alkemade, S. Houweling, and D. P. Edwards, 2017: Chemical feedback from decreasing carbon monoxide emissions. Geophys. Res. Lett., 44, doi:10.1002/2017GL074987.
Gasson, E., et al., 2014: Uncertainties in the modelled CO2 threshold for Antarctic glaciation. Clim. Past, 10, 451-466, doi:10.5194/cp-10-451-2014.
Gao, Y., H. Wang, and D. Jiang, 2015: An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Pan-Asian monsoon region. Int. J. Climatol., 35, 3770-3780, doi:10.1002/joc.4245.
Gaubert, B., et al., 2016: Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition. J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD024863.
Gehlen, M., et al., 2014: Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences Discuss., 11/23, 6955-6967.
Geil, K., and X. Zeng, 2015: Quantitative characterization of spurious numerical oscillations in 48 CMIP5 models. Geophys. Res. Lett., 42, doi:10.1002/2015GL063931.
Gent, P. R., F. O. Bryan, G. Danabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11, 1287-1306.
Gent, P. R., 2001: Will the North Atlantic Ocean thermohaline circulation weaken during the 21st century? Geophys. Res. Lett., 28, 1023-1026.
Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106, 2693-2712.
Gent, P. R., A. P. Craig, C. M. Bitz, and J. W. Weatherly, 2002: Parameterization improvements in an eddy-permitting ocean model for climate. J. Climate, 15, 1447-1459.
Gent, P. R., and G. Danabasoglu, 2004: Heat uptake and the thermohaline circulation in the Community Climate System Model, Version Two. J. Climate, 17, 4058-4069.
Gent, P. R., F. O. Bryan, G. Danabasoglu, K. Lindsay, D. Tsumune, M. W. Hecht, and S. C. Doney, 2006: Ocean chlorofluorocarbon and heat uptake during the 20th century in the CCSM3. J. Climate, 19, 2366-2381.
Gent, P. R., S. Yeager, R. B. Neale, S. Levis, and D. Bailey, 2009: Improvements in a half degree atmopshere/land version of the CCSM. Clim. Dyn., 79, 25-58, doi:10.1007/s00382-009-0614-8.
Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 4992-4998.
Gent, P. R., G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z. –L. Yang, and M. Zhang, 2011: The Community Climate System Model Version 4. J. Climate, 24 (19), 4973-4991.
Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annual Review of Marine Science, 8, 79-94.
Gerber, E. P., et al., 2010: Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.
Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: The impact of monsoon circulations on the upper troposphere and lower stratosphere, J. Geophys., Res., 109, D22101, doi:10.1029/2004JD004878.
Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111, doi:10.1029/2005JD006636.
Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., doi:10.1029/2007JD008945.
Gettelman, A., and D. E. Kinnison, 2007: The global impact of supersaturation in a coupled chemistry-climate model. Atmos. Chem. & Phys., 1629-1643.
Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmospheric Model (CAM3). Part II: Single-column and global results. J. Climate, 21, 3660-3679.
Gettelman, A., and Q. Fu, 2008: Observed and simulated upper tropospheric water vapor feedbacks. J. Climate, 21, 3282-3289.
Gettelman, A., T. Birner, V. Eyring, H. Akiyoshi, D. A. Plummer, M. Dameris, S. Bekki, F. Lefevre, F. Lott, C. Bruhl, K. Shibata, E. G. Pitari, H. Struthers, W. Tian, and D. E. Kinnison, 2009: The tropical tropopause layer 1960-2100. Atmos. Chem. Phys., 9, 1621-1637.
Gettelman, A., and M. Hegglin, 2010: The upper troposphere and lower stratosphere. In The SPARC Report on the Evaluation of Chemistry Climate Models. V. Eyring, D. Waugh, T. G. Shepherd, Eds., SPARC, Toronto, 2010.
Gettelman, A., P. H. Lauritzen, M. Park, and J. Kay, 2009: Processes regulating short lived species in the TTL. J. Geo. Res., 114, D13303.
Gettelman, A., et al., 2010: Multi-model assessment of the upper troposphere and lower stratosphere: Tropics and trends. J. Geophys. Res., 115, D00M08, doi:10.1029/2009JD013638.
Gettelman, A., X. Liu, S. J. Ghan, H. Morrison, S. Park, A. J. Conley, S. A. Klein, J. Boyle, D. L. Mitchell, and J. -L. F. Li, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.
Gettelman, A., J. E. Kay, and K. M. Shell, 2012: The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Climate, 25, 1453-1469.
Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C.-C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res. Atmos., 117, D20201, doi:10.1029/2012JD017950.
Gettelman, A., and C. C. Chen, 2013: The climate impact of aviation aerosols. Geophys. Res. Lett., 40, L50520, doi:10.1002/grl.50520, 2013.
Gettelman, A., J. E. Kay and J. T. Fasullo, 2013: Spatial decomposition of climate feedbacks in the Community Earth System Model. J. Climate, 40, 3544-3561, doi:10.1175/JCLI-D-12-00497.1.
Gettelman, A., H. Morrison, C. R. Terai and R. Wood, 2013: Microphysical process rates and global aerosol-cloud interactions. Atmos. Chem. and Phys., 13, 9855-9867, doi:10.5194/acp-13-9855-2013.
Gettelman, A., 2015: Putting the clouds back in aerosol-cloud interactions. Atmos. Chem. Phys., 15, 12,397-12,411, doi:10.5194/acp-15-12397-2015.
Gettelman, A., and H. Morrison, 2015: Advanced two-moment microphysics for global models. Part I: Off line tests and comparisons with other schemes. J. Climate, 28, 1268-1287, doi:10.1175/JCLI-D014-00102.1,2015.
Gettelman, A., H. Morrison, S. Santos, P. Bogenschutz, and P. H. Caldwell, 2015: Advanced two-moment microphysics for global models. Part II: Global model solutions and aerosol-cloud interactions. J. Climate, 28, 1288-1307, doi:10.1175/JCLI-D-14-00103.1,2015.
Gettelman, A., A. Schmidt, and J. E. Kristjannson, 2015: Icelandic volcanic emissions and climate. Nature Geoscience 8, 243, doi:10.1038/ngeo2376, 2015.
Gettelman, A., D. T. Shindell, and J.-F. Lamarque, 2015: Impact of aerosol radiative effects on recent temperatures. Clim. Dyn.,, doi:10.1007/s00382-014-2464-2, 2015.
Gettelman, A., D. N. Bresch, C. C. Chen, J. E. Truesdale, and J. T. Bacmeister, 2017: Projections of future tropical cyclone damage with a high-resolution global climate model. Climatic Change, doi:10.1007/s10584-017-1902-7.
Gettelman, A., P. Callaghan, V. E. Larson, C. M. Zarzycki, J. Bacmeister, P. H. Lauritzen, P. A. Bogenschutz and R. B. Neale, 2018: Regional climate simulations with the Community Earth System Model. J. Adv. Model. Earth Syst., doi:10.1002/2017MS001227.
Ghan, S. J., R. C. Easter, J. Hudson, and F. -M. Breon, 2001: Evaluation of aerosol indirect radiative forcing in MIRAGE. J. Geophys. Res., 106, 5317-5334.
Ghan, S. J., R. C. Easter, E. Chapman, H. Abdul-Razzak, Y. Zhang, R. Leung, N. Laulainen, R. Saylor, and R. Zaveri, 2001: A physically-based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106, 5279-5294.
Ghan, S. J., N. Laulainen, R. Easter, R. Wagener, S. Nemesure, E. Chapman, Y. Zhang, and R. Leung, 2001: Evaluation of aerosol direct radiative forcing in MIRAGE. J. Geophys. Res., 106, 5295-5316.
Ghan, S., X. Bian, A. Hunt, and A. Coleman, 2002: The thermodynamic influence of subgrid orography in a global climate model. Clim. Dyn., 20, doi:10.1007s00382-002-0257-5.
Ghan, S., and T. Shippert, 2005: Load balancing and scalability of a subgrid orography scheme in a global climate model. International Journal of High Performance Computing Applications, 19(3), 237-245.
Ghan, S. J., T. Shippert, and J. Fox, 2006: Physically-based global downscaling: Regional evaluation. J. Climate, 19, 429-445.
Ghan, S. J., and T. Shippert, 2006: Physically-based global downscaling: Climate change projections for a full century. J. Climate, 19, 1589-1604.
Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and. B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semi-direct and indirect radiative forcing. J.Climate, doi:10.1175/JCLI-D-11-00650.1.
Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem Phys., 13, 9971–9974, doi:10.5194/acp-13-9971-2013.
Ghan, S., et al., 2016: Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proc. Nat. Acad. Sci., 113, 5804-5811, doi:10.1073/pnas.1514036113.
Ghimire, B., W. J. Riley, C. D. Koven, M. Mu, and J. T. Randerson, 2016b: Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. JAMES, 8, doi:10.1002/2015MS000538.
Gibbard, S., K. Caldeira, G. Bala, T. Phillips, and M. Wickett, 2005: The effects of land cover changes on global climate. Geophys. Res. Lett., 32, doi:10.1029/2005GL024550.
Gil-Ojeda, M., et al., 2015: NO2 seasonal evolution in the north subtropical free troposphere. Atmos. Chem. Phys., 15, 10567-10579, doi:10.5194/acp-15-10567-2015.
Gille, J., S. Karol, D. Kinnison, J.-F. Lamarque, and V. Yudin, 2014: The role of midlatitude mixing barriers in creating the annual variation of total ozone in high northern latitudes. J. Geophys Res-Atmos, 119, doi:10.1002/2013JD021416.
Gladstone, R. M., et al., 2005: Mid-Holocene NAO: A PMIP2 model intercomparison. Geophys. Res. Lett., 32, L16707, doi:10.1029/2005GL023596.
Glantz, P., et al., 2013: Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations. J. Geophys. Res. Atmos., 119, 8169-8188, doi:10.1002/2013JD021279.
Glotfelty, T., J. He, and Y. Zhang, 2017: Improving organic aerosol treatments in CESM/CAM5: Development, application, and evaluation. J. Adv. Model. Earth Syst., 9, 1506-1539, doi:10.1002/2016MS0000874.
Glotfelty, T., J. He, and Y. Zhang, 2017: The impact of future climate policy scenarios on air quality and aerosol/cloud interactions using an advanced version of CESM/CAM5. Part I: Model evaluation for the current decadal simulations. Atmos. Enviorn., 152, 222-239, doi:10.1016/j.atmosenv.2016.12.035.
Glotfelty, T., J. He, and Y. Zhang, 2017: The impact of future climate policy scenarios on air quality and aerosol/cloud interactions using an advanced version of CESM/CAM5. Part II: Future trend analysis and impacts of projected anthropogenic emissions. Atmos. Enviorn., 152, 531-552, doi:10.1016/j.atmosenv.2016.12.034.
Goes, M., R. Molinari, I. da Silveira, and I. Wainer, 2005: Retroflections of the North Brazil Current during February 2002. Deep-Sea Research, 52 (4), 647-667, doi:10.1016/j.dsr.2004.10.010.
Goes, M., I. Wainer, P. R. Gent, and F. O. Bryan, 2008: Changes in subduction in the South Atlantic Ocean during the 21st century in the CCSM3. Geophysical Res. Lett., 35 (6), L06701, doi:10.1029/2007GL032762.
Goldenson, N., S. J. Doherty, C. M. Bitz, M. M. Holland, B. Light, and A. J. Conley, 2012: Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM. Atmos. Chem. Phys., 12, 7903-7920, doi:10.5194/acp-12-7903-2012.
Goldenson, N., G. Mauger, L. R. Leung, C. M. Bitz, and A. Rhines, 2018: Effects of ensemble configuration on estimates of regional climate uncertainties. Geophys. Res. Lett., 45, 926–934.
Goldner, A., M. Huber, N. Diffenbaugh, and R. Caballero, 2011: Implications of the permanent El Nino teleconnections “blueprint” for past global and North American hydroclimatology. Clim. Past, 7, 723-743, doi:10.5194/cp-7-723-2011.
Goldner, A., M. Huber, and R. Caballero, 2013: Does Antarctic glaciations cool the world? Clim. Past, 9, 173-189, doi:10.5194/cp-9-173-2013.
Goldner, A., N. Herold, and M. Huber, 2014: Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature, 511, 574-577, doi:10.1038/nature13597.
Goldner, A., N. Herold, and M. Huber, 2014: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Clim. Past., 10, doi:10.5194/cp-10-523-2014.
Goldstein, A., C. Koven, C. Heald, and I. Fung, 2009: Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of The United States Of America, 106 (22), 8835-8840, doi:10.1073/pnas.0904128106.
Gonzales, P. L. M., L. M. Polvani, R. Seager, and G .J. P Correa, 2014: Stratospheric ozone depletion: A key driver of recent precipitation trends in South Eastern South America. Clim. Dyn., 42, 1775-1792.
Goodkin, N. F., N. M. Levine, S. C. Doney, and R. Wanninkhof, 2011: Impacts of temporal CO2 and climate trends on the detection of ocean anthropogenic CO2 accumulation. Global Biogeochem. Cycles, 25, GB3023, doi:10.1029/2010GB004009.
Goosse, H., and M. M. Holland, 2005: Mechanisms of interdecadal Arctic climate variability in the Community Climate System Model CCSM2. J. Climate, 18, 3552-3570.
Gopalakrishnan, R., G. Bala, M. Jayaraman, L. Cao, R. Nemani, and N. H. Ravindranath, 2011: Sensitivity of terrestrial water and energy budgets of CO2-physiological forcing: An investigation using an offline land model. Environmental Research Letters, doi:10.1088/1748-9326/6/4/044013.
Gordillo-Vazquez, F. J., A. Luque, and C. Haldoupis, 2016: Upper D region chemical kinetic modeling of LORE relaxation times. J. Geophys. Res. Space Physics, 121, 3525-3544, doi:10.1002/2015JA021408.
Goris, N., J. F. Tjiputra, A. Olsen, J. Schwinger, S. K. Lauvset, and E. Jeansson, 2018: Constraining projection-based estimates of the future North Atlantic carbon uptake. J. Climate, 31, 3959–3978, doi:10.1175/JCLI-D-17-0564.1.
Goswami, b. B., N. J. Jani, P. Mukhopadhyay, D. Waliser, J. Benedict, D. Maloney, M. Khairoutdinov, and B. N. Goswami, 2011: Monsoon intraseasonal oscillations as simulated by the superparameterized Community Atmosphere Model. J. Geophys Res., 116, D22140, doi:10.1029/2011JD015948.
Gotangco Castillo, C., S. Levis, and P. Thornton, 2012: Evaluation of the new CNDV option of the Community Land Model: Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J. Climate, 25, 3702-3714, doi:10.1175/JCLID-11-00372.1
Govin, A., V. Varma, and M. Prange, 2014: Astronomically forced variations in western African rainfall (21°N-20°S) during the Last Interglacial period. Geophys. Res. Lett., 41, 2117-2125, doi:10.1002/2013GL058999.
Govindasamy, B., and K. Caldeira, 2000: Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett., 27, 2141-2144.
Govindasamy, B., K. E. Taylor, P. B. Duffy, B. D. Santer, A. S. Grossman, and K. E. Grant, 2001: Limitations of the equivalent CO2 approximation in climate change simulations. J. Geophys. Res., 106, 22,593-22,603.
Govindasamy, B., P. B. Duffy, and K. Caldeira, 2001: Land use changes and Northern Hemisphere cooling. Geophys. Res. Lett., 28, 291-294.
Govindasamy, B., S. Thompson, P. B. Duffy, K. Caldeira, and C. Delire, 2002: Impact of geoengineering schemes on the terrestrial biosphere. Geophys. Res. Lett., 29 (22), 2061, doi:10.10292002GL015911.
Govindasamy, B., K. Caldeira, and P. B. Duffy, 2003: Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2. Global and Planetary Change, 37, 157-168.
Govindasamy, B., P. B. Duffy, and J. Coquard, 2003: High-resolution simulations of global climate. Part 2: Effects of increased greenhouse gases. Clim. Dyn., 21, 391-404.
Govindasamy, B., S. Thompson, A. Mirin, M. Wickett, K. Caldeira, and C. Delire, 2005: Increase of carbon cycle feedback with climate sensitivity: Results from a coupled climate and carbon cycle model. Tellus, 57 (B), 153-163.
Graven, H. D., N. Gruber, R. Key, S. Khatiwala, and X. Giraud, 2012: changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res., 117, C10005, doi:10.1029/2012JC008074.
Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Clim Dyn, 33, 629-643.
Graversen, R. G., S. Djifhout, W. Hazeleger, R. van de Wal, R. Bintanja, and M. Helsen: 2010: Greenland's contribution to global sea-level rise by the end of the 21st century. Clim. Dyn., doi:10.1007/s00382-010-0918-8.
Green, J. A. M., and M. Huber, 2013: Tidal dissipation in the early Eocene and implications for ocean mixing. Geophys. Res. Lett., 40, 2707-2713, doi:10.1002/grl.50510.
Green, J. A. M., M. Huber, D. Waltham, J. Buzan, and M. Wells, 2017: Explicitly modelled deep-time tidal dissipation and its implication for lunar history. Earth and Planetary Science Letters, 461, 46-53, 2017.
Greer, K. R., J. P. Thayer, V. L. Harvey, and E. D. Peck, 2015: Modeling and mechanisms of polar winter upper stratosphere/lower mesosphere disturbances in WACCM. J. Geophys. Res. Atmos., 120, 7635-7647, doi:10.1002/2015JD023471.
Gregoire, L. J., B. L. Otto-Bliesner, P. J. Valdes, and R. Ivanovic, 2016: Abrupt Bolling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophys. Res. Lett., 43, 9130-9137.
Gregory, J. M., et al., 2013: Climate models without pre-industrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett., 40, 1600-1604, doi:10.1002/grl.50339.
Griffies, S. M., et al., 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 26, 1-46, doi:10.1016/j.ocemod.2008.08.007.
Griffies, S. M., et al., 2013: An assessment of global and regional sea level in a suite of interannual CORE-II hindcast simulations: A synopsis. Exchanges, 65, 11-15.
Griffies, S. M., et al., 2014: An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 78, 35-89.
Griffies, S. M., et al., 2016: Experimental and diagnostic protocol for the physical component of the CMIP6 OMIP. Geoscientific Model Development, 9, 3231-3296.
Grimmond, C. S. B., et al., 2010: The International Urban Energy Balance Models Comparison Project: First results from phase I. J. Appl. Meteorol. Clim., 49, 1268-1292, doi:10.1175/2010JAMC2354.1.
Grimmond, C. S. B, et al., 2011: Initial results from phase 2 of the international urban energy balance model comparison. Int. J. Climate, 31, 244-272, doi:10.1002/joc.2227.
Grise, K.M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 3688-3692.
Grise, K. M., S. -W. Son, G. P. J. Correa, and L. M. Polvani, 2014: The response of mid-latitude storms in the Southern Hemisphere to stratospheric ozone depletion in the 20th Century. Atmos. Sci. Lett., 15, 29-36.
Gritsun, A., and G. Branstator, 2007: Climate response using a three-dimensional operator based on the fluctuation–dissipation theorem. J. Atmos. Sci., 64, 2558-2575. doi: http://dx.doi.org 10.1175/JAS3943.1
Gritsun, A., G. Branstator, and A. Majda, 2008: Climate response of linear and quadratic functionals using the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 2824-2841. doi: http://dx.doi.org/10.1175/2007JAS2496.1
Grodsky, S. A., J. A. Carton, S. Nigam, and Y. M Okumura, 2012: Tropical Atlantic biases in CCSM4. J. Climate, 25, 3684-3701.
Grotjahn, R., L -L. Pan, and J. Tribbia, 2011: CAM3 bias during northern winter studied with a linear stationary model. Climate Dynamcis, 37, 631-645, doi:10.1007/s00382-011-1033-1.
Grotjahn, R., L -L. Pan, J. Tribbia, 2011: Sources of CAM3 vorticity bias during northern winter from diagnostic study of the vorticity equation. Clim. Dyn.,, 36, 2051-2075. doi:10.1007/s00382-011-0998-0.
Grotjahn, R., 2013: Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern. Clim. Dyn.,, 41/5, 1187-1197.
Grotjahn, R., and Y. -Y. Lee, 2016: On climate model simulations of the large-scale meteorology associated with California heat waves. J. Geophys. Res. Atmos., 121, 18–32, doi:10.1002/ 2015JD024191.
Gruber, N., et al., 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.
Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T. L. Frölicher, and G. -K. Plattner, 2012: Rapid progression of ocean acidification in the California Current System. Science, 337(6091), 220-223, doi:10.1126/science.1216773.
Gu, S. -Y., H. -L. Liu, N. M. Pedatella, X. Dou, T. Li, and T. Chen, 2016: The quasi-2 day wave activities during 2007 austral summer period as revealed by Whole Atmosphere Community Climate Model. J. Geophys. Res., 121, doi:10.1002/2015JA022225.
Gu, S. -Y., H. -L. Liu, N. M. Pedatella, X. Dou, and Z. Shu, 2016: The quasi-2 day wave activities during 2007 boreal summer period as revealed by Whole Atmosphere Community Climate Model. J. Geophys. Res., 121, doi:10.1002/2016JA022867.
Gu, S.-Y., H.-L Liu, N. M.Pedatella, X. Dou, and Y. Liu, 2017; On the wave number 2 eastward propagating quasi 2-day wave at middle and high latitudes. J. Geophys. Res., 122, 4489-4499, doi:10.1002/2016JA023353.
Guo, Z., M. Wang, Y. Qian, V. E. Larson, S. J. Ghan, M. Ovchinnikov, P. Bogenschutz, C. Zhao, G. Lin, and T. Zhou, 2014: A sensitivity analysis of cloud properties to LUBB parameters in a single-column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 6(3), 829-858, doi:10.1002/2014MS000315.
Guo, Z., M. Wang, Y. Qian, V. E. Larson, S. Ghan, M. Ovchinnikov, P. Bogenschutz, A. Gettelman, and T. Zhou, 2014: Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, doi:10.1002/2014MS000405.
Gutzler, D. S., L. N. Long, J. Schemm, S. Baidya Roy, M. Bosilovich, J. C. Collier, M. Kanamitsu, P. Kelly, D. Lawrence, M. -I. Lee, R. Lobato, B. Mapes, K. Mo, A. Nunes, E. A. Ritchie, J. Roads, S. Schubert, H. Wei, and G. J. Zhang, 2009: NAMAP2: Atmospheric simulations of the 2004 North American Monsoon. J. Climate, 22, 6716-6740.
Hack, J. J., 1998: Analysis of the improvement in implied meridional ocean energy transport as simulated by the NCAR CCM3. J. Climate, 11, 1237-1244.
Hack, J. J., J. T. Kiehl, and J. W. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the NCAR CCM3. J. Climate, 11, 1179-1206.
Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19 (11), 2267-2289.
Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19, 2267-2289.
Hack, J. J., J. M. Caron, S. G. Yeager, K. W. Oleson, M. M. Holland, J. E. Truesdale, and P. J. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean features. J. Climate, 19 (11), 2199-2221.
Haeggi, C., C. M. Chiessi, U. Merkel, S. Mulitza, M. Prange, M. Schulz, and E. Schefuss, 2017: Response of the Amazon rainforest to late pleistocene climate variability. Earth and Planetary Science Letters, 479, 50-59, doi:10.1016/j.epsl.2017.09.013.
Hagos, S., and L. R. Leung, 2012: On the relationship between uncertainties in tropical divergence and the hydrological cycle in global models. J. Climate, 381-391, doi:10.1175/jcli-d-11-00058.1.
Hagos, S., L. R. Leung, Q. Yang, C. Zhao, and J. Lu, 2015: Resolutino and dynamical core dependence of atmospheric river frequency in global model simulations. J. Climate, 28, 2764-2776, doi:10.1175/JCLI-D-14-00567.1.
Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over Western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 1357-1363, doi:10.1002/2015GL067392.
Hague, A. M., D. J. Thomas, M. Huber, R. Korty, S. C. Woodard, and L. B. Jones, 2012: Convection of North Pacific Deep Water during the early Cenozoic. Geology, 40, 527-530, doi:10.1130/G32886.1.
Hahmann, A. N., D. N. Ward, and R. E. Dickinson, 1995: Land-surface temperature and radiative fluxes response of the NCAR CCM2 Biosphere-Atmosphere Transfer Scheme to modifications in the properties of clouds. J. Geophys. Res., Atmos., 100, 23,239-23,252.
Hahmann, A. N., and R. E. Dickinson, 1997: RCCM2-BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10, 1944-1964.
Hahmann, A. N., and R. E. Dickinson, 2001: A fine-mesh land approach for general circulation models and its impact on regional climate. J. Climate, 14, 1634-1646.
Hahmann, A. N., 2003: Representing spatial sub-grid scale precipitation variability in a GCM. J. Hydrometeorology, 4 (5), 891-900.
Hali, D. M., P. A. Ullrich, K. A. Reed, C. Jablonowski, R. D. Nair, and H. M. Tufo, 2016: Dynamical Core Model Intercomparison Project (DCMIP) tracer transport test results for CAM-SE. Quart. J. Roy. Meteorol. Soc., 142, 1672-1684.
Hall, A., X. Qu, and J. D. Neelin, 2008: Improving predictions of summer climate change in the United States. Geophys. Res. Lett., 35, L01702, doi:10.1029/2007GL032012.
Hallgren, W., C. A. Schlosser, E. Monier, D. Kicklighter, S. Sokolov, and J. Melillo, 2013: Climate impacte of a large-scale biofuels expansion. Geophys. Res. Lett., 20 (8), 1624-1630, doi:10.1002/grl.50352.
Hamme, R. C., S. R. Emerson, J. P. Severinghaus, M. C. Long, and I. Yashayaev, 2017: Using noble gas measurements to derive air-sea process information and predict physical gas saturations. Geophys. Res. Lett., 44, 9901-9909, doi:10.1002/2017gl075123.
Hammerling, D. M. S. R. Kawa, K. Schaeffer, S. Doney, and A. M. Michalak, 2015: Detectability of CO2 flux signals by a space-based lidar mission. J. Geophys. Res. Atmosp., 120, 1794-1807, doi:10.1002/2014JD022483.
Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific oceans during recent decades. Geophys. Res. Lett., 33, L23615, doi:10.1029/2006GL027982.
Han, W., et al., 2010: Indian Ocean sea level change in a warming climate. Nature Geoscience, doi:10.1038/NGEO901.
Han, W., D. Stammer, G. A. Meehl, A. Hu, F. Sienz and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 0, doi:10.3390/cli6020051.
Handiani, D., A. Paul, M. Prange, U. Merkel, L. Dupont, and X. Zhang, 2013: Tropical vegetation response to Heinrich Event 1 as simulated with the UVic ESCM and CCSM3. Climate of the Past, 9, 1683-1696, doi:10.5194/cp-9-1683-2013.
Hannah, W. M., and E. D. Maloney, 2011: The role of moisture-convection feedbacks in simulating the Madden-Julian oscillation. J. Climate, 24, 2754-2770.
Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Modeling Earth Sys., 6, doi:10.1002/2013MS000272.
Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, J. Olson, S. A. Klein, C. S. Bretherton, and M. Köhler, 2009: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL and ECMWF models. J. Climate, 22, 2871¬-2889.
Hansen, F., K. Matthes, and L. J. Gray, 2013: Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry‒climate model WACCM. J. Geophys. Res.-Atmos., 118(1), 10464, doi:10.1002/jgrd.50812.
Hansen, F., K. Matthes, C. Petrick, and W. Wang, 2014: The influence of natural and anthropogenic factors on major stratospheric sudden warmings. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021397.
Hansen, F., K. Matthes, and S. Wahl, 2016: Tropospheric QBO-ENSO interactions and differences between the Atlantic and Pacific. J. Climate, 29, 1353-1368, doi:10.1175/JCLI-D-15-0164.1.
Harden, J. W., et al., 2012: Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett., 39 (L15704), doi:10.1029/2012GL051958.
Harding, K. J., P. K. Snyder, and S. Liess, 2013: Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res.-Atmos., 118, 1-15, doi:10.1002/2013JD019994.
Harris, L. M., P. H. Lauritzen, and R. Mittal, 2011: A flux-form version of the Conservative Semi-LagrangianMulti-tracer Transport Scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys., 230(4), 1215-1237.
Harrison, C. S., M. C. Long, N. S. Lovenduski, J. K. Moore, 2018: Mesoscale effects on carbon export: A global perspective. Global Biogeochemical Cycles, 32, 680-703, doi:10.1002/2017GB005751.
Harrison, S. P., J. E. Klutzbach, Z. Liu, P. J. Bartlein, B. Otto-Bliesner, D. Muhs, I. C. Prentice, and R. S. Thompson, 2003: Mid-holocene climates of the Americas: A dynamical response to changed seasonality. Clim. Dyn., 20, doi:10:1007s00382-002-0300-6.
Harrop, B., P. –L. Ma, P. J. Rasch, R. B. Neale and C. Hannay, 2018: The role of convective gustiness in reducing seasonal precipitation biases in the tropical West Pacific. JAMES, doi:10.1002/2017MS001157.
Hartin, C. A., R. A. Fine, I. Kamenkovich, and B. M. Sloyan, 2014: comparison of subantarctic mode water and Antarctic intermediate water formation rates in the South Pacific between NCAR-CCSM4 and observations. Geophys. Res. Lett., 41, 519-526.
Hashioka, T., et al., 2013: Phytoplankton competition during the spring bloom in four plankton functional type models. Biogeosciences, 10, 6833–6850, doi:10.5194/bg-10-6833-2013.
Hauck, J., et al., 2015: On the Southern Ocean C2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochem. Cycles, 29, 1451-1470, doi:10.1002/2015GB005140.
Haywood, A. M., et al., 2015: Large-scale features of Pliocene climate: Results from the Plioceme Model Intercomparison Project. Clim. Past, 9, 191-209.
Haywood, A. M., H. J. Dowsett, and A. M. Dolan, 2016: Integrating geological archives and climate models for the mid-Pliocene warm period. Nature Communications, doi:10.1038/ncomms10646.
He, C., and T. Zhou, 2014: The two interannual variability modes of the Western North Pacific Subtropical High simulated by 28 CMIP5-AMIP models. Clim. Dyn.,, 43, 2455-2469.
He, C., and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean - tropical Western Pacific SST gradient. J. Climate, 28, 365-380.
He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771; doi: 10.1038/srep16771.
He, C., A. Lin, D. Gu, C. Li, B. Zheng, and T. Zhou, 2016: Interannual variability of eastern China summer rainfall: The origins of the meridional triple and dipole modes. Clim. Dyn.,, doi:10.1007/s00382-016-3103-x.
He, C., B. Wu, L. Zou, and T. Zhou, 2017: Response of the summertime subtropical anticyclones to global warming. J. Climate, 30 (16), 6465-6479, doi:10.1175/jcli-d-16-0529.1.
He, C., B. Wu, C. Li, A. Lin, D. Gu, B. Zheng, and T. Zhou, 2016: How much of the interannual variability of east Asian summer rainfall is forced by SST? Clim. Dyn.,, doi:10.1007/s00382-015-2855-z .
He, F., J. D. Shakun, P. U. Clark, A. E. Carlson, Z. Liu, B. L. Otto-Bliesner, and J. E. Kutzbach, 2013: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature, 494 (7435), 81-85.
He, F., S. J. Vavrus, J. E. Kutzbach, W. F. Ruddiman, J. O. Kaplan, and K. M. Krumhardt, 2014: Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett., 41(2), 623-631.
He, F., D. J. Posselt, C. M. Zarzycki, and C. Jablonowski, 2015: A balanced tropical cyclone test case for AGCMs extended with background vertical wind shear. Mon. Wea. Rev., 143(5), 1762-1781, doi:10.1175/MWR-D-14-00366.1.
He, J., M. Zhang, W. Lin, B. Colle, P. Liu, and A. M. Vogelmann, 2013: The WRF nested within the CESM: Simulations of a midlatitude cyclone over the Southern Great Plains. J. Adv. Model. Earth Syst., 5, doi:10.1002/JAME.20042.
He, J. and Y. Zhang, 2014: Improvement and further development in CESM/CAM5: Gas-phase chemistry and inorganic aerosol treatments. Atmospheric Chemistry and Physics, 14, 9171-9200, doi:10.5194/acp-14-9171-2014.
He. J., Y. Zhang, T. Glotfelty, R. He, R. Bennartz, J. Rausch, and K. Sartelet, 2015: Decadal simulation and ocmprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions. Journal of Advances in Modeling Earth Systems, 7(1), 110-141, doi:10.1002/2014MS000360.
He, J., Y. Zhang, S. Tilmes, L. Emmons, J. –F. Lamarque, T. Glotfelty, A. Hodzic, A., and F. Vitt, 2015: CESM/CAM5 improvement and application: Comparison and evaluation of updated CB05_GE and MOZART-4 gas-phase mechanisms and associated impacts on global air quality and climate. Geosci. Model Dev., 8, 3999-4025, doi:10.5194/gmd-8-3999-2015.
He, Y., and C. H. Q. Ding, 2005: Coupling multicomponent models with MPH on distributed memory computer architectures. International Journal of High Performance Computing Applications, 19 (3), 329-340.
Heavens, N. G., 2015: Injecting climate modeling into deep time studies: Ideas for nearly every project. The Sedimentary Record, 13, 4–10, doi:10.2110/sedred.2015.4.
Heavens, N. G., N. M. Mahowald, G. S. Soreghan, M. J. Soreghan, and C. A. Shields, 2015: A model-based evaluation of tropical climate in Pangaea during the late Palaezoic Icehouse. Palaeogeogr. Paleoclimatol., Paleoecol., 425, 109-127, doi:10.1016/j.palaeo.2015.02.024.
Herold, N., M. Huber, R. D. Muller, and M. Seton, 2012: Modelling the Miocene climatic optimum: Ocean circulation. Paleoceanography, 27, PA1209, doi:10.1029/2010PA00204
Heald, C. L. et al., 2008: Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res.-Atmospheres, 113 (D5), doi:10.1029/2007JD009092.
Heald, C. L., et al., 2008: Predicted change in global secondary organic aerosol concentrations in response to future climte, emissions, and land-use change. J. Geophys. Res., 113, D05211, doi:10.1029/2007JD009092.
Heald, C. L., M. J. Wilkinson, R. K. Monson, C. A. Alo, G. Wang, and A. Guenther, 2009: Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biology, 15 (4), 1127-1140.
Heavens, N. G., C. A. Shields, and N. M. Mahowald, 2012: Sensitivity of a deep time climate simulation to aerosol prescription. Journal of Advances in Modeling Earth Systems, M11002, doi:10.1029/2012MS000166.
Hegglin, M. I., et al., 2010: Multi-model assessment of the upper troposphere and lower stratosphere: Extra-tropics. J. Geophys. Res., 115, D00M09, doi:10.1029/2010JD013884.
Hegyi, B. M., Y. Deng, R. X. Black, and R. Zhou, 2014: Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J. Climate, 27(7), 2699–2713, doi:10.1175/JCLI-D-13-00289.1.
Henderson-Sellers, A., M. Fischer, I. Aleinov, K. McGuffie, W. J. Riley, G. A. Schmidt, K. Sturm, K. Yoshimura, and P. Irannejad, 2006: Stable water isotope simulation by current land-surface schemes: Results of iPILPS Phase 1. Global and Planetary Change, 51, ISI:00023804140000434-58.
Henley, B. J., G. A. Meehl, S. B. Power, C. K. Folland, A. D. King, J. N. Brown, D. J. Karoly, F. Delage, A. J. E. Gallant, M. Freund, and R. Neukom, 2017: Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Env. Res. Lett., 12, 044011.
Henning, C. C., D. Archer, and I. Fung, 2006: Argon as a tracer of cross-isopycnal mixing in the thermocline. Journal of Physical Oceanography, 36 (11), 2090-2105.
Henson, S. A., J. L. Sarmiento, J. P. Dunne, L. Bopp, I. Lima, S. C. Doney, J. John, and C. Beaulieu, 2010: Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 7, 621-640.
Henson, S., C.Beaulieu, T. Ilyina, J. John, M. C. Long, R. Seferian, J. Tjiputra, and J. Sarmiento, 2017: Rapid emergence of climate change in environmental drivers of marine ecosystem stress. Nature Communications, 8, doi:10.1038/NCOMMS14682.
Hernandez, M., C. C. Ummenhofer, and K. J. Anchukaitis, 2015: Multi-scale drought and ocean-atmosphere variability in monsoon Asia. Environmental Research Letters, 10, 074010215, doi:10.1088/1748-9326/10/7/074010.
Herold, N., R. D. Muller, and M. Seton, 2010: Comparing early to middle Miocene terrestrial climate simulations with geological data. Geosphere, 6 (6), 952-961.
Herold, N. K., M. Huber, D. R. Greenwood, R. D. Muller, and M. Seton, 2011: Early to middle Miocene monsoon climate in Australia. Geology, 39, 3-6, doi:10.1130/G31208.1.2011.
Herold, N. K., D. Muller, and M. Huber, 2011: Insights into Miocene ocean circulation from a coupled climate model. Part I: Atmospheric Circulation. J. Climate, 24, 6353-6372, doi:10:1175/2011JCLI4035.1.
Herrington, A. R., and K. A. Reed, 2017: An explanation for the sensitivity of the mean state of the CAM to horizontal resolution on aqua-planets. J. Climate, 30, 4781-4797, doi:10.1175/JCLI-D-16-0069.1
Hervig, M. E., B. S. A. James, W. Feng, C. G. Bardeen, and J. M. C. Plane, 2017: Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models. J. Geophys. Res. Atmos., 122, doi10.1002/2017JD027657.
Herzfeld, U. C., S. Williams., J. Heinrichs, J. Maslanik, and S. Sucht, 2016: Goestatistical and statistical classification of sea-ice properties and provinces from SAR data. Remote Sens., 8, doi:10.3390/rs8080616.
Hess, P., and N. Mahowald, 2009: Interannual variability in hindcasts of atmospheric chemistry:The role of meteorology. Atmospheric Chemistry and Physics, 9, 5261-5280.
Hess, P. G., D. E. Kinnison, and Q. Tang, 2015: Ensemble simulations of the role of the stratosphere in the attribution of tropospheric ozone variability. Atmos. Chem. Phys., 15, 2341-2364, doi:10.5194/acp-15-2341-2015.
Hezel, P. J., X. Zhang, C. M. Bitz, B. P. Kelley, and F. Massonnet, 2012: Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys. Res. Lett., 39, L17505, doi:10.1029/2012GL052794.
Hezel, P. J., T. Fichefet, and F. Massonnet, 2014: Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs. The Cryosphere, 8, 1195-1204, doi:10.5194/tc-8-1195-2014.
Hidalgo, H. G., et al., 2009: Detection and attribution of streamflow timing changes to climate change in the Western United States. J. Climate, 22, 3838-3855.
Hidalgo, H. G., and E. J. Alfaro, 2015: Skill of CMIP5 climate models in reproducing 20th century basic climate features in Central America. Int. J. Climatol., 35, 3397-3421, doi:10.1002/joc.4216.
Higgins, M. E., and J. J. Cassano, 2009: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res., 114, D16107, doi:10.1029/2009JD011884.
Higgins, M. E., 2010: Atmospheric and land surface response to reduced Arctic sea ice extent. Ph.D. thesis, University of Colorado at Boulder.
Higgins, M. E., and J. J. Cassano, 2010: Response of Arctic 1000 hPa circulation to changes in horizontal resolution and sea ice forcing in the Community Atmospheric Model. J. Geophys. Res., 115, D17114, doi:10.1029/2009JD013440.
Hill, D. J., et al., 2013: Evaluating the dominant components of warming in Pliocene climate simulations. Clim. Past, 10, 79-90.
Hinckley, E., et al., 2016: Optimizing available network resources to address questions in environmental biogeochemistry. BioScience, 66, 317-326.
Hirsch, A. L., M. Wilhelm, E. L. Davin, W. Thiery, and S. I. Seneviratne, 2017: Can climate‐effective land management reduce regional warming? J. Geophys. Res. Atmos., 122, 2269–2288, doi: 10.1002/2016JD026125.
Hirsch A. L., R. Prestele, E. L. Davin, S. I. Seneviratne, W. Thiery, and P. H. Verburg, 2018: Modelled biophysical impacts of conservation agriculture on local climates. Glob Change Biol., 00:1–17, doi:10.1111/gcb.14362.
Hocking, W. K., R. E. Silber, J. M. C. Plane, W. Feng, and M. Garbanzo-Salas, 2016: Decay times of transitionaly dense specularly reflecting meteor trails and potential chemical impact on trail lifetimes. Ann. Geophys., 34, 1119-1144, doi:10.5194/angeo-34-1119-2016.
Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2009: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Clim. Dyn., doi:10.1007/s00382-009-0571-2.
Hoerling, M. P., J. K. Eischeid, X. W. Quan, H. F. Diaz, R. S. Webb, R. M. Dole, and D. Easterling 2012: Is a transition to semi-permanent drought conditions imminent in the U.S. Great Plains? J. Climate, 25, 8380-8325.
Hoerling, M. P., J. Eischeid, J. Perlwitz, X. W. Quan, K. Wolter, and L. Cheng, 2015: Characterizing recent trends in U.S. heavy precipitation. J. Climate, 28, doi:10.1175/JCLI-D-15-0441.1.
Hofer, D., 2010: Simulations of the last millennium using a comprehensive climate model: The impact of the external forcing on the climate. Ph.D. thesis, University of Bern.
Hofer, D., C. C. Raible, and T. F. Stocker, 2011: Variation of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium. Climate of the Past, 7, 133-150.
Hofer, D., C. C. Raible, A. Dehnert, and J. Kuhlemann, 2012: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate of the Past, 8, 935-949.
Hofer, D., C. C. Raible, N. Merz, A. Dehnert, and J. Kuhlemann, 2012: Simulated winter circulation type in the North Atlantic and European region for preindustrial and glacial conditions. Geophys. Res. Lett., 39, L15805, doi:10.1029/2012GL052296.
Hoffman, F. M., M. Vertenstein, H. Kitabata, J. B. White III, P. Worley, J. Drake, and M. Cordere, 2004: Adventures in vectorizing the Community Land Model. In Proceedings of the 2004 Cray Users (CUG) Conference, 19, 247-260.
Hoffman, F., et al., 2006: Terrestrial biogeochemistry in the Community Climate System Model. J. Phys. Conf. Ser., 46 (1), 336-369.
Hoffman, F. M., et al., 2007: Results from the Carbon-Land Model Comparison Project (C-LAMP) and availability of the data on the Earth System Grid (ESG). J. Phys. Conf. Ser., 78:012026, doi:10.1088/1742-6596/78/1/012026.
Hoffman, F. M., W. W. Hargrove, R. T. Mills, S. Mahajan, D. J. Erickson, and R. J. Oglesby, 2008: Multivariate Spatio-Temporal Clustering (MSTC) as a data mining tool for environ- mental applications. Miquel Snchez-Marr, Javier Bjar, Joaquim Comas, Andrea E. Rizzoli, Giorgio Guariso (Eds.), Proceedings of the iEMSs Fourth Biennial Meeting: International Congress on Environmental Modeling and Software.
Hoffman, F., J. Randerson, I. Fung, P. Thornton, Y-H. Lee, C. Covey, G. Bonan, and S. Running, 2008: The Carbon-Land Model Comparison Project (C-LAMP): A protocol and evaluation metrics for global terrestrial biogeochemistry models. In Miquel Sanchez-Marre, Javier Bejar, J. Comas, A. Rizzoli, G. Guariso (Eds.), Proceedings of the IEMSs Fourth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2008), 1039-1046.
Hoffman, F. M., et al., 2014: Causes and implications of persistent atmospheric carbon dioxide biases in earth system models. J. Geophys. Res. Biogeosci., 119(2):141–162, doi:10.1002/2013JG002381.
Hogan, E. E. and R. L. Sriver, 2017: Analyzing the effect of ocean internal variability on depth-integrated steric sea-level rise trends using a low-resolution CESM ensemble. Water, 9, 483, doi:10.3390/w9070483.
Holland, M. M., 2003: An improved single-column model representation of ocean mixing associated with summertime leads: Results from a SHEBA case study. J. Geophys. Res., Oceans, 108, doi:10.10292002JC001557.
Holland, M. M., 2003: The North Atlantic Oscillation/Arctic Oscillation in the CCSM2 and its influence on Arctic climate variability. J. Climate, 16, 2767-2781.
Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Clim. Dyn., 21, 221-232, doi:s00382-003-0332-6.
Holland, M. M., C. M. Bitz, and E. Hunke, 2005: Mechanisms forcing an Antarctic dipole in simulated sea ice and surface ocean conditions. J Climate, 18, 2052-2066.
Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 (11), 2398-2414.
Holland, M. M., C. M. Bitz, and B. Tremblay, 2006: Future abrupt reductions in the Summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.
Holland, M. M., J. Finnis, and M. C. Serreze, 2006: Simulated Arctic Ocean freshwater budgets in the 20th and 21st centuries. J. Climate, 19, 6221-6242.
Holland M., and M. N. Raphael, 2006: Twentieth Century Simulation of the Southern Hemisphere Climate in Coupled Models. Part II: Sea Ice Conditions and Variability. Clim. Dyn., 229-243, doi:10.1007/s00382-005-0082-8.
Holland, M. M., J. Finnis, A. Barrett, and M. C. Serreze, 2007: Projected changes in Arctic Ocean freshwater budgets. J. Geophys. Res., 112, G04S55, doi:10.1029/2006JG000354.
Holland, M. M., C. M. Bitz, B. Tremblay, and D. A. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr. Ser., 180, edited by E. T. DeWeaver, C. M. Bitz, and L.-B. Tremblay, pp. 133-150, AGU, Washington, D. C.
Holland, M. M., 2010: Arctic sea ice and the potential for abrupt loss. In Clim. Dyn.: Why does climate vary? Geophys. Monogr. Ser., 189, edited by D-Z Sun and F. Bryan, pp. 181-192, AGU, Washington, D. C.
Holland, M. M., D. A. Bailey, and S. Vavrus, 2010: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Clim. Dyn., doi:10.1007/s00382-010-0792-4.
Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim. Dyn., 34 (2), doi:10.1007/s00382-008-0493-4.
Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt pods and aerosols on Arctic sea ice. J. Climate, 25, 1413-1430.
Holland, M. M., and L. Landrum, 2015: Factors affecting projected Arctic surface shortwave heating and albedo change in coupled dlimate models. Phil. Trans. R. Soc. A, 373, 20140162, doi:10.1098/rsta.2014.0162.
Holland, W. R., and A. Capotondi, 1999: Thermohaline circulation variability. In Modeling the Earth's Climate and its Variability: Les Houches LVXIII, 1997, W. Holland, S. Joussaume, and F. David, Eds., NATO ASI Series, Elsevier Science Publishers BV, Amsterdam.
Holland, W. R., J. C. Chow, and F. O. Bryan, 1998: Application of a third-order upwind scheme in the NCAR1604 ocean model. J. Climate, 11, 1487-1493.
Hollis, C., et al., 2009: Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37, 99-102, doi:10.1130/G25200A.1.
Hollis, C. J., et al., 2012: Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models. Earth Plan. Sci. Lett., doi:10.1016/j.epsl.2012.06.024.
Holm, J. A., J. Q. Chambers, W. D. Collins, and N. Higuchi, 2014: Forest response to increased disturbance in the Central Amazon and comparison to Western Amazonian forests. Biogeosciences, 11, 5773-5794.
Holman, K., 2010: Understanding extreme precipitation events in climate simulations of the Twentieth and Twenty-first Centuries. Master’s Theses: Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison.
Holt, L. A., C. E. Randall, E. D. Peck, D. R. Marsh, A. K. Smith, and V. L. Harvey, 2013: The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM. J. Geophys. Res.-Atmos., 118(2), 11636,doi:10.1002/2013JD020294.
Hood, L. L., et al., 2015: Solar signals in CMIP-5 simulations: The ozone response. Q. J. R. Meteorol. Soc., doi:10.1002/qj2553.
Hoose, C., J. E. Kristjansson, T. Iversen, A. Kirkevåg, Ø. Seland, and A. Gettelman, 2009: Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect. Geophys. Res. Lett., 36, 3038-3060, L12807, doi:10.1029/2009GL038568.1.
Hoose, C., J. E. Kristjánsson, and S. M. Burrows, 2010: How important is biological ice nucleation in clouds on a global scale? Env. Res. Lett., 5, doi:10.1088/1748-9326/5/2/024009.
Hoose, C., J. E. Kristjánsson, J. -P. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot and biological particles in a global climate model. J. Atmos. Sci., 67, 2483-2503.
Hoover, D. L, and B. M. Rogers, 2016: Not all droughts are created equal: The impacts of interannual drought pattern and magnitude on grassland carbon cycling. Global Change Biology, 22,1809-1820, doi:10/1111/gcb.13161.
Horinouchi, T., S. Pawson, K. Shibate, U. Langematz, E. Manzini, F. Sassi, R. J. Wilson, K. P. Hamilton, J. deGranpre, and A. A. Scaife, 2003: Tropical cumulus convection and upward propagating waves in middle atmosphere GCMs. J. Atmos. Sci., 60, 2765-2782.
Hou, Z., M. Huang, L. R. Leung, G. Lin, and D. M. Ricciuto, 2012: Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res., 117, D15108,doi:10.1029/2012JD017521.
Howell, F. W., et al., 2016: Arctic sea ice simulation in the PlioMIP ensemble. Clim. Past, 12, 749-767.
Hsu, J., M. J. Prather, D. Bergmann, and P. Cameron-Smith, 2013: Sensitivity of stratospheric dynamics to uncertainty in O3 production. J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50689.
Hu, A., G. A. Meehl, and W. Han, 2004: Detecting thermohaline circulation changes from ocean properties in a coupled model. Geophys. Res. Lett., 31, doi:10.10292004GL020218.
Hu, A., G. A. Meehl, W. M. Washington, and A. Dai, 2004: Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J. Climate, 17, 4267-4279.
Hu, A., and G. A. Meehl, 2005: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32, L24610, doi:10.1029/2005GL024424.
Hu, A., and G. A. Meehl, 2005: Reasons for a fresher northern North Atlantic in the late 20th Century. Geophys. Res. Lett., 32, L11701,doi:1029/2005GL022900.
Hu, A., G. A. Meehl, and W. Han, 2007: Causes of a fresher, colder northern North Atlantic in late 20th century in a coupled model. Progress in Oceanography, 73, 384-405.
Hu, A., G. A. Meehl, and W. Han, 2007: Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys. Res. Lett., 34, L05704, doi:10.1029/2006GL028906.
Hu, A., B. L. Otto-Bliesner, G. A. Meehl, W. Han, C. Morrill, E. C. Brady, and B. Briegleb, 2008: Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J. Climate, 21, 2239-2258.
Hu, A., and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys. Res. Lett., 36, L03702, doi:10.1029/2008GL036680.
Hu, A., G. A. Meehl, W. Han, and J. Yin, 2009: Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys. Res. Lett., 36, L10707, doi:10.1029/2009GL037998.
Hu, A, G. A. Meehl, B. L. Otto-Bliesner, C. Waelbroeck, W. Han, M-F. Loutre, K. Lambeck, J. X. Mitrovica, and N. Rosenbloom, 2010: Influence of Bering Strait flow and North Atlantic circulation on glacial sea level changes. Nature Geosciences, 3, 118-121.
Hu, A., G. A. Meehl, W. Han and J. Yin, 2011: Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future. Deep Sea Res. Part II, 58, 1914-1926, doi:10.1016/j.dsr2.2010.10.069.
Hu, A., G. A. Meehl, W. Han, A. Abe-Ouchi, C. Morrill, Y. Okazaki, and M. O. Chikamoto, 2012: The Pacific-Atlantic seesaw and the Bering Strait. Geophys. Res. Lett., 39, L03702, doi:10.1029/2011GL050567.
Hu, A., et al., 2012: Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Preceedings of the National Academy of Sciences, doi:10.1073/pnas.1116014109.
Hu, A., G.A. Meehl, W. Han, and J. Yin, 2012: Effect of the potential melting of the Greenland Ice Sheet on the meridional overturning circulation and global climate in the future. Deep Sea Res. Part II, 58, doi: 10.1016/j.dsr2.2010.10.069, 1914-1926.
Hu, A., and C. Deser, 2013: Uncertainty in future regional sea level rise due to internal climate variability. Geophys. Res. Lett., 40, 2768-2772, doi:10.1002/grl50531.
Hu, A., G. A. Meehl, W. Han, J. Lu, and W. G. Strand, 2013: Energy balance in a warm world without the ocean conveyor belt and sea ice. Geophys. Res. Lett., 40, 6242-6246, doi:10.1002/2013GL05812340.
Hu, A. G. A. Meehl, W. Han, J. Yin, B. Wu, and M. Kimoto, 2013: Influence of continental ice retreat on future global climate. J. Climate, 26, 3087-3111, doi:10.1175/JCLI-D-12-00102.1.
Hu, A., Y. Xu, C. Tebaldi, W. M. Washington, V. Ramanathan, 2013: Slowing down 21st century sea level rise through mitigation of short-lived climate pollutants. Nature Climate Change, doi:10.1038/NCLIMATE186.
Hu, A., G. A. Meehl, W. Han, B. Otto-Bliesner, A. Abe-Ouchi, N. Rosenbloom, 2015: Effects of the Bering Strait closure on AMOC and global climate under different background climates. Progress in Oceanography, 132, 174-196, doi:10.1016/j.pocean.2014.04.004.
Hu, A., S. Levis, G. A. Meehl, W. Han, W. Washington, K. Oleson, B. van Ruijven, M. He, and G. Strand, 2016, Impact of Solar Panels on global climate. Nature Climate Change, 6, 290-294, doi:10.1038/NCLIMATE2843.
Hu, A., G. A. Meehl, D. Stammer, W. Han, and W. G. Strand, 2017: Role of perturbing ocean initial condition in simulated regional sea level change. Water, 9, 401, doi:10.3390/w9060401.
Hu, A. and S. C. Bates, 2018: Internal climate variability and projected future regional steric and dynamic sea level rise. Nature Communications, 9, 1068, doi:10.1038/s41467-018-03474-8.
Hu, N., and X. Liu, 2013: A modeling study of the effect of anthropogenic aerosols on drought in the late spring of south China. Acta Meteorologica Sinica, 27(5), 701–715, doi: 10.1007/s13351-013-0506-z.
Hu, N., and X. Liu, 2013: A modeling study of the effect of anthropogenic aerosols on drought in the late spring of south China. Acta Meteorologica Sinica, 27, 701-715, doi:10.1007/s13351-013-0506-z.
Hu, Q., and Veres, M.C., 2016: Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North American precipitation. J. Climate, 29, 659-671. doi:10.1175/JCLI-D-14-00751.1
Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. U.S.A., 113(8), 2005-2010.
Hu, S., and A. V. Fedorov, 2017: The extreme El Niño of 2015-2016 and the end of global warming hiatus. Geophys. Res. Lett., 44(8), 3816-3824.
Hu, S., and A. V. Fedorov, 2017: The extreme El Niño of 2015-2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim. Dyn., doi:10.1007/s00382-017-3531-2.
Hu, S., and A. V. Fedorov, 2017: An interplay between westerly and easterly wind bursts shaping El Niño development in 2014-2016. U.S. CLIVAR Exchanges, 71, 26-31.
Hu, Y., X. Huang, A. H. Baker, Y. -H. Tseng, F. O. Bryan, J. M. Dennis, and G. Yang, 2015: Improving the scalability of the ocean barotropic solver in the Community Earth System Model. Proceedings of the International Conference for High Performance Computing, Networking, and Storage, SC’15, Austin, TX, pp. 1-42.
Hu, Z. -Z., A. Kumar, B. Jha, and B. Huang, 2012: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 2356-2373.
Hu, Z., A. Hu, Y. Hu, 2018: Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to global ocean heat content distribution. J. Climate, 31, 1227-1244, doi:10.1175/JCLI-D-17-c0204.1.
Huang, A., H. Li, R. L. Sriver, A. V. Fedorov, and C. M. Brierley, 2017: Regional variations in the ocean response to tropical cyclones: Ocean mixing versus low cloud suppression. Geophys. Res. Lett., 44, doi:10.1002/2016GL072023.
Huang, J., A. Adams, C. Wang, and C. Zhang, 2009: Black carbon and West African monsoon precipitation: Observations and simulations. Ann. Geophys., 27, 4171-4181.
Huang, W., X. Chu, C. S. Gardner, J. D. Carrillo-Sanchez, W. Feng, J. M. C. Plane, and D. Nesvorny, 2015: Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere. Geophys. Res. Lett., 42, 169-175, doi:10.1002/2014GL062390.
Huang, X., Q. Tang, Y-H. Tseng, Y. Hu, A. H. Baker, F. O. Bryan, J. Dennis, H. Fu, and G. Yang, 2016: Accelerating the high-resolutin ocean model component in the CESM. Geoscientific Model Development, 9, 4209-4225, doi:10.5194/gmd-9-4209-2016.
Huang, X. and P. A. Ullrich, 2016: Irrigation impacts on California's climate with the variable-resolution CESM. J. Adv. Earth System Model., doi: 10.1002/2016MS000656.
Huang, X., A. M. Rhoades, P. A. Ullrich and C. M. Zarzycki, 2016: An evaluation of the variable resolution-CESM for modeling California’s climate. J. Adv. Earth System Model., 8, 345-369, doi: 10.1002/2015MS000559.
Huang, X., and P. A. Ullrich, 2017: The changing character of 21st precipitation over the western United States in the variable-resolution CESM. J. Climate, doi.org/10.1175/JCLI-D-16-0673.1.
Huang, X. L., X. H. Chen, M. G. Flanner, P. Yang, D. Feldman, C. Kuo, 2018: Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. J. Climate, 31(9), 3711-3727, doi:10.1175/JCLI-D-17-0125.
Huang, Y., X. Lu, Z. Shi, D. M. Lawrence, C. D. Koven, X. J. Xia, Z. Du, E. Kluzek, and Y. Luo, 2018: Matrix approach to land carbon cycle modeling: A case study with Community Land Model. Glob. Change. Biol., 24, doi.org/10.1111/gcb.13948.
Huber, M., and L. C. Sloan, 2001: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett., 28, 3481-3484.
Huber, M., 2002: Straw Man 1: A preliminary view of the tropical Pacific from a global coupled climate model simulation of early Paleogene climate. Proceedings of the Ocean Drilling Program, Initial Reports, v. 199, M. Lyle, P. A. Wilson, T. R. Janacek, et al., Eds.
Huber, M., and R. Caballero, 2003: Eocene El Niño: Evidence for robust tropical dynamics in the "hothouse." Science, 299, 877-881.
Huber, M., L. C. Sloan, and C. Shellito, 2003: Early Paleogene oceans and climate: A fully coupled modelling approach using NCAR’s CSM. Wing, S. L., Gingerich, P.D., Schmitz, B., and Thomas, E., eds., Causes and consequences of globally warm climates in the Early Paleogene. Geological Society of America Special Paper, v. 369, p. 25-47.
Huber, M., H. Brinkhuis, C. E. Stickley, K. Doos, A. Sluijs, J. Warnaar, G. L Williams, and S. A. Schellenberg, 2004: Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleoceanography, PA4026, doi:10.1029/2004PA001014.
Huber, M., and D. Nof, 2006: The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Paleogeogr., Palaeoclim., Palaeocol., 231, 9-28.
Huber, M., 2009: Snakes tell torrid tale. Nature, 457, 669-671.
Huber, M., and R. Caballero, 2011: The Eocene Equable climate problem revisited. Climate of the Past, 7, 603-633, doi:10.5194/cp-7-603-2011.
Huber, M., and A. Goldner, 2012: Eocene monsoons. Journal of Asian Earth Sciences, 44, 3-23.
Hui, C., and X. -T. Zheng, 2018: Uncertainty in Indian Ocean Dipole response to global warming: The role of internal variability. Clim. Dyn., doi:10.1007/s00382-018-4098-2.
Huneeus, N., et al., 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 7781-7816.
Huneeus, N., et al., 2014: Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2. J. Geophys. Res., 119, 5226-5239, doi:10.1002/2013JD021110.
Hunke, E. C., and Bitz, C.M., 2009: Age characteristics in a multidecadal Arctic sea ice simulation. J. Geoph. Res., 114, C08013, doi:10.1029/2008JC005186.
Hurrell, J. W., J. J. Hack, B. A. Boville, D. L. Williamson, and J. T. Kiehl, 1998: The dynamical simulation of the NCAR Community Climate Model Version 3 (CCM3). J. Climate, 11, 1207-1236.
Hurrell, J. W., and K. E. Trenberth, 1999: Global sea surface temperature analyses: Multiple problems and their implications for climate analysis, modeling and reanalysis. Bull. Amer. Meteor. Soc., 80, 2661-2678.
Hurrell, J. W., J. J. Hack, A. S. Phillips, J. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 (11), 2162-2183.
Hurrell, J. W., et al., 2006: Atlantic climate variability and predictability: A CLIVAR perspective. J. Climate, 19, 5100-5121.
Hurrell, J. W., and co-authors, 2013: The Community Earth System Model. Bull. Am. Met. Soc., doi:10.1175/BAMS-D-12-00121.1.
Iacono, M. J., E. J. Mlawer, S. A. Clough, and J. -J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14,873-14,890.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough, 2003: Evaluation of upper tropospheric water vapor in the NCAR Community Climate Model, CCM3 using modeled and observed HIRS radiances. J. Geophys. Res., 108 (D2), 4037, doi:10.10292002JD002539.
Ilicak, M., et al., 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 100, 141-161, doi:10.1016/j.ocemod.2016.02.004.
Iorio, J., P. Duffy, B. Govindasamy, and S. L. Thompson, 2004: Effects of increased resolution on the simulation of daily precipitation statistics in the U.S. Clim. Dyn., 23, 243-258.
Imai, K., et al., 2013: Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). J. Geophys. Res., 118, 5750-5769, doi:10.1002/jgrd.50434.
Irvine, P. J., et al., 2014: Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble. J. Geophys. Res., 119, 7946-7962, doi:10.1002/2013JD020716.
Ishii, M., et al., 2014: Air-sea CO2 flux in the Pacific Ocean for the period 1990-2009. Biogeosciences, 11, 709-734, doi:10.5194/bg-11-709-2014.
Ito, T., S. Minobe, M. C. Long, and C. Deutsch, 2017: Upper ocean O2 trends: 1958-2015. Geophys. Res. Lett., 10.1002/2017GL073613.
Iversen, T., A. Kirkevåg, Ø. Seland, J. Debernard, J. E. Kristjansson, C. Hoose, 2010: Assessing impacts of aerosol processes on equilibrium climate sensitivity. Air pollution modeling and its application XX. Steyn and Rao, Eds., doi:10.1007/978-90-481-3812-8. 592 pp.
Iversen, T., et al., 2013: The Norwegian Earth System Model, NorESM1-M. Part 2: Climate response and scenario projections. Geosci. Model Dev., 6, 389-415.
Jablonowski, C., and D. L. Williamson, 2006: A baroclinic wave test case for dynamical cores of general circulation models: Model intercomparisons. NCAR Technical Note NCAR/TN-469+STR, xii+, 75pp.
Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Met. Soc., 132, 2943-2975.
Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters, and fixers in atmospheric general circulations Models. In: Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering. P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Eds., Springer, 80, 381-493.
Jackman, C. H., et al., 2008: Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys., 8, 765-785.
Jackman, C. H., D. R. Marsh, F. M. Vitt, R. R. Garcia, C. E. Randall, E. L. Fleming, and S. M. Frith, 2009: Long-term middle atmospheric influence of very large solar proton events. J. Geophys. Res., 114, D11304, doi:10.1029/2008JD011415.
Jackman, C. H., et al., 2011: Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys., 11, 6153-6166.
Jackman, C. H., D. R. Marsh, D. E. Kinnison, C. J. Mertens, and E. L. Fleming, 2016: Atmospheric changes caused by galactic cosmic rays over the period 1960-2010. Atmos. Chem. Phys., 16, 5853-5866.
Jackson, C. S., M. K. Sen, G. Huerta, Y. Deng, and K. P. Bowman, 2008: Error Reduction and Convergence in Climate Prediction. J. Climate, 21 (24), 6698-6709.
Jackson, C. S., 2009: Use of bayesian inference and data to improve simulations of multi-physics climate phenomena. Journal of Physics, 180, doi:10.1088/1742-6596/180/1/012029.
Jackson, T. L., J. J. Feddema, K. W. Oleson, G. B. Bonan, and J. T. Bauer, 2010: Parameterization of urban characteristics for global climate modeling. A. Assoc. Am. Geog., 100 (4), 848-865, doi:10.1080/00045608.2010.497328.
Jacob, R., J. Larson, and E. Ong, 2005: MxN communication and parallel interpolation in CCSM3 using the model coupling toolkit. International Journal of High Performance Computing Applications, 19 (3), 293-307.
Jacox, M. G., M. A. Alexander, N. J. Mantua, J. D. Scott, G. Hervieux, R. S. Webb, and F. E. Werner, 2017: Forcing of multiyear extreme ocean temperatures that impacted California Current living marine resources in 2016. In "Explaining extreme events of 2016 from a climate perspective", Bulletin of the American Meteorological Society, 98, S27-S33, doi: 10.1175/BAMS-D-17-0119.1.
Jahn, A., 2010: Modeling the variability of the liquid freshwater export from the Arctic Ocean. Ph.D. thesis, McGill University, Montréal, Canada.
Jahn, A., L. B. Tremblay, R. Newton, M. M. Holland, L. A. Mysak, and I. A. Dmitrenko, 2010: A tracer study of the Arctic Ocean's liquid freshwater export variability. J. Geophys. Res., 115, C07015, doi:10.1029/2009JC005873.
Jahn, A., et al., 2012: Arctic Ocean freshwater - How robust are model simulations? J. Geophys. Res. - Ocean, 117, C00D16, doi:10.1029/2012JC007907.
Jahn, A., et al., 2012: Late 20th century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 1431-1452, doi:10.1175/JCLI-D-11-00201.1.
Jahn, A., and M. M. Holland, 2013: Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. GRL, 40 (6), 1206-1211, doi:10.1002/grl.50183.
Jahn, A., K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady, 2015: Carbon isotopes in the ocean model of the Community Earth System Model (CESM1). Geoscientific Model Development, 8, 2419-2434, doi:10.5194/gmd-8-2419-2015.
Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, doi:10.1002/2016GL070067.
Jahn, A., 2018: Reduced probability of ice-free summers for 1.5◦C compared to 2.0◦C warming. Nature Climate Change, 8, 409–413, doi:10.1038/s41558-018-0127-8.
James, A. D., D. R. Moon, W. Feng, P. S. J. Lakey, V. L. Frankland, D. E. Heard, and J. M. C. Plane, 2016: The uptake of HO2 on meteoric smoke analogues. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025882.
Janakiraman, S., R. S. Nanjundiah, and P. N. Vinayachandran, 2005: Simulations of the Indian summer monsoon with a coupled ocean-atmosphere model on PARAM Padma. Current Science, 89 (9), 1555-1562.
Janssen, E., D. J. Wuebbles, K. E. Kunkel, S. C. Olsen and A. Goodman, 2014: Trends and projections of extreme precipitation over the Contiguous United States. Earth’s Future, 2, 99-113, doi:10.1002/2013EF000185.
Jardine, K., A Jardine, J. A. Holm, D. Lombardozzi, R. Negron-Juarez, S. T. Martin, H. R. Beller, B. O. Gimenez, N. Higuchi, J. Q. Chambers. 2017: Monoterpene 'thermometer' of tropical forest-atmosphere response to climate warming. Plant Cell & Environment, 40(3), 441-452.
Jenkins, G. S., and J. C. Mikovitz, 2003: Examining climate variability over West Africa during the 1979-1993 period: Observations and CCM3 comparisons. Clim. Dyn., 20, 503-522, doi:10.1007s00382-002-0287-z.
Jensen, E. J., L. Pfister, R. Ueyama, J. W. Bergman, and D. E. Kinnison, 2015: Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause. J. of Geophys. Res., 120, 2067-2086, doi:10.1002/2014JD022661.
Jeong, G. -R. and C. Wang, 2010: Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA). Atmos. Chem. Phys., 10, 8373-8389, doi:10.5194/acp-10-8373-2010.
Jeong, S. J., C. H. Ho, T. W. Park, J. Kim, and S. Levis, 2011: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 x CO2 climate. Clim. Dyn., 37, 831-833, doi:10.1007/s00382-010-0827-x.
Jeon, S., C. J. J. Paciorek, and M. F. Wehner, 2016: Quantile-based bias correction and uncertainty quantification of extreme event attribution statements. Weather and Climate Extremes, 12, 24-32, doi:10.1016/j.wace.2016.02.001.
Jha, B., Z. -Z. Hu, and A. Kumar, 2014: SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Clim. Dyn., 42, 2113-2124, doi:10.1007/s00382-013-1803-z.
Jiang, D., Z. Tian, and X. Lang, 2016: Reliability of climate models for China through the IPCC third to fifth assessment reports. Int. J. Climatol., 36, 1114-1133, doi:10.1002/joc.4406.
Jiang, X., E. D. Maloney, J. -L. F. Li, and D. E. Waliser, 2013: Simulations of the eastern North Pacific intraseasonal variability in CMIP5 GCMs. J. Climate, 26, 3489-3510.
Jiang, Y., X. Liu, X. –Q. Yang, and M. Wang, 2013: Effects of anthropogenic aerosols on East Asian summer clouds and precipitation with Community Atmospheric Model version 5. Atmospheric Environment, 70, 51-63, doi:10.1016/j.atmosenv.2012.12.039.
Jiang, Y., X. -O. Yang, and X. Liu, 2015: Seasonality in anthropogenic aerosol effects on East Asian climate simulated with NCAR CAM5. J. Geophys. Res., 120, 10,837-10,861, doi:10.1002/2015JD023451.
Jiao, C., et al., 2014: An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmos. Chem. Phys., 14, 2399–2417, doi:10.5194/acp-14-2399-2014.
Jin, L., F. Chen, C. Morrill, B. Otto-Bliesner, and N. Rosenbloom, 2012: Causes of early Holocene desertification in arid central Asia. Clim. Dyn., 38, 1577-1591.
Jin, M. L., R. E. Dickinson, and A. M. Vogelmann, 1997: A comparison of CCM2-BATS skin temperature and surface-air temperature with satellite and surface observations. J. Climate, 10, 1505-1524.
Jin, M., J. M. Shepherd, and C. Peters-Lidard, 2007: Development of a parameterization for simulating the urban temperature hazard using satellite observations in climate model.Natural Hazards, doi:10.1007/s11069-007-9117-2.
Jin, M., 2009: Greenland surface height and its impacts on skin temperature: A study using ICEsat observations. Advances in Meteorology, 189406, doi:10.1155/2009/189406.
Jin, M., and R. E. Dickinson, 2010: Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letter, 5 (4), 044004-044017, doi:10.1088/1748-9326/5/4/044004.
Jin, X., R. G. Najjar, F. Louanchi, and S. C. Doney, 2007: A modeling study of the seasonal oxygen budget of the global ocean. J. Geophys. Res. Oceans, 112, C05017, doi:10.1029/2006JC003731.
Jin, X., N. Gruber, H. Frenzel, S. C. Doney, and J. C. McWilliams, 2008: The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences, 5, 385-406.
Jin, Y., and C. Stan, 2016: Simulation of East Asian Summer Monsoon (EASM) in SP-CCSM4. Part 1: Seasonal mean state and intraseasonal variability. J. Geophys. Res., doi:10.1002/2015JD024035.
Jochum, M., C. Deser, and A. Phillips, 2007: Tropical atmospheric variability forced by oceanic internal variability. J. Climate, 20, 765-771.
Jochum, M., and Potemra, 2008: Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Climate, 21, 6445-6454.
Jochum, M., G. Danabasoglu, M. M. Holland, Y.-O. Kwon, and W. G. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, doi:10.1029/2007JC004515.
Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations.
J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.
Jochum, M., B. Fox-Kemper, P. H. Molnar, and C. Shields, 2009: Differences in the Indonesian Seaway in a coupled climate model and their relevance for Pliocene climate and El Nino. Paleoceanography, 24, PA1212, doi:10.1029/2008PA001678.
Jochum, M., S. Peacock, J. Moore, and K. Lindsay, 2010: Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model. Paleoceanography, 25, PA3201 doi:10.1029/2009PA001856.
Jochum, M., S. G. Yeager, K. Lindsay, K. Moore, and R. Murtugudde, 2010: Quantification of the feedback between phytoplankton and ENSO in the Community Climate System Model. J. Climate, 23, 2916-2925.
Jochum, M. A. Jahn, S. Peacock, D. Bailey, J. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 2226-2239, doi:10.1175/JCLI-D-11-00044.1.
Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 2833-2844, doi:10.1175/JCLI-D-12-00181.1.
Johnson, Z. F., Y. Chikamoto, J. -J. Luo, and T. Mochizuki, 2018: Ocean impacts on Australian Interannual to Decadal Precipitation variability. Climate, 6(3), 61; doi:10.3390/cli6030061.
Jomelli, V., et al., 2014: A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature, 513, 224-228.
Jones, A. D., et al., 2013: Greenhouse gas policies influence climate via direct effects of land use change. J. Climate, 26(11), 3657-3670.
Jones, A., et al., 2013: The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res., 118(17), 9743-9752, doi:10.1002/jgrd.50762.
Jones, C., et al., 2013: Twenty-First-Century compatable CO2 emissions and airborne fraction simulated by CMIP5 Earth System Models under four representative concentration pathways. J. Climate, 26, 4398-4413, doi:10.1175/JCLI-D-12-00554.1.
Jones, P. W., P. H. Worley, Y. Yoshida, J. B. White III, and J. Levesque, 2005: Practical performance portability in the Parallel Ocean Program (POP). Concurrency: Practice and Experience, 17(10), pp. 1317-1327.
Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu, 2012: Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: Adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J. Climate, 25, 5260-5272, doi:10.1175/JCLI-D-11-00524.1.
Jonko, A. K., K. M. Shell, B. M. Sanderson, and G. Danabasoglu, 2013: Climate feedbacks in CCSM3 under changing CO2 forcing. Part II: Variation of climate feedbacks and sensitivity with forcing. J. Climate, 26, 2784-2795, doi: 10.1175/JCLI-D-12-00479.1.
Jonsson, B. F., S. C. Doney, J. Dunne, and M. Bender, 2013: Evaluation of the Southern Ocean 02/Ar-based NCP estimates in a model framework. J. Geophys. Res. Biogeosci., 118, 385-399, doi:10.1002/jgrg.20032.
Jonsson, B. F., S. C. Doney, J. Dunne, and M. L. Bender, 2015: Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal time-scales using satellite chlorophyll and O2/Ar observations. Biogeosciences, 12, 681-695, doi:10.5194/bg-12-681-2015.
Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and P. J.Valdes, 2004: Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles, 18, GB2002, doi:10.1029/2003GB002156.
Joos, F., T. L. Frölicher, M. Steinacher, and G.-K. Plattner, 2011: Impact of climate change mitigation on ocean acidification projections. In Ocean Acidification, J.-P. Gattuso and L. Hansson, Eds., 272-290.
Joos, F., et al., 2013: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13/5, 2793-2825.
Joos, F., 2015: Global warming: Growing feedback from ocean carbon to climate. Nature, 522, 295-296.
Jung, M., et al., 2010: A recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954, doi:10.1038/nature09396.
Jung, G., M. Prange, and M. Schulz, 2014: Uplift of Africa as a potential cause for Neogene intensification of the Benguela upwelling system. Nature Geoscience, 7, 741-747, doi:10.1038/ngeo2249.
Jung, G., Prange, M., and M. Schulz, 2016: Influence of topography on tropical African vegetation coverage. Clim. Dyn., doi:10.1007/s00382-015-2716-9.
Kageyama, M., et al., 2006: Last Glacial Maximum temperatures over the North Atlantic, Europe, and western Siberia: A comparison between PMIP models, MARGO sea-surface temperatures and pollen-base reconstructions. Quarternary Science Reviews, 25, 2082-2102.
Kageyama, M., et al., 2013: Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: A multi-model study. Climate of the Past, 9, 935-953, doi:10.5194/cp-9-935-2013.
Kai, K. K., 2010: Master thesis, Influence of sulfate emissions from ship traffic on clouds and climate.
Kalidindi, S., G. Bala, A. Modak, and K. Caldeira, 2014: Modeling of solar radiation management: A comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim. Dyn., doi:10.1007/s00382-014-2240-3.
Kamoru, A. L., A. A. Abatan, O. Angelil, E. Olaniyan, V. H. Olusoji, P. G. Oguntunde, B. Lamptey, B. J. Abiodun, H. Shiogama, M. F. Wehner, and D. A. Stone, 2016: The late onset of the 2015 wet season in Nigeria. Bull. Amer. Meteor. Soc., 97 (12), S63-S69, doi:10.1175/BAMS-D-16-0131.2.
Kang, I.- S., et al., 2002: Intercomparison of atmospheric GCM simulated anomalies associated with the 1997-98 El Niño. J. Climate, 15, 2791-2805.
Kang, I. -S., et al., 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn., 19, 383-395.
Kang, S., L. M. Polvani, J. C. Fyfe, and M. Sigmond: 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951-954.
Kang, S. M., C. Deser, and L. M. Polvani, 2013: Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Climate, 26, 7541-7554.
Kang, S. M., L. M. Polvani, J. C. Fyfe, S. -W. Son, M. Sigmond, and G. J. P. Correa, 2013: Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer. Geophys. Res. Lett., 40, 4054-4059.
Karamperidou, C., P. N. DiNezio, A. Timmermann, F.-F. Jin, and K. M. Cobb, 2015: The response of ENSO flavors to mid-Holocene climate: Implications for proxy interpretation. Paleoceanography, 30, 527-547, doi:10.1002/2014PA002742.
Karnauskas, K. B., and C. C. Ummenhofer, 2014: On the dynamics of the Hadley circulation and subtropical drying. Clim. Dyn., 42, 2259-2269.
Karoly, D. J., K. Braganza, P. A. Stott, J. Arblaster, G. Meehl, A. Broccoli, and K. W. Dixon, 2003: Detection of a human influence on North American climate. Science, 302, 1200-1203.
Karsisto, P., C. Fortelius, M. Demuzere, C. S. B. Grimmond, K. W. Oleson, R. Kouznetsov, V. Masson, and L. Jarvi, 2015: Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Quart. J. R. Meteor. Soc. A., 142, 401-417, doi:10.1002/qj.2659.
Karspeck, A. R., S. Yeager, G. Danabasoglu, T. Hoar, N. Collins, K. Raeder, J. Anderson, and J. Tribbia, 2013: An ensemble adjustment Kalman filter for the CCSM4 ocean component. J. Climate, 26, 7392-7413, doi:10.1175/JCLI-D-12-00402.1.
Karspeck, A., S. Yeager, G. Danabasoglu, and H. Teng, 2015: An evaluation of experimental decadal predictions using CCSM4. Clim. Dyn., 44, 907-923, doi:10.1007/s00382-014-2212-7.
Karspeck, A., D. Stammer, A. Kohl, G. Danabasoglu, M. Balmaseda, D. M. Smith, Y. Fujii, S. Zhang, B. Giese, H. Tsijino, and A. Rosatti, 2017: Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim. Dyn., 49, 957-982, doi:10.1007/s00382-015-2787-7.
Kato, H., K. Nishizawa, H. Hirakuchi, S. Kadokura, N. Oshima, and F. Giorgi, 2001: Performance of RegCM2.5/NCAR-CSM nested system for the simulation of climate change in East Asia caused by global warming. J. Meteor. Soc., Japan, 79, 99-121.
Kaufman, D. S., et al., 2009: Recent warming reverses long-term Arctic cooling. Science, 325, 1236-1239, doi:10.1126/science.1173983.
Kavanaugh, M. T., M. J. Church, C. O. Davis, D. M. Karl, R. M. Letelier, and S. C. Doney, 2018: ALOHA from the edge: Reconciling three decades of in situ Eulerian observations and geographic variability in the
North Pacific Subtropical Gyre. Frontiers Mar. Sci., 5:130, doi:10.3389/fmars.2018.00130.
Kawazoe, S., and W. J. Gutowski, 2013: Regional, extreme daily precipitation in CMIP5 simulations. Journal of hydrometeorology, 14, 1228-1242.
Kay, J. E., and A Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., doi:10.1029/2009JD011773.
Kay, J. E., Holland, M. M., and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., doi:10.1029/2011GL048008.
Kay, J. E., K. Raeder, A. Gettelman, and J. Anderson, 2011: The boundary layer response to recent Arctic sea ice loss and implications for high-latitude climate feedbacks. J. Climate, doi:10.1175/2010JCLI3651.1.
Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wigglesworth, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 5433-5450.
Kay, J. E., et al., 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 5190-5207.
Kay, J. E., B. Medeiros, Y.-T. Hwang, A. Gettelman, J. Perket, and M. G. Flanner, 2014: Processes controling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616-622, doi:10.1002/2013GL058315.
Kay, J. E., et al., 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-13-00255.1.
Kay, J. E., L. Bourdages, H. Chepfer, N. Miller, A. Morrison, V. Yettella, and B. Eaton, 2016: Evaluation and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. J. Geophys. Res. – Atmospheres, 121, 4162-4176, doi:10.1002/2015JD024699.
Kay, J. E., T. L’Ecuyer, H. Chepfer, N. Loeb, A. Morrison, and C. Cesana, 2016: Recent advances in Arctic cloud and climate research. Current Climate Change Reports, 2, 159, doi:10.1007/s40641-016-0051-9.
Kay, J. E., C. Wall, V. Yetella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model. J. Climate, 29, 4617-4636, doi:10.1175/JCLI-D-15-0358.1.
Kay, J. E., T. L'Ecuyer, A. Pendergrass, H. Chepfer, R. Guzman, and V. Yetella, 2018: Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. J. Geophys. Res. - Atmospheres, 123:8, 4294-4309, doi:10.1002/2017JD028213.
Ke, Y., L. R. Leung, M. Huang, A. M. Coleman, H. Li, and M. S. Wigmosta, 2012: Development of high resolution land surface parameters for the Community Land Model. Geosci. Model Dev., 5, 13411362, doi:10.5194/gmd-5-1341-2012.
Keller, K. M., et al., 2012: Variability of the ocean carbon cycle in response to the North Atlantic Oscillation. Tellus B, 64/18738, 1-25.
Keller, K. M., F. Joos, and C. C. Raible, 2014: Time of emergence of trends in ocean biogeochemistry. Biogeosciences, 11, 3647-3659, 10.5194/bg-11-3647-2014.
Keller, K. 2015: Variability of the ocean carbon cycle in comprehensive Earth system models, PhD thesis.
Keller, K. M. F. Joos, F. Lehner, and C. C. Raible, 2015: Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle. Geophys. Res. Lett., 42/2, 518-525.
Keller, K. M., et al., 2017: 20th century changes in carbon isotopes and water-use efficiency: Tre-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences, 14, 2641-2673, doi:10.5194/bg-14-2641-2017.
Kelly, C., M. Chipperfield, J. Plane, W. Feng, P. Sheese, K. A. Walker, and C. Boone, 2018: An explanation for the nitrous oxide layer observed in the mesopause region. Geophys. Res. Lett., doi:10.1029/2018GL078895.
Kelly, P., and B. Mapes, 2013: Asian monsoon forcing of subtropical easterlies in the community Atmosphere Model: Summer climate implications for the western Atlantic. J. Climate, 26, 2741-2755, doi:10.1175.JCLI-D-12-00339.1.
Kendall, W., M. Glatter, J. Huang, F. Hoffman, and D. E. Bernholdt, 2008: Web enabled collaborative climate visualization in the earth system grid. In Proceedings of the International Symposium on Collaborative Technologies and Systems 2008 (CTS 2008), doi:10.1109/CTS.2008.4543934.
Kent, J., C. Jablonowski, J. P. Whitehead, and R. B. Rood, 2012: Assessing tracer transport algorithms and the impact of vertical resolution in a finite-volume dynamical core. Monthly Weather Review, 140, 1620-1638. doi:10.1175/MWR-D-11-00150.1.
Kent, J., C. Jablonowski, J. P. Whitehead, and R. B. Rood, 2012: Downscale cascades in tracer transport test cases: An intercomparison of the dynamical cores in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5, 1517-1530.
Kent, J., P. A. Ullrich, and J. Jablonowski, 2014: Dynamical core model Intercomparison Project: Tracer transport test cases. Quart. J. Roy. Meteorol. Soc., 140, 1279-1293.
Keppel-Aleks, G., et al., 2013: Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty-first centuries. J. Climate, 26, 4447-4475.
Keppel-Aleks, G., A. S. Wolf, M. Mu, S. C. Doney, D. C. Morton, P. S. Kasibhatla, J. B. Miller, E. J. Dlugokencky, and J. T. Randerson, 2014: Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2. Global Biogeochem. Cycles, 28, 1295-1310, doi:10.1002/2014GB00890.
Keppel-Aleks, G., and R. A. Washenfelder, 2016: The effects of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995-2013. Geophys. Res. Lett., 43, 9984-9993, doi:10.1002/2016GL070052.
Kerbyson, D. J., and P. W. Jones, 2005: A performance model of the Parallel Ocean Program. International Journal of High Performance Computing Applications, 19 (3), 261-276.
Kerr, R., I. Wainer, and M. M. Mata, 2009: Representation of the Weddell Sea deep water masses in the ocean component of the NCAR-CCSM model. Antarctic Science, 21 (3), 301-312, doi:10.1017/S0954102009001825.
Kessler, A. and Tjiputra, J., 2016: The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks. Earth Syst. Dynam., 7, 295-312, doi:10.5194/esd-7-295-2016.
Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 3617-3620.
Khairoutdinov, M., D. A. Randall, and C. A. DeMott, 2005: Simulation of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62, 2136-2154.
Khairoutdinov, M., C. A. DeMott, and D. A. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21, 413-431.
Khatiwala, S., et al., 2013: Global ocean storage of anthropogenic carbon. Biogeosciences, 10, 2169-2191, doi:10.5194/bg-10-2169-2013.
Khodayari, A., S. C. Olsen, and D. J. Wuebbles, 2014: Estimates of aviation NOx induced radiative forcings for 2005 and 2050. Atmos. Environ., 91, 95-103.
Khosrawi, F., et al., 2013: Assessment of the interannual variability and impact of the QBO and upwelling on tracer-tracer distributions of N2O and O3 in the tropical lower stratosphere. Atmos. Chem. Phys., 13, 3619-3641, doi:10.5194/acp-13-3619-2013.
Khouider, B., and M. W. Moncrieff, 2015: Organized convection parameterization for the ITCZ. J. Atmos. Sci., 72, 3073-3096, doi:10.1175/JAS-D-15-0006.1.
Kiehl, J. T., 1998: Simulation of the tropical Pacific warm pool with the NCAR Climate System Model. J. Climate, 11, 1342-1355.
Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 1131-1149.
Kiehl, J. T., J. J. Hack, and J. W. Hurrell, 1998: The energy budget of the NCAR Community Climate Model: CCM3. J. Climate, 11, 1151-1178.
Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version Two. J. Climate, 17, 3666-3682.
Kiehl, J. T., and C. Shields, 2005: Climate simulation of the latest Permian: Implications for mass extinction. Geology, 33 (9), 757-760.
Kiehl, J. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model Version 3 (CCSM3). J. Climate, 19 (11), 2584-2596.
Kiehl, J. T, and C. A. Shields, 2013: Sensitivity of the paleocene-eocene thermal maximum climate to cloud properties. Phil. Trans. R. Soc. A, 371:20130093, doi:10.1098/rsta.2013.0093.
Kim, D., C. Wang, A. M. L. Ekman, M. C. Barth, and P. Rasch, 2008: Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol-climate model. J. Geophys Res., 113, D16309, doi:10.1029/2007JD009756.
Kim, D., et al., 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413-6436, doi:10.1175/2009JCLI3063.1.
Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I. -S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias. J. Climate, 24, 5506-5520.
Kim, D., C. Wang, A. M. L. Ekman, M. C. Barth, and D.-I. Lee, 2014: The responses of cloudiness to the direct radiative effect of sulfate and carbonaceous aerosols. J. Geophys. Res., 119, 1172-1185, doi:10.1002/2013JD020529.
Kim, S.-J., J. T. Crowley, D. Erickson, G. Bala, P. B. Duffy, and B. Y. Lee, 2008: High-resolution simulation of the last glacial maximum. Clim. Dyn., 31, 1-16.
Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2016: Atmospheric conditions associated with Labrador Sea deep convection: New insights from a case study of the 2007/08 winters. J. Climate, 29, 5281-5297, doi:10.1175/JCLI-D-15-0527.1.
Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the CESM large ensemble. J. Climate, 31, 787-813, doi:10.1175/JCLI-D-17-0193.1.
Kim, Y. J., 2006: Soil moisture-vegetation-precipitation feedback at the seasonal time scale over North America. Ph.D. dissertation, 152 pages. University of Connecticut, Storrs, Connecticut.
Kim, Y. J., and G. L. Wang, 2007: Impact of initial soil moisture anomalies on subsequent precipitation over North America. Journal of Hydrometeorology, 8, 513-533.
Kim, Y. J., and G. L. Wang, 2007: Impact of vegetation feedback on the response of precipitation to antecedent soil moisture anomalies over North America. Journal of Hydrometeorology, 8, 534-550.
Kinnison, D. E., et al., 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879.
Kirk-Davidoff, D. B., and D.W. Keith, 2008: On the climate impact of surface roughness anomalies. J. Atmos. Sci, 65, 2215-2234.
Kirk-Davidoff, D. B., and J. -F. Lamarque, 2008: Maintenance of polar stratospheric clouds in a moist stratosphere. Climate of the Past, 4, 69-78.
Kirkevåg, A., T. Iversen, Ø. Seland, J. B. Debernard, T. Storelvmo, and J. E. Kristjánsson, 2008: Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus, 60A, 492-512.
Kirkevåg, A., et al., 2013: Aerosol-climate interactions in the Norwegian Earth System Model - NorESM1-M. Geosci. Model Dev., 6, 207-244, doi:10.5194/gmd-60207-2013.
Kirtman, B. P., D. M. Straus, D. Min, E. K. Schneider, and L. Siqueira, 2009: Toward linking weather and climate in the interactive ensemble NCAR climate model. Geophys. Res. Lett., 36, L13705, doi:10.1029/2009GL038389.
Kirtman, B. P., et al., 2012: Impact of ocean model resolution on CCSM climate simulations. Clim. Dyn., 39, 1303-1328, doi:10.1007/s00382-012-1500-3.
Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50258.
Kjellström, E., J. Brandefelt , J. -O. Näslund, B. Smith, G. Strandberg, A. H. L. Voelker, and B. Wohlfarth, 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 10.1111/j.1502-3885.2010.00143.x.
Klein, S. A., et al., 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud. Quart. J. Roy. Met. Soc., 135, 979-1002, doi:10.1002/qj.416.
Klein, S. A., Y. Zhang, M. D. Zelinka, R. N. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res., doi:10.1002/jgrd.50141.
Kleinen, T., S. Hildebrandt, M. Prange, R. Rachmayani, S. Müller, E. Bezrukova, V. Brovkin, and P. E. Tarasov, 2014: The climate and vegetation of Marine Isotope Stage 11 - Model results and proxy-based reconstructions at global and regional scale. Quaternary International, doi:10.1016/j.quaint.2013.12.028.
Kleppin, H., M. Jochum, B. Otto-Bliesner, C. A. Shields, and S. Yeager, 2015: Stochastic atmospheric forcing as a cause of Greenland climate transitions. J. Climate, 28, 7741-7763.
Kleypas, J. A., G. Danabasoglu, and J. M. Lough, 2008: Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophys. Res. Lett., 35, L03613, doi:10.1029/2007GL032257.
Kloster, S., N. M. Mahowald, J. T. Randerson, P. E. Thornton, F. M. Hoffman, S. Levis, P. J. Lawrence, J. J. Feddema, K. W. Oleson, and D. M. Lawrence, 2010: Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences, 7, 1877-1902, doi:10.5194/bg-7-1877-2010.
Kloster, S., N. M. Mahowald, J. T. Randerson, and P. J. Lawrence, 2012: The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences, 9, 509-525, doi:10.5194/bg-9-509.
Ko, M. K. W., P. A. Newman, S. Reimann, and S. E.Strahan, 2013: Lifetimes of stratospheric ozone-depleting substances, their replacements, and related species, 2013: SPARC Report No.6, WCRP-15/2013.
Koch, D., et al., 2010: Soot microphysical effects on liquid clouds, a multi-model investigation. Atmos. Chem. Phys. Discuss., 10, 23,927-23,957.
Kohler, J., N. Serra, F. O. Bryan, B. K. Johnson and D. Stammer, 2017: Mechanisms of mixed-layer salinity seasonal variability in the Indian Ocean. J. Geopys. Res., 123, 466-496.
Kok, J. F., et al., 2014: An improved dust emission model. Part I: Model description and comparison against measurements. Atmospheric Physics and Chemistry, 14, 13,023-13,041.
Kok, J. F., S. Albani, N. Mahowald, and D. Ward, 2014: An improved dust emission model. Part II: Evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmospheric Physics and Chemistry, 14, 13,043-13,061.
Kooperman, G. J., M. S. Pritchard, S. J. Ghan, M. Wang, R. C. J. Somerville, and L. M. Russell, 2012: Constraining the influence of natural variability to improve estimates of global aerosol indirect evvects in a nudged version of the community Atmosphere Model 5. J. Geophys. Res. Atmo., 117, D23204, doi:10.1029/2013JD018588.
Kooperman, G. J., M. D. Pritchard, and R. C. J. Somerville, 2013: Robustness and sensitivities of central U.S. summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett., 40, doi:10.1002/grl.50597.
Kooperman, G. J., M. S. Pritchard, and R. C. J. Somerville, 2014: The response of US summer rainfall to quadrupled CO2 climate change in conventional and super-parameterized versions of the NCAR Community Atmosphere Model. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000306.
Kooperman, G. J., Y. Chen, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018: Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change, 8(5), 434–440, doi: 10.1038/s41558-018-0144-7.
Kopparla, P., E. M. Fischer, C. Hannay, and R. Knutti, 2013: Improved simulation of extreme precipitation in a high resolution atmosphere model. Geophys. Res. Lett., 40, doi:10.1002/2013GL057866.
Korty, R., K. Emanuel, M. Huber, and R. Zamora, 2017: Tropical cyclones downscaled from simulations with very high carbon dioxide levels. J. Climate, doi:10.1175/JCLI-D-16-0256.1.
Koster, R., et al., 2010: Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.
Kothavala, Z., R. J. Oglesby, and B. Saltzman, 1999: Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2. Geophys. Res. Lett., 26, 209-212.
Kovacs, T., J. M. C. Plane, W. Feng, T. Nagy, M. P. Chipperfield, P. T. Verronen, M. E. Andersson, D. A. Newnham, M. A. Clilverd, and D. R. Marsh, 2016: D-region ion-neutral coupled chemistry (Sodankyla Ion Chemistry) within the WACCM4, WACCM-SIC, and WACCM-rSIC. Geosci. Model Dev., 9, 3123-3136, doi:10.5194/gmd-9-3123-2016.
Kovacs, T., W. Feng, A. Totterdill, J. M. C. Plane, S. Dhomse, J. C. Gomez-Martin, G. P. Stiller, F. J. Haenel, c. Smith, P. M. Forster, R. R. Garcia, D. R. Marsh, and M. P. Chipperfield, 2017: Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model. Atmos. Chem. Phys., 17, 883-898, doi:10.5194/acp-17-883-2017.
Koven, C., 2013: Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6, 452-456, doi:10.1038/ngeo1801.
Koven, C. D., W. J. Riley, and A. T. Stern, 2013a: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Climate, 26, 1877-1900, 10.1175/JCLI-D-12-00228.1.
Koven, C. D., W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. C. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson, 2013b: The effect of vertically-resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences Discussions, 10, 7201-7256, doi:10.5194/bgd-10-7201-2013.
Koven, C. D., J. Chambers, R. Knox, R. Negron-Juarez, W. J. Riley, V. Arora, V. Brovkin, P. Friedlingstein, and C. Jones, 2015: Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 earth system models. Biogeosciences, 12, 5211-5228, doi:10.5194/bg-12-5211-2015.
Koven, C. D., D. M. Lawrence, and W. J. Riley, 2015: Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences, 112, 3752-3757, doi:10.1073/pnas.1415123112.
Koven, C. D., et al., 2015: A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. Roy. Soc. A, doi:10.1098/rsta.2014.0423.
Koven, C.D., G. Hugelius, D. M. Lawrence, and W. R. Wieder, 2017: Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Clim. Change, 7, doi:10.1038/nclimate3421.
Kravitz, B., et al., 2013: Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res., 118, doi:10.1002/jgrd.50646.
Kravitz, B., et al., 2013: An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res., 118, 13087-13102, doi:10.1002/2013JD020502.
Kravitz, B., et al., 2014: A multi-model assessment of regional climate disparities caused by solar geoengineering. Environmental Research Letters, 9, 074013, doi:10.1088/1748-9326/7/7/074013.
Kravitz, B., D. G. MacMartin, H. Wang, and P. J. Rasch, 2016: Geoengineering as a design problem. Earth Syst. Dynam., 7, 469-497, doi:10.5194/esd-7-469-2016.
Kravitz. B., D. G. MacMartin, M. J. Mills, J. H. Richter, S. Tilmes, J. -F. Lamarque, J. J. Tribbia, and F. Vitt, 2017: First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. JGR-Atmospheres, doi.org/10.1002/2017JD026874.
Kremser, S., et al., 2016: Stratospheric aerosol – Observations, processes, and impact on climate. Rev. Geophys., 54, doi:10.1002/2015RG000511.
Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2014: Examining the stratospheric response to the solar cycle in a coupled WACCM simulation with an internally generated QBO. Atmos. Chem. Phys., 14, 4843-4856, doi:10.5194/acp-14-4843-2014.
Kren, A. C., D. R. Marsh, A. K. Smith, and P. Pilewskie, 2016: Wintertime northern hemisphere response to the Pacific Decadal Oscillation in the Whole Atmosphere Community Climate Model. J. Climate, 19, 1031-1049, doi:10.1175/JCLI-D-15-0176.1.
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M., 2018: Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale. Biogeosciences, 15, 4405-4429, doi.org/10.5194/bg-15-4405-2018.
Krishnamurthy, A., J. K. Moore, N. Mahowald, C. Luo, S. C. Doney, K. Lindsay, and C. S. Zender, 2009: Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochem. Cycles, 23, GB3016, doi:10.1029/2008GB003440.
Krishnamurthy, J. K. Moore, N. Mahowald, C. Luo, and C. Zender, 2010: The impacts of atmospheric nutrient inputs on marine biogeochemistry. JGR-Biogeosciences, 115, G01006, doi:10.1029/2009JG001115.
Krishnamurthy, L., and V. Krishnamurthy, 2013: Influence of PDO on South Asian summer monsoon and monsoon-ENSO relation. Clim. Dynamics, doi:10.1007/s00382-013-1856-z.
Krishnamurthy, L, and V. Krishnamurthy, 2015: Teleconnections of Indian monsoon rainfall with AMO and Atlantic Tripole. Clim. Dyn.,, doi:10.1007/s00382-015-2701-3.
Krishnamurthy, L., and V. Krishnamurthy, 2015: Decadal and interannual variability of the Indian Ocean SST. Clim. Dyn., doi:10.1007/s00382-015-2568.3/
Krishnamurthy, L., and V. Krishnamurthy, 2016: Indian monsoon's relation with the decadal part of PDO in observations and NCAR CCSM4. International Journal of Climatology,
doi:10.1002/joc.4815.
Krishnamurthy, V., and C. Stan, 2015: Simulation of the South American climate by a coupled model with super-parameterized convection. Clim. Dyn., 44, 2369-2382.
Krishnamurthy, V., C. Stan, D. A. Randall, R. P. Shukla, and J. L. Kinter III, 2014: Simulation of the South Asian monsoon in a Coupled model with an embedded cloud resolving model. J. Climate, 27, 1121-1142.
Kristiansen, N. I., et al., 2016: Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys., 16, 3525-3561, doi:10.5194/acp-16-3525-2016.
Krumhardt, K. M., N. S. Lovenduski, M. C. Long, and K. Lindsay, 2017: Avoidable impacts of ocean warming or marine primary production: Insights from CESM ensembles. Global Biogeochemical Cycles, 31, 114-133, doi:10.1002/2016GB005528.
Kumar, A., Z.-Z. Hu, B. Jha, and P. Peng, 2017: Estimating ENSO predictability: Based on multi-model hindcasts. Clim. Dyn., 48(1-2), 39-51, doi:10.1007/s00382-016-3060-4.
Kumar, R., Mishra, V., Buzan, J., Kumar, R., Shindell, D. and M. Huber, 2017: Dominant control of agriculture and irrigation on urban heat island in India. Scientific Reports, 7(1), p.14054. doi:10.1038/s41598-017-14213-2.
Kumar, S., J. Kinter III, P. A. Dirmeyer, Z. Pan, and J. M. Adams, 2013: Multi-decadal climate variability and the "warming hole" in North America - results from CMIP5 20th and 21st century climate simulations. J. Climate, 26, 3511-3527, doi:10.1175/JCLI-D-12-00535.1.
Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Adams, and D. Niyogi, 2013: Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res., 118, 6337-6353, doi:10.1002/jgrd.50463.
Kumar, S., D. M. Lawrence, P. A. Dirmeyer, and J. Sheffield, 203: Less reliable water availability in the 21st century climate projections. Earth's Future, 1, doi:10.1002/2013EF000159.
Kurylo, M. J., et al., 2009: The role of halogen chemistry in polar stratospheric ozone depletion. Report from the June 2008 Cambridge UK Workshop for an Initiative under the Stratospheric Processes and Their Role in Climate (SPARC) Project of the World Climate Research Programme.
Kutzbach, J. E., J. Williams, and S. Vavrus, 2005: Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys. Res. Lett., 32, 10.1029/2005GL023506.
Kutzbach, J. E., W. L. Ruddiman, S. Vavrus, and G. Philippon, 2010: Climate model test of anthropogenic influence on greenhouse-induced climate change (early agriculture to modern): The role of ocean feedbacks. Climatic Change, 99, 351-381.
Kutzbach, J. E., S. J. Vavrus, W. F. Ruddiman, and G. Philippon-Berthier, 2011: Comparisons of coupled atmosphere-ocean simulations of greenhouse gas-induced climate change for pre-industrial and hypothetical ‘no-anthropogenic’ radiative forcing. The Holocene, 21, 793-801.
Kutzbach, J. E., F. He, S. J. Vavrus, and W. F. Ruddiman, 2013: The dependence of equilibrium climate sensitivity on climate state: Applications to studies of climates colder than present. Geophys. Res. Lett., 40(14), 3721-3726.
Kvalevag, M. M., G. Myhre, G. Bonan, and S. Levis, 2010: Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data. Int. J. Climatol., 30, 2105-2117, doi:10.1002/job.2012.
Kwiatkowski, C. M. Prange, V. Varma, S. Steinke, D. Hebbein, and M. Mohtadi, 2015: Holocene variations of thermocline conditions in the eastern tropical Indian Ocean. Quaternary Science Reviews, 114, 33-42, doi:10.1016/j.quascirev.2015.01.028.
Kwiatkowski, L., K. L. Ricke, and K. Caldeira, 2015: Atmospheric consequences of disruption of the ocean thermocline. Environ. Res. Lett., 10, 034016, doi:10.1088/1748-9326/10/3/034016.
Kwon, Y. -O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model Version 2. J. Climate, 20, 2416-2433.
Kwon, Y. -O, M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of Gulf Stream, Kuroshio-Oyashio and their extensions in large-scale atmosphere-ocean interaction: A Review. J. Climate, 23, 3249-3281.
Kwon, Y. -O., C. Deser and C. Cassou, 2010: Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Clim. Dyn.,, doi:10.1007/s00382-010-0764-8.
Kwon, Y. -O., A. Camacho, C. Martinez, and H. Seo, 2018: North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model Version 1 Large Ensemble Simulations. Climate Dyn., doi:10.1007/s00382-018-4078-6.
Labe, Z., T. Ault, and R. Zurita-Milla, 2017: Identifying anomalously early spring onsets in the CESM large ensemble project. Clim. Dyn., 48 (11-12), 3949-3966, doi:10.1007/s00382-016-3313-2.
Labe, Z., Y. Peings, and G. Magnusdottir, 2018: Contributions of ice thickness to the atmospheric response from projected Arctic sea ice loss. Geophys. Res. Lett., 45(11), 5635-5642, doi:10.1029/2018GL078158.
Labe, Z., G. Magnusdottir, and H. Stern, 2018: Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble. J. Climate, 31(8), 3233-3247, doi:10.1175/JCLI-D-17-0436.1.
Laguë, M. M., and A. L. S. Swann, 2016: Progressive midlatitude afforestation: Impacts on clouds, global energy transport, and precipitation. J. Climate, 29, 5561–5573. doi:10.1175/JCLI-D-15-0748.1.
Lai, C. T., W. Riley, C. Owensby, J. Ham, A. Schauer, and J. R. Ehleringer, 2006: Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2 in a tallgrass prairie: Measurements and modeling results from 3 years with contrasting water availability. J. Geophys. Res.-Atmospheres, 111,ISI:000236730800003.
Lalibertie, F., K. Zika, L. R. Mudryk, P. J. Kushner, J. Kjellsson, and K. Doos, 2015: Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 347, 540-543, doi:10.1126/science.1257103.
Lam, P. J., J. K. B. Bishop, C. C. Henning, M. A. Marcus, G. A. Waychunas, and I. Y. Fung, 2006: Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochemical Cycles, 20 (1), doi:10.1029/2005GB002557.
Lamarque, J. -F., P. Hess, L. Emmons, L. Buja, W. Washington, and C. Granier, 2005: Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res., 110 (D8), D08304, doi:10.1029/2004JD005537.
Lamarque, J. -F., D. E. Kinnison, P .G. Hess, J. J. Orlando, and F. Vitt, 2008: Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and chemistry changes. J. Geophys. Res., 113, 12301, doi:10.1029/2007JD009277.
Lamarque, J. -F., et al., 2010: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, doi:10.5194/acp-10-7017-2010, 7017-7039.
Lamarque, J. -F., et al., 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in CESM. Geosci. Model Dev., 5, 369-411, doi:10.5194/gmd-4-2199-2011.
Landrum, L., M. M. Holland, D. P. Schneider, and E. Hunke, 2012: Antarctic sea ice climatology, variability, and late 20th Century change in CCSM4. J. Climate, 25, 4817-4838.
Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. Lawrence, N. Rosenbloom, and H. Teng, 2012: Last Millennium climate and its variability in CCSM4. J. Climate, 26, 1085-1111, doi:10.1175/JCLI-D-11-00326.1.
Landu, K., and E. D. Maloney, 2011: Understanding intraseasonal variability in an aquaplanet GCM. J. Meteor. Soc. Japan, 89, 195-210. doi:10.2151/jmsj.2011-302.
Landu, K., L. R. Leung, S. Hagos, V. Vinoj, S. Rauscher, T. Ringler, and M. Taylor, 2014: The dependence of ITCZ structure on model resolution and dynamical core in aqua-planet simulations. J. Climate, 27(6), 2375-2385, doi:10.1175/JCLI-D-13-00268.1.
Lane, T. P., and M. W. Moncrieff, 2015: Long-lived convective systems in a low-convective inhibition environment. Part II: Upshear propagation. J. Atmos. Sci., 72, 4297-4318, doi:10.1175/2010JAS3418.1.
Langford, S., S. Stevenson, and D. Noone, 2014: Analysis of low-frequency precipitation variability over North American in the CMIP5 20th Century simulations. J. Climate, 27, 2735-2756.
Langowski, M. P., C. Von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnuhuber, A. S. Aikin, and P. Liebing, 2015: Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results. Atmos. Chem. Phys., 15, 275-295, doi:10.5194/acp-15-273-2015.
Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in the NCAR CSM ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 2418-2447.
Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518-536.
Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 111 pp.
Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper ocean biases in CCSM3. J. Climate, 19, 2325-2346.
Larson, J., R. Jacob, and E. Ong, 2005: The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. International Journal of High Performance Computing Applications, 19 (3), 277-292.
Laufkotter, C., et al., 2015: Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 12, 6955-6984, doi:10.5194/bg-12-6955-2015.
Laufkotter, C., M. Vogt, N. Gruber, O. Aumont, L. Bopp, S. C. Doney, J. P. Dunne, J Hauck, J. G. John, I. D. Lima, R. Seferian, and C. Volker, 2016: Projected decreases in future marine export production: The role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 13, 4023-4047, doi:10.5194/bg-13-4023-2016.
Lauritzen, P. H., 2007: A Stability Analysis of Finite-Volume Advection Schemes Permitting Long Time Steps. Mon. Wea. Rev., 135, 2658-2673.
Lauritzen, P. H, C. Jablonowski, M. A. Taylor, and R. D. Nair, 2010: Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst., 2 (15), 34 pp.
Lauritzen, P. H., R. D.Nair, and P. A. Ullrich, 2010: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys., 229(5), 1401-1424, doi:10.1016/j.jcp.2009.10.036.
Lauritzen, P. H., C. Erath, and R. Mittal, 2011: On simplifying ‘incremental remap’-type transport schemes. J. Comput. Phys., 230, 7957-7963.
Lauritzen, P. H., A. Mirin, J. Truesdale, K. Raeder, J. Anderson, J. Bacmeister, and R. B. Neale, 2011: Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int. J. High. Perform. C., 26, pp. 63–73. doi:10.1177/1094342011410088.
Lauritzen, P. H., A. A. Mirin, J. Truesdale, K. Raeder, J. L Anderson, J. Bacmeister, and R. B. Neale, 2012: Implementation of new diffusion/filetering operators in the CAM-FV dynamical core. International Journal for High Performance Computer Applications, 26, 63-73.
Lauritzen, P. H., W. B. Skamarock, M. J. Prather, and M. A. Taylor, 2012: A standard test case suite for two-dimensional linear transport on the sphere. Geosci. Model Dev., 5, 887-901, DOI:10.5194/gmd-5-887-2012.
Lauritzen, P. H., and J. Thuburn, 2012: Evaluating advection/transport schemes using interrelated tracers, scatter plots, and numerical mixing diagnostics. Q.J.R.Meteorol. Soc., 138(665), 906-918.
Lauritzen, P. H., J. Bacmeister, T. Dubos, S. Lebonnois, M. A. Taylor, 2014: Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: a global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates. J. Adv. Model. Earth Syst., 6: doi:10.1002/2013MS000268.
Lauritzen, P. H., et al., 2014: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes. Geosci. Model Dev., 7, 105-145. doi:10.5194/gmd-7-105-2014.
Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydromet., 8, 862-880.
Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Clim. Dyn., 30, doi:10.1007/s00382-007-0278-1.
Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky, 2008: The sensitivity of a model projection of near-surface permafrost degradation to soil column depth and inclusion of soil organic matter. J. Geophys. Res., 113, F02011, doi:10.1029/2007JF000883.
Lawrence, D. M., A. G. Slater, R. A. Tomas, M. M. Holland, and C. Deser, 2008: Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett., 35, L11506, doi:10.1029/2008GL033985.
Lawrence, D. M., and A. G. Slater, 2010: The contribution of snow condition trends to future ground climate. Clim. Dyn., 34, 969-981, 10.1007/s00382-009-0537-4.
Lawrence, D. M., et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Sys., 3, doi:10.1029/2011MS000045.
Lawrence, D. M. and S. C. Swenson, 2011: Permafrost response to increasing Arctic shrub abundance depends on relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ. Res. Lett., 6, 045504 doi:10.1088/1748-9326/6/4/045504.
Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850-2005: Assessment of surface climate and new capabilities. J. Climate, 25, 2240-2260, doi:10.1175/JCLI-D-11-00103.1.
Lawrence, D. M., A. G. Slater, and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate, 25, 2207-2225, doi:10.1175/JCLI-D-11-00334.1.
Lawrence, D. L., C. D. Koven, S. C. Swenson, W. J. Riley, and A. G. Slater, 2015: Soil moisture controls on the permafrost-carbon feedback. Environ. Res. Lett., doi:10.1088/1748-9326/10/9/094011.
Lawrence, P. J., and T. N. Chase, 2007: Respresenting a MODIS consistent land surface in the Community Land Model (CLM3). J. Geophys. Res., 112 (G1), G01023, doi:10.1029/2006JG000168.
Lawrence, P. J., and T. N. Chase, 2009: Climate impacts of making evapotranspiration in the Community Land Model (CLM3) consistent with the Simple Biosphere Model (SiB). Journal of Hydrometeorology, 10(2), 375-394.
Lawrence, P. J. and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the Community Climate System Model (CCSM). International Journal of Climatology, doi:10.1002/joc.2061.
Lawrence, P. J., et al., 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, 25, 3071-3095, doi:10.1175/JCLI-D-11-00256.1.
Lebonnois, S., C. Covey, A. Grossman, H. Parish, G. Schubert, R. Walterscheid, P. Lauritzen, and C. Jablonowski, 2012: Angular momentum budget in general circulation models of superrotating atmospheres: A critical diagnostic. J. Geophys. Res.: Planets, 117, E12004, doi:10.1029/2012JE004223.
Lee, E., T. N. Chase, P. J. Lawrence, and B. Rajagopalan, 2008: Model assessment of the observed relationship between El Nino and the northern East Asian summer monsoon using the community Climate System Model Community Atmosphere Model-Community Land Model version 3 (CAM-CLM3). J. Geophys. Res., 113, D20118, doi:10.1029/2008JD009926.
Lee, E., T. N. Chase, P. J. Lawrence, and B. Rajagopalan, 2009: Model assessment of the observed relationship between El Nino and the northern East Asian summer monsoon using the Community atmosphere Model – Community Land Model version 3 (CAM-CLM3). J. Geophys. Res., 113, D20118, doi:10.1029/2008JD009926.
Lee, E., W. J. Sacks, T. N. Chase, and J. A. Foley, 2011: Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res., 116, D08114, doi:10.1029/2010JD014740.
Lee, E., B. S. Felzer, and Z. Kothavala, 2013: Effects of nitrogen limitation on hydrological processes in CLM4-CN. J. Adv. Model. Earth Syst., 5, 741–754, doi:10.1002/jame.20046.
Lee, J. E., I. Fung, D. J. DePaolo, and C. Henning, 2007: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res., 112, D16306, doi:10.1029/2006JD007657.
Lee, J., and I. Fung, 2008: Amount effect of water isotopes and quantitative analysis of post-condensation processes. Hydrological Processes, 22 (1), 1-8, doi:10.1002/hyp.6637.
Lee, J. E., I. Fung, D. J. DePaolo, and B. Otto-Bliesner, 2008: Water isotopes during the Last Glacial Maximum: New GCM calculations. J. Geophys. Res., 113, D19109, doi:10.1029/2008JD009859.
Lee, J. E., K. Johnson, and I. Fung, 2009: Precipitation over South America during the Last Glacial Maximum: An analysis of the amount effect with a water isotope-enabled General Circulation Model. Geophy. Res. Lett, 36, L19701, doi:10.1029/2009GL039265.
Lee, J. E., R. Pierrehumbert, B. Lintner, and A. Swann, 2009: Sensitivity of the stable water isotopic values on the convective parameterization schemes. Geophy. Res. Lett, 36, L23801, doi:10.1029/2009GL040880.
Lee, J. E., and C.K. Boyce, 2010: The impact of hydraulic capacity on water and carbon cycles in tropical South America. J. Geophys. Res., 115, D23123, doi:10.1029/2010JD014568.
Lee, J. E., and A. Swann, 2010: Evaluation of using the “amount effect” to interpret speleothem data: Asian monsoon study. IOP Conf. Series: Earth and Environmental Science, 9, L23801.
Lee, J. E., B. R. Lintner, C. K. Boyce, and P. J. Lawrence, 2011: Land use change exacerbates tropical Southern American drought by sea surface temperature variability. Geophys. Res. Lett., 38, L19706, doi:10.1029/2011GL049066.
Lee, J. –E., B. Lintner, J. D. Neelin, S. Jiang, C. Boyce, J. Fisher, J. Perron, T. Kubar, and J. Worden, 2012: Reduction of tropical land region precipitation variability via transpiration. Geophys. Res. Lett., 39, L19704, doi:10.1029/2012GL053417. Nature Geosci.
Lee, S.-K., D. B. Enfield, and C. Wang, 2008: Why do some El Ninos have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, doi:10.1029/2008GL034734.
Lee, S.-K, C. Wang, and D. B. Enfield, 2010: On the impact of central Pacific warming events on Atlantic tropical storm activity. Geophys. Res. Lett., 37, L17702, doi:10.1029/2010GL044459.
Lee, S.-K. D. B. Enfield, and C. Wang, 2011: Future impact of differential inter-basin ocean warming on Atlantic hurricanes. J. Climate, 24, 1264-1275.
Lee, S.-K., W. Park, E. van Sebille, M. O. Baringer, C. Wang, D. B. Enfield, S. Yeager, and B. P. Kirtman, 2011: What caused the significant increase in Atlantic ocean heat content since the mid-20th century? Geophys. Res. Lett., 38, L17607, doi:10.1029/2011GL048856.
Lee, S.-K., R. Atlas, D. B. Enfield, C. Wang, and H. Liu, 2013: Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to major tornado outbreaks in the U. S.? J. Climate, 26, 1626-1642, doi:10.1175/JCLI-D-12-00128.1.
Lee, S.-K., C. R. Mechoso, C. Wang, and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on the southern subtropical anticyclones. J. Climate, 26, 10,193-10,204, doi:10.1175/JCLI-D-13-00106.1.
Lee, S. -K. W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geosci., 8, 445-449, doi:10.1038/ngeo2438.
Lee, S.-K., D. L. Volkov, H. Lopez, W. G. Cheon, A. L. Gordon, Y. Liu, and R. Wanninkhof, 2017: Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica. J. Geophys. Res. Oceans, 122, 4413-4430, doi:10.1002/2016JC012416.
Lee, S. -Y. H. -J Shin, and C. Wang, 2013: Nonlinear effects of coexisting surface and atmospheric forcing by anthropogenic absorbing aerosols: Impact on the South Asian monsoon onset. J. Climate, 26, 5594-5607, doi:10.1175/JCLI-D-12-00741.1.
Lee, Y., et al., 2013: Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 2607-2634, doi:10.5194/acp-13-2607-2013.
Lee, W.-L., Y. Gu, K. N. Liou, R. L. R. Leung, and H.-H. Hsu, 2015: A global model simulation for 3D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains. Atmos. Chem. Phys., 15, 5405-5413, doi:10.5194/acp-15-5405-2015.
Legg, S., et al., 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. Bull. Amer. Met. Soc., 90, 657-670.
Lehner, F., 2009: Forcing Impacts on the Freshwater Balance in Polar Regions, Master thesis, University of Bern.
Lehner, F., A. Born, C. C. Raible, and T. F. Stocker, 2013: Amplified inception of European Little Ice Age by sea ice-ocean-atmosphere feedbacks. J. Climate, doi:10.1175/JCLI-D-12-00690.1.
Lehner, F., C. C. Raible, D. Hofer, and T. F. Stocker, 2012: The freshwater balance of polar regions in transient simulations from 1500-2100 AD using a comprehensive coupled climate model. Climate Dyn., 39, 347-363.
Lehner, F., C. C. Raible, and T. F. Stocker, 2012: Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev., 45, 85-95.
Lehner, F., 2013: Estimating natural and anthropogenic responses of the water cycle in the Earth system using comprehensive coupled climate models, PhD thesis, University of Bern.
Lehner, F., F. Joos, C. C. Raible, J. Mignot, A. Born, J. M. Keller, and T. F. Stocker, 2015: Climate and carbon cycle dynamics in a CESM simulation from 850-2100 CE. Earth System Dynamics Discussions, 6, 1-24, doi:10.5194/esdd-6-351-2015.
Lehner, F., C. Deser, and B. M. Sanderson, 2016: Future risk of record-breaking summer temperatures and its mitigation. Climate Change, doi:10.1007/s10584-016-1616-2.
Lehner, F., G. Hegerl, A. Schurer, C. Deser, and T. L. Frolicher, 2016: Importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett., doi:10.1002/2016GL067935.
Lehner, F., S. Coats, T. F. Stocker, B. M. Sanderson, A. G. Pendergrass, C. C. Raible, J. E. Smerdon, 2017: Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett., doi: 10.1002/2017GL074117.
Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, F. Pappenberger, 2017: Mitigating the impacts of climate non-stationarity on seasonal streamflow predictability in the US Southwest. Geophys. Res. Lett., doi: 10.1002/2017GL076043.
Lehner, F., C. Deser, I. R. Simpson, L. Terray, 2018: Attributing the US Southwest's recent shift into drier conditions Geophys. Res. Lett., 45, 6251-6261, doi: 10.1029/2018GL078312.
Lei, H., D. J. Wuebbles, X. –Z. Liang, and S. Olsen, 2013: Domestic versus international contributions on 2050 ozone air quality: How much is convertible by regional control? Atmos. Environment, 68, 315-325, doi:10.1016/j.atmosenv.2012.12.002.
Lei, H., X. –Z. Liang, D. J. Wuebbles, and Z. Tao, 2013: Model analyses of atmospheric mercury: Present air quality and effects of transpacific transport on the United States. Atmos. Chem. Phys. Discuss., 13, 9849-9893, doi:10.5194/acpd-13-9849-2013.
Lehner, F., C. Deser, and L. Terray, 2017: Towards a new estimate of ‘time of emergence’ of anthropogenic warming: Insights from dynamical adjustment and a large initial-condition model ensemble. J. Climate, doi:10.1175/JCLI-D-16-0792.1.
Lehner, F., E. R. Wahl, A. W. Wood, D. B. Blatchford, and D. Llewellyn, 2017: Assessing recent declines in Upper Rio Grande River runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett., doi:10.1002/2017GL073253.
Lejeune, Q., E. L. Davin, B. Guillod, and S. I. Seneviratne, 2015: Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature, and precipitation. Clim. Dyn., 44, 2769-2786, doi:10.1007/s00382-014-2203-8.
Lenaerts, J. T. M., D. LeBars, L. van Kampenhout, M. Vizcaino, E. M. Enderlin, and M. R. van den Broeke, 2015: Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett., 42, 1-9, doi:10.1002/2015GL064738.
Lenaerts, J. T. M., M. Vizcaino, J. Fyke, L. Kampenhout, and M. R. Broeke, 2016: Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model. Clim. Dyn., doi:10.1007/s00382-015-2907-4.
Leng, G., M. Huang, Q. Tang, W. J. Sacks, H. Lei, and L. R. Leung, 2013: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res., 118, 1-15, doi:10.1002/jgrd.50792.
Leng, G., M. Huang, Q. Tang, H. Gao, and L. R. Leung, 2014: Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrometeor., 15(3), 957-972, doi:10.1175/JHM-D-13-049.1.
Leng, G., M. Huang, Q. Tang, and L. R. Leung, 2015: A modeling study of irrigation effects on global surface and groundwater resources under a changing climate. J. Adv. Model. Earth Sys., 7, 1285-1304, doi:10.1002/2015MS000437.
Leng, G., X. Zhang, M. Huang, Q. Yang, R. Rafique, G. Asrar, and L. R. Leung, 2016: Simulating county-level crop yields in the conterminous United States using the CLM: The effects of optimizing irrigation and fertilization. J. Adv. Mod. Earth Syst., doi:10.1002/2015JS000645.
Lenton, A., et al., 2013: Sea-air CO2 fluxes in the Southern Ocean for the period 1990-2009. Biogeosciences, 10, 4037-4054, doi:10.5194/bg-10-4037-2013.
Le Quéré, C., et al., 2009: Trends in the sources and sinks carbon dioxide. Nat. Geosci., 2, 831-836, doi:10.1038/ngeo689.
Le Quéré, C., et al., 2013: The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185, doi:10.5194/essd-5-165-2013.
Le Quéré, C., et al., 2014: Global carbon budget 2013. Earth System Science Data, 6, 235–263, doi:10.5194/essd-6-235-2014.
Le Quéré, C., et al., 2015: Global carbon budget 2014. Earth System Science Data, 7, 47-85, doi:10.5194/essd-7-47-2015.
Le Quéré, C., et al., 2016: Global carbon budget, 2016: Earth System Science Data, 8, 605-649, doi:10.5194/essd-8-1-2016.
Le Quéré, C, et al., 2018: Global Carbon Budget 2017. Earth System Science Data, 10, 405-448.
Letscher, R. T., J. K. Moore, Y. -C. Teng, and F. Primeau, 2015: Variable C:N:P stoichiometry of dissolved organic matter cycling in the Community Earth System Model. Biogeosciences, 12, 209-221, doi:10.5194/bg-12-209-2015.
Leung, L. R., T. Ringler, W. D. Collins, M. Taylor, and M. Ashfaq, 2013: A hierarchical evaluation of regional climate simulations. Eos Transactions, 297-298, doi:10.1002/2013EO340001.
Levine, N. M, S. C. Doney, R. Wanninkhof, K. Lindsay, and I. Fung, 2008: Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2. J. Geophys. Res. Oceans, 113, C03019, doi:10.1029/2007JC004153.
Levine, N. M., S. C. Doney, I. Lima, R. Wanninkhof, N. R. Bates, and R. A. Feely, 2011: The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode water. Global Biogeochem. Cycles, 25, GB3022, doi:10.1029/2010GB003892.
Levis, S., C. Wiedinmyer, G. B. Bonan, and A. Guenther, 2003: Simulating biogenic volatile organic compound emissions in the Community Climate System Model. J. Geophys. Res., 108 (D21), 4659, doi:10.10292002JD003203.
Levis, S., and G. B. Bonan, 2004: Simulating springtime temperature patterns in the Community Atmosphere Model coupled to the Community Land Model using prognostic leaf area. J. Climate, 17, 4531-4540.
Levis, S., G. B. Bonan, and C. Bonfils, 2004: Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled simulations with a dynamic vegetation model. Clim. Dyn., 23, 791-802, doi:1007s00382-004-0477-y.
Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004: The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide. NCAR Tech. Note NCAR/TN-459+IA, 50 pp.
Levis, S., G. B. Bonan, and P. J. Lawrence, 2007: Present-day springtime high-latitude surface albedo as a predictor of simulated climate sensitivity. Geophys. Res. Lett, 34, doi:10.1029/2007GL30775.
Levis, S., P. Thornton, G. Bonan, and C. Kucharik, 2009: Modeling land use and land management with the Community Land Model. iLeaps Newsletter, 7, 10-12.
Levis S., G. Bonan, E. Kluzek, P. Thornton, A. Jones, W. Sacks, and C. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land-atmosphere fluxes. J. Climate, 25, 4839-4859, doi:10.1175/JCLI-D-11-00446.1
Levis, S., A. Badger, B. Drewniak, C. Nevison, and X. Ren, 2016: CLMcrop yields and water requirements: Avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change, 1-15, doi:10.1007/s10584-016-1654-9.
Levis, S., M. D. Hartman, and G. B. Bonan, 2014: The Community Land Model underestimates land-use CO2 emissions by neglecting soil disturbance from cultivation. Geosci. Model Dev., 7, 613-620.
Li, B., and T. Zhou, 2011: ENSO-related principal interannual variability modes of early and late summer rainfall over East Asia in SST-driven AGCM simulations. J. Geophys. Res., 116, D14118, doi:10.1029/2011JD015691.
Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman, 2005: Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett., 32, doi:10.1029/2005GL023492.
Li, C., 2007: A general circulation modelling perspective on abrupt climate change. Ph.D. thesis, University of Washington.
Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 3561-3579.
Li, C., D. S. Battisti, and C. M. Bitz, 2010: Characteristics and climate impacts of sea ice in the glacial North Atlantic. J. Climate, doi:10.1175/2010JCLI3409.1.
Li, C., D. S. Battisti, and C. M. Bitz, 2010: Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals? J. Climate, 23, 5457-5475.
Li, F., W. Collins, M. Wehner, D. Williamson, J. Olson, and C. Algieri, 2011: Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of community Atmospheric Model (CAM3). Tellus, 63, 884-892.
Li, F., W. Collins, M. Wehner, D. Williamson, and J. Olson, 2011: Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection from regional to global scales. Tellus, 63, 876-883.
Li, F., X. D. Zeng, and S. Levis, 2012: A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences, 9, 2761-2780.
Li, F., W. D. Collins, M. F. Wehner, and L. R. Leung, 2013: Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution. J. Adv. Mod. Earth Systems, 5, 112, doi:10.1002/jame.20020.
Li, F., S. Levis, and D. S. Ward, 2013: Quantifying the role of fire in the earth system. Part I: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 10, 2293-2314.
Li, F., D. M. Lawrence, and B. Bond-Lamberty, 2017: Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Env. Res. Let., 12, 044014, doi:10.1088/1748-9326/aa6685.
Li, F., and D. M. Lawrence, 2017: Role of fire in the global land water budget during the 20th century through changing ecosystems. J. Climate, 30, 1893–1908, doi:10.1175/JCLI-D-16-0460.1.
Li, F., D. M. Lawrence, and B. Bond-Lamberty, 2018: Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories. Glob. Plan. Change, 162, 18-27, doi:10.1016/j.gloplacha.2018.01.002.
Li, G., and G. J. Zhang, 2008: Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El Nino. J. Geophys. Res., 113, D02103, doi:10.1029/2007JD008963.
Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Response of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000. Clim. Dyn., 34, 501-514, doi:10.1007/s00382-008-0482-7.
Li, H., M. S. Wigmosta, H. Wu, M. Huang, Y. Ke, A. M. Coleman, and L. R. Leung, 2013: A physically based runoff routing model for land surface and earth system models. J. Hydrometeor., 808-828. doi:10.1175/jhm-d-12-015.1.
Li, H., M. Huang, M. Wigmosta, Y. Ke, A. Coleman, L. R. Leung, A. Wang, and D. M. Ricciuto, 2011: Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountain watershed. J. Geophys. Res., 116, D24120, doi:10.1029/2011JD016276.
Li, H., L. R. Leung, A. Getirana, M. Huang, H. Wu, Y. Xu, J. Guo, and N. Voisin, 2015: Evaluating global streamflow simulations by a physically-based routing model coupled with the Community Land Model. J. of Hydromet., 16(2), 948-971, doi:10.1175/JHM-D-14-0079.1.
Li, H., and R. L. Sriver, R. L., 2016: Effects of ocean grid resolution on tropical cyclone-induced upper ocean responses using a global ocean general circulation model. J. Geophys. Res.-Oceans, 121, 8305-8319, doi:10.1002/2016JC011951.
Li, H., and R. L. Sriver, 2018: Tropical cyclone activity in the high-resolution Community Earth System Model and the impact of ocean coupling. Journal of Advances in Modeling Earth Systems, 10, doi:10.1002/1017ms001199.
Li, J. -L. F., W. -L. Lee, D. E. Waliser, J. D. Neelin, J. P. Stachnik, and T. Lee, 2014: Cloud-precipitation-radiation-dynamics interaction in global climate models: A snow and radiation interaction sensitivity experiment. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021038.
Li, J. -L. F., W. -L. Lee, D. E. Waliser, J. P Stachnik, E. Fetzer, S. Wong, and Q. Yue, 2014: Characterinzing tropical Pacific water vapor and radiative biases in CMIP5 GCMs: Observation-based analyses and a snow and radiation interaction sensitivity experiment. J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021924.
Li, J. -L. F., W. -L. Lee, T. Lee, E. Fetzer, J. -Y. Yuh, T. L. Kubar, and C. Boening, 2015: The impacts of cloud snow radiative effects on Pacific Ocean's surface heat fluxes, surface wind stress, and ocean temperatures in coupled GCM simulations. J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD022538.
Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling, 103, 145–160. doi:10.1016/j.ocemod.2015.07.020.
Li, Q., B. Fox-Kemper, O. Breivik, and A. Webb, 2017: Statistical modeling of global Langmuir mixing. Ocean Modelling, 113, 95-114, doi:10.1016/j.ocemod.2017.03.016.
Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence, on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Ocean., 47, 2863-2886.
Li, Q., 2018: Langmuir Turbulence and Its Effects on Global Climate. PhD thesis, Brown University.
Li, T., Y. Zhang, E. Lu, and D. Wang, 2002: Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett., 29, doi:10.10292002GL05789.
Li, T., N. Calvo, J. Yue, X. Dou, J. M. Russell III, M. G. Mlynczak, C. -Y. She, and X. Xue, 2013: Influence of El Niño-Southern Oscillation in the mesosphere. Geophys Res Lett, 40, 1-5, doi:10.1002/grl.50598.
Li, T., N. Calvo, J. Yu, J. M. Russell III, A. K. Smith, M. G. Mlynczak, a. Chandran, X. Dou, and A. Z. Liu, 2016: Southern hemisphere summer mesopause responses to El Nino-Southern Oscillation. J. Climate, 29, doi:10.1175/JCLI-D-15-0816.1.
Li, X., et al., 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538-542.
Li, X., Z.-Z. Hu, X. Jiang, Y. Li, Z. Gao, S. Yang, J. Zhu, and B. Jha, 2016: Trend and seasonality of land precipitation in observations and CMIP5 model simulations. Int. J. Climatol., 36(11), 3781-3793, doi:10.1002/joc.4592.
Li, Y., and C. Morrill, 2010: Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments. Clim. Dyn., 35, 1115-1128.
Li, Y., and C. Morrill, 2013: Lake levels in Asia at the Last Glacial Maximum as indicators of hydrologic sensitivity to greenhouse gas concentrations. Quarternary Science Reviews, 60, 1-12.
Li, Y., N. Wang, X. Zhou, C. Zhang, and Y. Wang, 2014: Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: A synthesis on Holocene Asian summer monsoon simulations, records, and modern monsoon indices. Global and Planetary Change, 116, 30-40.
Li, Y., and C. Morrill, 2015: A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation. Clim. Dyn.,, doi:10.1007/s00382-014-2372-5.
Li, Y., and M. Zhang, 2017: The role of shallow convection over the Tibetan Plateau. J. Climate, 30, 5791-5803.
Li, Z., U. S. Bhatt, and N. Mölders, 2008: Impact of doubled CO2 on the interaction between the regional and global water cycle in four study regions. Clim. Dyn., 30, 255-275.
Li, Z., and N. Mölders, 2008: Interaction of impacts of doubling CO2 and changing regional land-cover on evaporation, precipitation, and runoff at global and regional scales. Int. J. Climatol. 28: 1653-1679.
Li, Z., T. Zhou, H. Chen, D. Ni, and R. -H. Zhang, 2015: Modeling the effect of soil moisture variability on summer precipitation variability over East Asia. International Journal of Climatology, 35, 879-887.
Liang, X. -Z., and W. -C. Wang, 1998: The observed fingerprint of 1980-1997 ENSO evolution in the NCAR CSM equilibrium simulation. Geophys. Res. Lett., 25, 1027-1030.
Liang, X. -Z., A. N. Samel, and W. -C. Wang, 2000: China rainfall interannual variations: Dependence on the annual cycle and surface anomalies. J. Climate, 15, 2555-2561.
Liang, X. -Z., W. -C. Wang, and A. N. Samel, 2001: Biases in AMIP model simulations of the east China monsoon system. Clim. Dyn., 17, 291-304.
Liang, X. -Z., J. Pan, J. Zhu, K. E. Kunkel, J. X. L. Wang, and A. Dai, 2006: Regional climate model downscaling of the U. S. summer climate and future change. J. Geophys. Res., 111, D10108, doi:10.1029/2005JD006685.
Liang, Y., L. Wang, G. J. Zhang, and Q. Wu, 2016: Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM. Clim. Dyn., doi:10.1007/s00382-016-3272-7.
Lieberman, R. S., D. C. Fritts, N. M. Pedatella, E. Doornbos, and D. A. Ortland, 2015: Global observations of thermospheric lunar tidal winds. J. Atmos. Solar-Terr. Phys., 136, doi:10.1016/j.jastp.2015.05.019.
Light, B., S. Dickinson, D. K. Perovich, and M. M. Holland, 2015: Evolution of summer Arctic sea ice albedo in CCSM4 simulations: Episodic summer snowfall and frozen summers. J. Geophys. Res. Oceans, 120, doi:10.1002/2014JC010149.
Lima, I. D., P. J. Lam, and S.C. Doney, 2014: Dynamics of particulate organic carbon flux in a global ocean model. Biogeosciences, 11, 1177-1198, doi:10.5194/bg-11-1177-2014.
Limpasuvan, V., Y. S. Orsolini, A. Chandran, R. R. Garcia, and A. K. Smith, 2016: On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. J Geophys. Res. Atmos., 121, doi:10.1002/2015JD024401.
Lin, G., J. E. Penner, M. G. Flanner, S. Sillman, L. Xu, and C. Zhou, 2014: Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. J. Geophys. Res. Atmos., 119, 7453-7476, doi:10.1002/2013JD021186.
Lin, J. L., and B. E. Mapes, 2004: Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophys. Res. Lett., 31, L16118, 10.10292004GL020199.
Lin, J. W. –B., and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett, 30(4), 1162, doi:10.1029/2002GL016203.
Lin, L., A. Gettelman, S. Feng, and Q. Fu, 2016: Climatology and evolution of aridity in the 21st century. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024100.
Lin, L., A. Gettelman, Q. Fu, and Y. Xu, 2016: Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change, doi:10.1007/s10584-016-1615-3.
Lin, L., A. Gettelman, Y. Xu, and Q. Fu, 2016: Simulated responses of terrestrial aridity to black carbon and sulfate aerosols. J. Geophys. Res.: Atmospheres, doi:10.1002/2015JD024100.
Lin, W., M. Zhang, and J. Wu, 2009: Simulation of low clouds from the CAM and the regional WRF with multiple nested resolutions. Geophys. Res. Lett., 36, L08813, doi:10.1029/2008GL037088.
Lin, Y., et al., 2012: TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. J. Geophys. Res., 117, D09111, doi: 10.1029/2011JD017018.
Lin, Y. -H., M. -H. Lo, and C. Chou, 2016: Potential negative effects of groundwater dynamics on dry season convection in the Amazon River Basin. Clim. Dyn., 46, 1001-1013, doi:10.1007/s00382-015-2628-8.
Lindsay, K., et al., 2014: Preindustrial-control and Twentieth-century carbon cycle experiments with the Earth System Model CESM1(BGC). J. Climate, 27(24), 8981-9005, doi:10.1175/JCLI-D-12-00565.1.
Lindvall, J., G. Svensson, and C. Hannay, 2013: Evaluation of near-surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations. J. Climate, 26 26–44, doi:10.1175/JCLI-D-12-00020.1.
Lindvall, J. and G. Svensson, 2014: The diurnal temperature range in the CMIP5 models. Clim. Dyn., 44, 405-421, doi: 10.1007/s00382-014-2144-2.
Lindvall, J., G. Svensson, and R. Cabellero, 2017: The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the CAM5. Clim. Dyn., 48, 3741, doi:10.1007/s00382-016-3299.
Lipscomb, W. H., E. C. Hunke, W. Maslowski, and J. Jakacki, 2007: Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112, C03S91, doi:10.1029/ 2005JC003355.
Lipscomb, W. H., J. G. Fyke, M. Vizcaino, W. J. Sacks, J. Wolfe, M. Vertenstein, A. Craig, E. Kluzek, and D. M. Lawrence, 2013: Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the community Earth System Model. J. Climate, doi:10.1175/JCLI-D-12-00557.1.
Liptak, J., G. Keppel-Aleks, and K. Lindsay, 2017: Drivers of multi-century trends in the atmospheric CO mean annual cycle in a prognostic ESM. Biogeosciences, 14, 1383-1401, doi:10.5194/bg-14-1383-2017.
Liu, C., M. W. Moncrieff, H .-M. Hsu, and X. -D. Liu, 2012: Effects of dimensionality on simulated large-scale convective organization and coupled waves. J. Meteor. Soc. Japan, 90, 59-78.
Liu, C., and M. W. Moncrieff, 2017: Shear-parallel mesoscale convective systems in a low-inhibition meiyu front environment. J. Atmos. Sci., 74, 4213-4228, doi:10.1175/JAS-D-17-0121.1.
Liu, H., M. Zhang, and W. Lin, 2012: An investigation of the initial development of the double-ITCZ warm SST biases in the CCSM. J. Climate, 25, 140–155, doi:10.1175/2011JCLI4001.1.
Liu, H. -L., F. Sassi, and R .R. Garcia, 2008: Error growth in a whole atmosphere climate model. J. Atmos. Sci., 66 (1), 173-186, doi:10.1175/2008JAS2825.1.
Liu, H. -L., et al., 2010: Thermosphere extension of the Whole Atmosphere Community Climate Model. J. Geophys. Res., 115, doi:10.1029/2010JA015586.
Liu, H. -L., 2013: WACCM-X simulation of tidal and planetary wave variability in the upper atmosphere. In Modeling the Ionosphere-Thermosphere System, J. Huba, R. Schunk, and G. Khazanov, Eds. American Geophysical Union as part of the Geophysical Monograph Series, ISBN-10: 0875904912, ISBN-13: 978-0875904917.
Liu, H. -L., V. A. Yudin, and R. G. Roble, 2013: Day-to-day ionospheric variability due to lower atmosphere perturbations. Geophys Res Lett, 40, 665-670, doi:10.1002/grl.50125.
Liu, H. -L., C. G. Bardeen, B. T. Foster, P. Lauritzen, J. Liu, G. Lu, D. R. Marsh, A. Maute, J. M. McInerney, N. M. Pedatella, L. Qian, A. D. Richmond, R. G. Roble, S. C. Solomon, F. M. Vitt, and W. Wang, 2018: Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X v. 2.0). Journal of Advances in Modeling Earth Systems, 10, 381, doi:10.1002/2017MS001232.
Liu, J., I. Fung, E. Kalnay, and J. -S. Kang, 2011: CO2 transport uncertainties from the uncertainties in meteorological fields. Geophys. Res. Lett., 38, L12808, 6 PP., doi:201110.1029/2011GL047213.
Liu, J., I. Fung, E. Kalnay, J. -S. Kang, E. T. Olsen, and L. Chen, 2012: Simultaneous assimilation of AIRS Xco(2) and meteorological observations in a carbon climate model with an ensemble Kalman filter. J. Geophys. Res.-Atmos., 117, D05309, doi:10.1029/2011JD016642.
Liu, J., H. -L. Liu, W. Wang, A. G. Burns, Q. Wu, Q. Gan, S. C. Solomon, D. R. Marsh, L. Qian, G. Lu, N. M. Pedatella, J. M. McInerney, J. M. Russell III, and W. S. Schreiner, 2018: First results from the ionospheric extension of WACCM-X during the deep solar minimum year of 2008. J. Geophys. Res. Space Physics, 123, 1534, doi:10.1002/2017JA025010.
Liu, P., W. M. Washington, G. A. Meehl, G. Wu, and G. L. Potter, 2001: Historical and future trends of the Sahara Desert. Geophys. Res. Lett., 28, 2683-2686.
Liu, P., G. A. Meehl, and G. Wu, 2003: Multi-model trends in a Sahara induced by increasing CO2. Geophys. Res. Lett., 29, doi:10.10292002GL015923.
Liu, Q., L. Gu, R. E. Dickinson, Y. Tian, L. Zhou, and W. M. Post, 2008: Assimilation of satellite reflectance data into a dynamical leaf model to infer seasonally varying leaf areas for climate and carbon models. J. Geophys. Res., 113, D19113, doi:10.1029/2007J D009645.
Liu, W., Z. Liu, and A. Hu, 2013: The stability of an evolving Atlantic meridional overturning circulation. Geophys. Res. Lett., 40, 1562-1568, doi:10.1002/grl.50365.
Liu, W., and A. Hu, 2016: The role of the PMOC in modulating the deglacial shift of the ITCZ. Clim. Dyn., doi: 10.1007/s00382-015-2520-6.
Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3). J. Climate, 20, 4526-4547.
Liu, X., S. Xie, and S. J. Ghan, 2007: Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE observations. Geophysical Research Letter, 34, L23712, doi:10.1029/2007GL031446.
Liu, X., J. E. Penner, and M. Wang, 2009: Influence of anthropogenic sulfate and soot on upper tropospheric clouds using CAM3 coupled with an aerosol model. J. Geophys. Res., 114, D03204, doi:10.1029/2008JD010492.
Liu, X., and J. Wang, 2010: How important is organic aerosol hygroscopicity to aerosol indirect forcing? Environmental Research Letters, 5, 044010, doi:10.1088/1748-9326/5/4/044010.
Liu, X., et al., 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.
Liu, X., et al., 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709-¬739, doi:10.5194/gmd-5-709-2012.
Liu, X., X. Shi, K, Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson, 2012: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmospheric Chemistry and Physics, 12, 12061-12079, doi:10.5194/acp-12-12061-2012.
Liu, X., P. –L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505-522, doi:10.5194/gmd-9-505-2016, 2016.
Liu, Y., W. Li, J. Zuo, and Z.-Z. Hu, 2014: Simulation and projection of western Pacific subtropical high in CMIP5 models. J. Meteor. Res., 28(3), 327-340, doi:10.1007/s13351-014-3151-2.
Liu, Y., E. Racah, Prabhat, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel, M. Wehner, and W. Collins, 2016: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. International Conference on Advances in Big Data Analytics (ABDA).
Liu, Z., S.-I. Shin, B. Otto-Bliesner, J. E. Kutzbach, E. C. Brady, and D. E. Lee, 2002: Tropical cooling at the last glacial maximum and extratropical ocean ventilation. Geophys. Res. Lett., 29 (10), doi:10.10292001GL013938.
Liu, Z., E. Brady, and J. Lynch-Stieglitz, 2003: Global ocean response to orbital forcing in the Holocene. Paleoceanography, 18 (2), 1041, doi:10.10292002PA000819.
Liu, Z., B. Otto-Bliesner, J, Kutzbach, L. Li, and C. Shields, 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16, 2472-2490.
Liu, Z., S. P. Harrison, J. Kutzbach, and B. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Clim. Dyn., 22, 157-182.
Liu, Z., S. -I. Shin, R. S. Webb, W. Lewis, and B. L. Otto-Bliesner, 2005: Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys. Res. Lett., 32, L02706, doi:10.1029/2004GL021929.
Liu, Z., et al., 2009: Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science, 325, 310-314.
Liu, Z., M. Pagani, D. Zinniker, R. DeConto, M. Huber, H. Brinkhuis, S. Shah, M. Leckie, and A. Pearson, 2009: Global cooling during the Eocene-Oligocene climate transition. Science, 323, 1187-1190, doi:10.1126/science.1166368.
Liu, Z., et al., 2012: Younger Dryas cooling and the Greenland climate response to CO2. PNAS, 109, 11101-11104.
Liu, Z., et al., 2014: Chinese cave records and the East Asian summer monsoon. Quaternary Science Reviews, 83, 115-128.
Liu, Z., Z. Lu, X. Wen, B. Otto-Bliesner, A. Timmermann, and K. M. Cobb, 2014: Evolution and forcing mechanisms of El Nino over the last 21,000 years. Nature, 515-553.
Liu, Z., et al., 2014: The Holocene temperature conundrum. PNAS, 111, E3501-E3505.
Lo, M.-H., P. J.-F. Yeh, and J. S. Famiglietti, 2008: Using baseflow to constrain water table depth simulations in the NCAR Community Land Model (CLM). Adv. Water Resour., doi:10.1016/j.advwatres.2008.06.007.
Lo, M. -H., and J. S. Famiglietti, 2010: The effect of water table dynamics on land surface hydrologic memory. J. Gephys. Res., 115, D22118, doi:10.1029/2010JD014191.
Lo, M. -H., J. S. Famiglietti, P. J. -F. Yeh, and T. H. Syed, 2010: Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated baseflow data. Water Resour. Res., 46, W05517, doi:10.1029/2009WR007855.
Lo, M.-H., and J. S. Famiglietti, 2011: Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J. Geophys. Res., 116, D05107, doi:10.1029/2010JD015134.
Lo, M.-H., C.-M. Wu, H.-Y. Ma, and J. S. Famigletti, 2013: The response of coastal stratocumulus clouds to agricultural irrigation in California. J. Geophys. Res. Atmos., 118, 6044-6051, doi:10.1002/jgrd.50516.
Lo, M.-H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U. S. water cycle. Geophys. Res. Lett., 40, doi:10.1002/grl.50108.
Lobell, D., G. Bala, C. Bonfils, and P. B. Duffy, 2006: Potential bias of model projected greenhouse warming in irrigated regions. Geophys. Res. Lett., 33, L13709.
Lobell, D., G. Bala, and P. B. Duffy, 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33, L06708.
Lobell, D., G. Bala, A. Mirin, T. J. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in influence of irrigation on climate. J. Climate, 22, 2248-2255.
Lobell, D., and C. Tebaldi, 2014: Getting caught with out plants down: The risks of a global crop yield slowdown from climate tends in the next two decades. Environmental Research Letters, 9, 074003.
Lombardozzi, D., S. Levis, G. Bonan, and J. P. Sparks, 2011: Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. Biogeosciences Discussion, 9 (4),4245-4283.
Lombardozzi, D., S. Levis, G. Bonan, and J. P. Sparks, 2012: Ozone-induced decreases in stomatal conductance on a global scale: Changing the Ball-Berry model in the Community Land Model. Biogeosciences, 9, 3113-3130.
Lombardozzi, D., G. Bonan, and J. P. Sparks, 2013: Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for large-scale modeling. Biogeosciences, 10, 6815-6831.
Lombardozzi, D., G. Bonan, and D. Nychka, 2014: Quantifying the predictability of the terrestrial carbon cycle. Nature Climate Change, 4, 796-800, doi:10.1038/nclimate2323.
Lombardozzi, D., G. Bonan, N. Smith, and J. Dukes, 2015: Photosynthetic and leaf respiratory temperature acclimation increases land carbon uptake over the 21st century. Geophys. Res. Lett., 42, doi:10.1002/2015GL065934.
Lombardozzi, D., S. Levis, G. Bonan, P. G. Hess, and J. P. Sparks, 2015: The influence of chronic ozone exposure on global carbon and water cycles. J. Climate, 28, 292-305.
Lombardozzi, D., M. Zeppel, R. Fisher, and A. Tawfik, 2015: Observed nighttime conductance alters modeled global hydrology and carbon budgets. Geoscientific Model Development Discussions, 8, 10,339-10,363.
Lombardozzi, D., M. Zeppel, R. Fisher, and A. Tawfik, 2017: Incorporating observed nighttime conductance alters global hydrology and carbon budgets in CLM4.5. Geoscientific Model Development, 10, 321-331.
Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century ocean carbon uptake and storage in CESM1(BGC). J. Climate, 26 (18), 6775-6800, doi:10.1175/JCLI-D-12-00184.1.
Long, M. S., 2010: The impact of primary marine aerosol on atmospheric chemistry, radiation, and climate. Ph.D. Thesis, University of Virginia, Charlotttesville, VA.
Long, M. S., W. C. Keene, R. C. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. J. Ghan, 2013: Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model. Geosci. Mod., Develop, 6, 255-262, doi:10.5194/gmd-6-255-2013.
Long, M. C., K. Lindsay, and M. M. Holland, 2015: Modeling photosynthesis in sea ice covered waters. J. Adv. Model. Earth Syst., doi:10.1002/2015MS000436.
Long, M. C., C. A. Deutsch, and T. Ito, 2016: Finding forced trends in oceanic oxygen. Global Biogeochem. Cycles, 30, 10.1002/2015GB005310.
Lopez, H., S. Dong, S. -K. Lee and E. Campos, 2016: Remote influence of Interdecadal Pacific Oscillation on the South Atlantic Meridional Overturning Circulation variability. Geophys. Res. Lett., doi:10.1002/2016GL069067.
Lopez, H., S. Dong, S. -K. Lee and G. Goni, 2016: Decadal modulations of interhemispheric global atmospheric circulations and monsoons by the South Atlantic Meridional Overturning Circulation. J. Climate, 29, 1831-1851, doi:10.1175/JCLI-D-15-0491.1.
Lopez, H. and Kirtman, B. P., 2016: Investigating the seasonal predictability of significant wave height in the West Pacific and Indian Oceans. Geophys. Res. Lett., 43, 3451-3458.
Lorenz, R., E. L. Davin, D. M. Lawrence, R. Stockli, and S. I. Seneviratne, 2012: Modeling land-climate in Europe: Impact of land surface representation on climate variability and extremes. J. Geophys. Res., 117, D20109, doi:10.1029/2012JD017755.
Lorenz, R., E. L. Davin, D. M. Lawrence, R. Stockli, and S. I. Seneviratne, 2013: How important is vegetation phenology for European climate and heatwaves? J. Climate, 26, 10,077-10,100, doi:10.1175/JCLI-D-13-00040.1.
Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean dipole in the NCAR CSM. J. Climate, 16, 2138-2158.
Lott, P. A., C. S. Woodward, and K. J. Evans, 2015: Algorithmically scalable block preconditioner for fully implicit shallow water equations in CAM-SE. Comp. Geosci., 19, 49-61, doi: 10.1007/s10596-014-9447-6.
Lou, S., et al., 2016: Impacts of the East Asia monsoon on springtime dust concentrations and its direct effects over China. J. Geophys. Res., doi:10.1002/2016JD024758.
Lough, J. M., G. A. Meehl, and M. J. Salinger, 2011: Observed and projected changes in surface climate of the tropical Pacific. In Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. J. D. Bell, J. E. Johnson, and A. J. Hobday, Eds., Secretariat of the Pacific Community, Noumea, New Caledonia, 49-100.
Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima, 2007: Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem. Cycles, 21, GB2026, doi:10.1029/2006GB002900.
Lovenduski, N. S., N. Gruber, and S .C. Doney, 2008: Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, doi:10.1029/2007GB003139.
Lovenduski, N. S., M. C. Long, P. R. Gent, and K. Lindsay, 2013: Multi-decadal trends in the advection and mixing of natural carbon in the Southern Ocean. Geophys. Res. Lett., 40(1), 139-142, doi:10.1029/2012GL054483.
Lovenduski, N. S., A. R. Fay, and G. A. McKinley, 2015: Observing multidecadal trends in Southern Ocean CO2 uptake: What can we learn from an ocean model? Global Biogeochemical Cycles, 29, 416-426, doi:10.1002/2014GB004933.
Lovenduski, N. S., M. C. Long, and K. Lindsay, 2015: Natural variability in the surface ocean carbonate ion concentration. Biogeosciences, 12, 6321-6335, doi:10.5194/bg-12-6321-2015.
Lovenduski, N. S., G. A. McKinley, A. R. Fay, K. Lindsay, and M. C. Long, 2016: Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30, 1276-1287, doi:10.1002/2016GB005426.
Lovenduski, N. S., and G. B. Bonan, 2017: Reducing uncertainty in projections of terrestrial carbon uptake. Environmental Research Letters, 12, 044020, doi:10.1088/1748-9326/aa66b8.
Lu, D., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30(6), 1971-1983, doi:10.1175/JCLI-D-16-0313.1.
Lu, H., et al., 2013: Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology, 9, 1023-1026, doi:10.1130/G34488.1.
Lu, J., A. Hu, and Z. Zeng, 2014: On the possible interaction between internal climate variability and forced climae change. Geophys. Res. Lett., 41, 2962-2970, doi:10.1002/2014GL059908.
Lu, J., L. R. Leung, Q. Yang, G. Chen, W. D. Collins, F. Li, Z. Hou, and X. Feng, 2014: The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophys. Res. Lett., 41, 2971-2978, doi:10.1002/2014GL059532.
Lu, J., G. Chen, L. R. Leung, A. Burrows, Q. Yang, K. Sakaguchi, and S. Hagos, 2015: Towards the dynamical convergence on the jet stream in aquaplanet AGCMs. J. Climate, 28, 6763-6782, doi:10.1175/JCLI-D-14-00761.1.
Lu, X., X. Chu, C. Chen, V. Nguyen, and A. K. Smith, 2017: First observations of short-period eastward propagating planetary waves from the stratosphere to the lower thermosphere (110 km) in winter Antarctica. Geophys. Res. Lett., doi: 10.1002/2017GL075641.
Lu, Y., I. N. Williams, J. E. Bagley, M. S. Torn, and L. M. Kueppers, 2017: Representing winter wheat in the CLM4.5. Geosci. Model Dev., 10, 1873-1888, doi:10.5194/gmd-10-1873-2017.
Lubis, S. W., K. Matthes, N. E. Omrani, N. Harnik, and S. Wahl, 2016: Influence of the Quasi-biennial oscillation and sea surface temperature variability on downward wave coupling in the Northern Hemisphere. J. Atmos. Sci., 73, 1943-1965, doi:10.1175/JAS-D-15-0072.1.
Lubis, S. W., N. -E. Omrani, K. Matthes, and S. Wahl, 2016: Impact of Antarctic ozone hole on the vertical coupling of the stratosphere-mesosphere-lower thermosphere system. J. Atmos. Sci., doi:10.1175/JAS-D-15-1089.1.
Lubis, S. W., V. Silverman, K. Matthes, N. Harnik, N. –E. Omrani, and S. Wahl, S. 2017 : How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?, Atmos. Chem. Phys., doi:10.5194/acp-2016-558.
Lubis, S. W., C. S. Huang, N. Nakamura, N. Omrani, and M. Jucker, 2018a: Role of finite-amplitude Rossby waves and nonconservative processes in downward migration of extratropical flow anomalies. J. Atmos. Sci., doi:10.1175/JAS-D-17-0376.1.
Lubis, S.W., K. Matthes, N. Harnik, N. Omrani, and S. Wahl, 2018b: Downward wave coupling between the stratosphere and troposphere under future anthropogenic climate change. J. Climate, doi:10.1175/JCLI-D-17-0382.1.
Lunt, D. J., et al., 2012: A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations. EoMIP, Clim. Past, 8, 1717-1736, doi:10.5194/cp-8-1717-2012.
Lunt, D. J. et al., 2013: A multi-model assessment of last interglacial temperatures. Clim. Past, 9, 699-717, doi:10.5194/cp-9-699-2013.
Lunt, D. J., et al., 2017: The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 10, 889-901.
Lunt, D. J., et al., 2017: The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geosci. Model Dev., 10, 889-901, doi:10.5194/gmd-10-889-2017.
Ma, H. -Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013: Metrics and diagnostics for precipitation-related processes in climate model short-range hindcases. J. Climate, 26, 1516-1534.
Ma, H. -Y., et al., 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 1781–1798, doi:10.1175/JCLI-D-13-00474.1.
Ma, H. -Y., C. C. Chuang, S. A. Klein, M.-H. Lo, Y. Zhang, S. Xie, X. Zheng, P.-L. Ma, Y. Zhang, and T. J. Phillips, 2015: An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 1810–1827, doi:10.1002/2015MS000490.
Ma, H.-Y., and coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the Central U.S. J. Geophys. Res. Atmos., 123, 2888–2909.
Ma, P. -L., J. R. Gattiker, X. Liu, and P. J. Rasch, 2013: A novel approach for determining source-receptor relationships in model simulations: A case study of black carbon transport in northern hemisphere winter. Environmental Research Letters, 8 (2), doi:10.1088/1748-9326/8/2/024042.
Ma, P.-L., P. J. Rasch, H. Wang, K. Zhang, R. C. Easter, Jr., S. Tilmes, J. D. Fast, X. Liu, J. H. Yoon, and J. F. Larmarque, 2013: The role of circulation features on black carbon transport into the Arctic in the community Atmosphere Model version 5 (CAM5). J. Geophys. Res.. D. (Atmospheres), 118(10), 4657-4669, doi:10.1002/jgrd.50411.
Ma, P. -L., P. J. Rasch, J. D. Fast, R. C. Easter, W. I. Gustafson, Jr., X. Liu, S. J. Ghan, and B. Singh, 2014: Assessing the CAM5 physics suite in the WRF-Chem model: Implementation, resolution sensitivity, and a first evaluation for a regional case study. Geosci. Model Dev., 7, 755-778, doi:10.5194/gmd-7-755-2014.
Ma, P.-L., et al., 2015: How does increasing horizontal resolution in a global climate model improve the simulation of aerosol-cloud interactions? Geophys. Res. Lett., 42,5058-42,5065, doi:10.1002/2015GL064183.
Ma, Q., K. Wang, and M. Wild, 2015: Impact of geolocations of validation data on the evaluation of surface incident shortwave radiation from Earth System Models. J. Geophys. Res. Atmos., 120, 6825-6844, doi:10.1002/2014JD022572.
Ma, S., and Tianjun Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker Circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 3097–3118, doi: 10.1175/JCLI-D-15-0398.1.
Ma, X., Z. Jing, P. Chang, X. Liu, R. Montuoro, R. J. Small, F. O. Bryan, R. J. Greatbatch, P. Brandt, D. Wu, X. Lin, and L. Wu, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533-537, doi:10.1038/nature18640.
MacKinnon, J. A., et al., 2017: Climate process team on internal-wave driven ocean mixing. Bull. Amer. Meteor. Soc., 2429-2454, doi:10.1175/BAMS-D-16-0030-1.
MacMartin D. B., B. Kravitz, S. Tilmes, J. H. Richter, M. J. Mills, J.-F Lamarque, J. J. Tribbia, and F. Vitt, 2017: The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. JGR-Atmospheres, doi:10.1002/2017JD026868.
Magnusdottir, G., and R. Saravanan, 1999: The response of atmospheric heat transport to zonally averaged SST trends. Tellus, 51A, 815-832.
Magnusdottir, G., 2001: The modeled response of the mean winter circulation to zonally averaged SST trends. J. Climate, 14, 4166-4190.
Magnusdottor, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea-ice anomalies in CCM3. Part I: Main features and storm-track characteristics of the response. J. Climate, 17, 857-876.
Mahlstein, I., P. R. Gent, and S. Solomon, 2013: Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 5105-5110.
Mahmood, R., K. von Salzen, M. Flanner, M. Sand, J. Langner, H. Wang, and L. Huang, 2016: Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models. J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD024849.
Mahowald, N., and C. Luo, 2003: A less dusty future? Geophys. Res. Lett., 30, doi:10292003GL017880.
Mahowald, N., J. -F. Lamarque, X. Tie, and E. Wolff, 2006: Sea salt aerosol response to climate change: Last glacial maximum, pre-industrial and doubled carbon dioxide climates. JGR-Atmospheres, 111, D05303, doi:10.1029/2005JD006459.
Mahowald, N. M., D. R. Muhs, S. Levis, P. J Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111, D10202, doi:10.1029/2005JD006653.
Mahowald, N., M. Yoshioka, W. Collins, A. Conley, D. Fillmore, and D. Coleman, 2006: Climate response and radiative forcing from mineral aerosols during the glacial maximum, pre-industrial, current and double-carbon dioxide climates. Geophysical Research Lett., 33, L20705, doi:10.1029/2006GL026126.
Mahowald, N. M., 2007: Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophys. Res. Lett., 34, L18817, doi:10.1029/2007GL030472.
Mahowald, N. M., et al., 2010: Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmosp. Chem. Physics, 10, 10875-10893, doi:10.5194/acp-10-10875-2010.
Mahowald, N., K. Lindsay, D. Rothenberg, S. C. Doney, J. K. Moore, P. Thornton, J. T. Randerson, and C. D. Jones, 2011: Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences, 8, 387-414, doi:10.5194/bg-8-387-2011.
Mahowald, M., F. Lo, Y. Zheng, L. Harrison, C. Funk, and D. Lombardozzi, 2016: Leaf area index in Earth system models: Evaluation and projections. Earth System Dynamics, 7, 211-229.
Mahowald, N. M. J. T. Randerson, K. Lindsay, E. Munoz, S. C. Doney, P. Lawrence, S. Schlunegger, D. S. Ward, D. Lawrence, and F. M. Hoffman, 2017: Interactions between land use change and carbon cycle feedbacks. Global Biogeochem. Cycles, 31, 96-113, doi:10.1002/2016GB005374.
Mahowald, N. M., D. S. Ward, S. C. Doney, P. G. Hess, and J. T. Randerson, 2017: Are the impacts of land use on warming underestimated in climate policy? Environ. Res. Lett., 12, 094016, doi:10.1088/1748-9326/aa836d.
Mahajan S., R. Saravanan, and P. Chang, 2009: The role of the wind-evaporation-sea surface temperature (WES) feedback in air-sea coupled tropical variability. Atmospheric Research, 94, 19-36.
Mahajan, S., R. Saravanan, and P. Chang, 2010: Free and forced variability of the tropical Atlantic Ocean: Role of the wind–evaporation–sea surface temperature feedback. J. Climate, 23, 5958–5977, doi:10.1175/2010JCLI3304.1.
Makkonen, R., O. Seland, A. Kirkevag, T. Iversen, and J. E. Kristjansson, 2014: Evaluation of aerosol number concentrations in NorESM with improved nucleation parameterization. Atmos. Chem. Phys., 14, 5127-5152, doi:10.5194/acp-14-5127-2014.
Malmberg, A., A. Arellano, D. Edwards, N. Flyer, D. Nychka, and C. Wikle, 2009: Interpolating fields of carbon monoxide data using a hybrid statistical-physical model. The Annals of Applied Statistics, 2 (4), 1231-1248, doi:10.1214/08-AOAS168.
Maloney, E. D., and D. L. Hartmann, 2000: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015-2034.
Maloney, E. D., 2002: An intraseasonal oscillation composite lifecycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964-982.
Maloney, E. D., and J. T. Kiehl, 2002: Intraseasonal eastern Pacific precipitation and SST variations in a GCM coupled to a slab ocean model. J. Climate, 15, 2989-3007.
Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368-4386.
Maloney, E. D., and S. K. Esbensen, 2005: A modeling study of summertime east Pacific wind-induced ocean-atmosphere exchange in the intraseasonal oscillation. J. Climate, 18, 568-584.
Maloney, E. D., and D. B. Chelton, 2006: An assessment of the SST influence on surface wind stress in numerical weather prediction and climate models. J. Climate, 19, 2743-2762.
Maloney, E. D., and A. H. Sobel, 2007: Idealized hot spot experiments in a general circulation model. J. Climate, 20, 908-925.
Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711-729.
Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Modeling. Earth. Sys, 2 (5), 24 pp.
Maloney, E. D., and S.-P. Xie, 2013: Sensitivity of MJO activity to the pattern of climate warming. J. Adv. Modeling Earth Sys., 5, 32-47, doi:10.1029/2012MS000171.
Maloney, E. D., X. Jiang, S.-P. Xie, and J. J. Benedict, 2014: Process-oriented diagnosis of east Pacific warm pool intraseasonal variability. J. Climate, 27, 6305-6324.
Maloney, E. D., et al., 2014: North American climate in CMIP5 experiments. Part III: Assessment of 21st Century projections. J. Climate, 27, 2230-2270.
Maltrud, M., F. Bryan, and S. Peacock, 2009: Boundary impulse response functions in a century-long eddying global ocean simulation. Journal of Environmental Fluid Dynamics, doi:10.1007/s10652-009-9154-3.
Maltrud, M., S. Peacock, and M. Visbeck, 2010: On the possible long-term fate of oil released in the Deepwater Horizon incident, estimated using ensembles of dye release simulations. Environmental Research Letters, 5 (3), doi:10.1088/1748-9326/5/3/035301.
Mann, G. W., et al., 2014: Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity. Atmos. Chem. Phys., 14, 4679–4713, doi:10.5194/acp-14-4679-2014.
Mao, J. X. Shi, P. E. Thornton, F. M. Hoffman, Z. Zhu, and R. B. Myneni, 2015: Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009. Remote Sens., 5(3), 1484-1497, doi:10.2290/rs5031484.
Marcott, S. A., et al., 2011: Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl. Acad.Sci., 108, doi:10.1073/pnas.1104772108.
Marinov, I., S. C. Doney, and I. D. Lima, 2010: Response of ocean phytoplankton community structure to climate change over the 21st century: Partitioning the effects of nutrients, temperature and light. Biogeosciences, 7, 3941-3959, doi:10.5194/bg-7-3941-2010.
Marinov, I., S. C. Doney, I. D. Lima, K. Lindsay, J. K. Moore, and N. Mahowald, 2013: North-south asymmetry in the modeled phytoplankton response to climate change over the 21st century. Global Biogeochem. Cycles, 27, 1274–1290, doi:10.1002/2013GB004599.
Markle, B. R., E. J. Steig, C. Buizert, S. W. Shoenemann, C. M. Bitz, T. J. Fudge, J. B. Pedro, Q. Ding, T. Jones, J. W. C. White, and T. Sowers, 2016: Global atmospheric teleconnections during Dansgaard-Oeschger events. Nature Geo., doi:10.1038/ngeo2848.
Marsh, D. R., and R. R. Garcia, 2007: Attribution of decadal variability in lower-stratospheric tropical ozone. Geophys. Res. Lett, 34, L21807, doi:10.1029/2007GL030935.
Marsh, D. R., R. R. Garcia, D. E. Kinnison, B. A. Boville, F. Sassi, and S. C. Solomon, 2007: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306.
Marsh, D. R., D. Janches, W. Feng, and J. M. C. Plane, 2013: A global model of meteoric sodium. J. Geophys. Res., 118(19), 11,442–11,452, doi:10.1002/jgrd.50870.
Marsh, D. R., M. J. Mills, D. E. Kinnison, J. -F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM), 2013: J. Climate, 26(19), 7372-7391, doi:10.1175/JCLI-D-12-00558.1.
Marsh, D. R., J. –F. Lamarque, A. J. Conley, and L. M. Polvani, 2016: Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1 (WACCM). Geophys. Res. Lett., 43, 3928-3934, doi:10.1002/2016GL068344.
Marsha, A., S. R. Sain, M. J. Heaton, A. J. Monaghan, and O. V. Wilhelmi, 2016: Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA. Climatic Change, doi:10.1007/s10584-106-1775-1.
Marshall, C., D. J. Large, and N. G. Heavens, 2016: Coal derived rates of atmospheric dust deposition during the Permian. Gondwana Research, 31, 20–29, doi:10.1016/j.gr.2015.10.002.
Marson, J. M., I. Wainer, M. M. Mata, and Z. Liu, 2014: The impacts of deglacial meltwater forcing on the south Atlantic Ocean deep circulation since the Last Glacial Maximum. Cimate of the Past, 10, 1723-1734.
Marson, M., I. Wainer, and L. Mysak, 2015: Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR-CCSM3. Clim. Dyn., 1-13, 2015.
Martin, G., J. Brooke, W. Feng, M. Hopfner, M. Mills and J. Plane, 2017: Impacts of meteoric sulfur in the Earth's atmosphere. J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD027218.
Martin, M., R. E. Dickinson, and Z. -L. Yang, 1999: Use of a coupled land surface general circulation model to examine the impacts of doubled stomatal resistance on the water resources of the American southwest. J. Climate, 12, 3359-3375.
Marvel, K., B. Kravitz, and K. Caldeira, 2012: Geophysical limits to global wind power. Nature Climate Change, 3, 118-121, doi:10.1038/nclimate1683.
Masson-Delmotte, V., et al., 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Clim. Dyn., 26, 515-529.
Masson-Delmotte, V., et al., 2010: EPICA Dome C record of glacial and interglacial intensities. Quaternary Science Reviews, 29, 113-128.
Masson-Delmotte, V., et al., 2013: Information from Paleoclimate Archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change T. F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Massonnet, F., T. Fichefet, H. Goose, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. The Cryosphere, 6, 1383-1394, doi:10.5194/tc-6-1383-2012.
Matsumoto, K., et al., 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett., 31, L07303, doi:10.10292003GL018970.
Matthes, K., D. R. Marsh, R. R. Garcia, D. E. Kinnison, F. Sassi, and S. Walters, 2010: Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J. Geophys. Res., 115 (D18), D18110, doi:10.1029/2009JD013020
Matthes, K., K. Kodera, R. R. Garcia, Y. Kuroda, D. R. Marsh, and K. Labitzke, 2013: The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J. Geophys. Res. Atmos., 118, 4435-4447, doi:10.1002/jgrd.50424.
Mathis, J. T., J. N. Cross, W. Evans, and S. C. Doney, 2015: Ocean acidification in the surface waters of the Pacific-Arctic boundary regions. Oceanography, 28(2), 122-135.
Matus, A. V., L'Ecuyer, T. S., J. E. Kay, C. Hannay, and J. -F. Lamarque, 2015: The role of clouds in modulating global aerosol direct ratiative effects in spaceborne active observations and the Community Earth System Model. J. Climate, 28, 2986-3003.
Maycock, A. D., 2016: The contribution of ozone to future stratospheric temperature trends. Geophys. Res. Lett., 43, doi:10.1002/2016GL068511.
McClean, J. L., et al., 2011: A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modelling, 39(1-2), 10-30.
McCrary, R. R., 2008: Great Plains Drought in Simulations of the Twentieth Century. Masters Thesis, Colorado State University.
McCrary, R. R., and D. A. Randall, 2010: Great Plains drought in simulations of the Twentieth Century. J. Climate, 23, 2178-2196. doi:10.1175/2009JCLI3061.1.
McCusker, K. E., D. S. Battisti, and C. M. Bitz, 2012: The climate response to stratospheric sulfate injections and implications for addressing climate emergencies. J. Climate, 25, 3096-3116, doi:10.1175/jcli-d-11-01183.1.
McCusker, K. E., K. C. Armour, C. M. Bitz, and D. S. Battisti, 2014: Rapid and extensive warming following cessation of solar radiation management. Environ. Res. Lett., 9, doi:10.1088/1748-9326/9/2/024005.
McCusker, K. E., D. S. Battisti, and C. M. Bitz, 2015: Stratospheric sulfate aerosol injections cannot preserve the West Antarctic Ice Sheet. Geophys. Res. Lett., 42, 4989-4997, doi:10.1002/2015GL064314.
McDonald. S. E., F. Sassi, and A. J. Mannucci, 2015: SAM13/SD-WACCM-X simulations of ionospheric variability during northern winter 2009. Space Weather, 13, 568-584, doi:10.1002/2015SW001223.
McDowell, N., et al., 2008: Understanding the stable isotope composition of biosphere atmosphere CO2 exchange. EOS Transactions American Geophysical Union, 89, 94-95.
McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.
McGuire, A. D., et al., 2016: Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochem. Cycles, 30, doi:10.1002/2016GB0054505.
McInerney, J. M., D. R. Marsh, H.-L. Liu, S. C. Solomon, A. J. Conley, and D. P. Drob, 2018: Simulation of the August 21, 2017 solar eclipse using the Whole Atmosphere Community Climate Model – eXtended. Geophys. Res. Lett., 45, 3793, doi:10.1029/2018GL077723.
McKay, N. P., J. T. Overpeck, and B. L. Otto-Bliesner, 2011: The role of ocean thermal expansion in last interglacial sea level rise. Geophys. Res. Lett., 38, doi:10.1029/2011GL048280.
McKinley, G. A., et al., 2006: North Pacific carbon cycle response to climate variability on seasonal to decadal timescales. J. Geophys. Res-Oceans, 111, C07S06.
McKinley, G. A., D. J. Pilcher, A. R. Fay, K. Lindsay, M. C. Long, and N. S. Lovenduski, 2016: Timescales for detection of trends in the ocean carbon sink. Nature, 530, 469-472, doi:10.1038/nature16958.
McKinley, G. A., A. R. Fay, N. S. Lovenduski, and D. J. Pilcher, 2017: Natural variability and anthropogenic trends in ocean carbon uptake. Annual Review of Marine Science, 9, 125-150, doi:10.1146/annurev-marine-010816-060529.
McKinnon, K. A., A. Poppick, E. Dunn-Sigouin, an dC. Desser: 2017: An observational large ensemble to compare observed and modeled temperature trend uncertainty due to internal variability. J. Climate, doi:10.1175/JCLI-D-16-0905.1.1
Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 19, 4974-4991, doi:10.1175/2008JCLI1995.1.
Medeiros, B., C. Deser, R. A. Tomas, and J. E. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24(17), 4733-4740, doi:10.1175/2011JCLI3968.1.
Medeiros, B., D. L. Williamson, C. Hannay, and J. G. Olson, 2012: Southeast Pacific stratocumulus in the Community Atmosphere Model. J. Climate, 25, 6175-6192, doi:10.1175/JCLI-D-11-00503.1.
Medeiros, B., B. Stevens, and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Clim. Dyn., 44, 1957-1977, doi:10.1007/s00382-014-2138-0.
Medeiros, B., and L. Nuijens, 2016: Clouds at Barbados are representative of clouds across the trade-wind regions in observations and climate models. P. Natl. Acad. Sci., 113, E3062-E3070, doi:10.1073/pnas.1521494113.
Medeiros, B., D. L. Williamson, and J. G. Olson, 2016: Reference aquaplanet climate in the Community Atmosphere Model Version 5. J. Adv. Model. Earth Syst., 8, 406-424, doi:10.1002/2015MS000593.
Medlyn, B. E., et al., 2015: Using ecosystem experiments to improve vegetation models. Nature Clim. Change, 5, 528-534, doi:10.1038/nclimate2621.
Medlyn, B. E., et al., 2016: Using models to guide field experiments: A priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Glob Change Biol., 22, 2834–2851, doi:10.1111/gcb.13268.
Meehl, G. A., and J. M. Arblaster, 1998: The Asian-Australian monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model. J. Climate, 11, 1356-1385.
Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR Climate System Model to increased CO2 and the role of physical processes. J. Climate, 13, 1879-1898.
Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. P. Craig, 2000: Factors that affect the amplitude of El Niño in global coupled climate models. Clim. Dyn., 17, 515-526.
Meehl, G. A., and J. M. Arblaster, 2002: GCM sensitivity experiments for the Indian monsoon and tropospheric biennial oscillation transition conditions. J. Climate, 15, 923-944.
Meehl, G. A., and J. M. Arblaster, 2003: Mechanisms of projected future changes in south Asian monsoon precipitation. Clim. Dyn., 21, 659-675.
Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean-atmosphere dynamical processes in the tropical Indian and Pacific Ocean regions and the TBO. J. Climate, 16, 2138-2158.
Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Mechanisms of an intensified Hadley Circulation in response to solar forcing in the 20th century. The Hadley Circulation: Past, Present and Future, H. Diaz and R. Bradley, Eds., Cambridge University Press, 489-511.
Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the 20th century. J. Climate, 16, 426-444.
Meehl, G. A., C. Tebaldi, and D. Nychka, 2004: Changes in frost days in simulations of 21st century climate. Clim. Dyn., 23, 495-511.
Meehl, G. A., W. M. Washington, C. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings and 20th century climate. J. Climate, 17, 3721-3727.
Meehl, G. A., W. M. Washington, J. M. Arblaster, and A. Hu, 2004: Factors affecting climate sensitivity in global coupled models. J. Climate, 17, 1584-1596.
Meehl G.A., J. M. Arblaster, and C.Tebaldi, 2005: Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, L18719, doi:10.1029/2005GL023680 .
Meehl G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307, 1769-1772.
Meehl, G. A., J. M. Arblaster, D. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19, 2482-2495.
Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multi-decadal Pacific sea surface temperature anomalies. J. Climate, 19, 1605-1623.
Meehl, G. A., H. Teng, and G. W. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Clim. Dyn., 26, 549-566, doi:10.1007/s00382-005-0098-0.
Meehl, G. A., W. M. Washington, B. D. Santer, W. D. Collins, J. M. Arblaster, A. Hu, D. Lawrence, H. Teng, L. E. Buja, and W. G. Strand, 2006: Climate change projections for twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 2597-2616.
Meehl G. A., J. M. Arblaster, and C. Tebaldi, 2007: Contributions of natural and anthropogenic forcing to changes in temperature extremes over the United States. Geophys. Res. Letts., 34, L19709, doi:10.1029/2007GL030948.
Meehl, G. A., et al., 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 747-845.
Meehl, G. A., C. Tebaldi, H. Teng, and T. Peterson, 2007: Current and future U.S. weather extremes and El Niño. Geophys. Res. Lett., 34, L20704, doi:10.1029/2007GL031027.
Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a warmer climate. Cli. Dyn., 29, 779-790, doi:10.1007/s00382-007-0268-3.
Meehl G. A., J. M. Arblaster, G. W. Branstator, and H. van Loon, 2008: A coupled air-sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 2883-2897.
Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 2869-2882.
Meehl G. A., and J. M. Arblaster, 2009: A lagged warm event-like response to peaks in solar forcing in the Pacific region. J. Climate, 22, 3647-3660, doi:10.1175/2009JCLI2619.1.
Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009: Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325, 1114-1118, doi:10.1126/science.1172872.
Meehl, G. A., et al., 2009: Decadal prediction: Can it be skillful? Bull. Amer. Met. Soc., 90, 1467-1485.
Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780-792.
Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: The relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, doi:10.1029/2009GL040736.
Meehl, G. A., A. Hu, and C. Tebaldi, 2010: Decadal prediction in the Pacific region. J. Climate, 23, 2959-2973.
Meehl, G. A., and J. M. Arblaster, 2011: Decadal variability of Asian-Australian monsoon-ENSO-TBO relationships. J. Climate, 24, 4925-4940.
Meehl, G. A., J. M. Arblaster, J. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nature Climate Change, 1, 360-364, doi:10.1038/nclimate1229.
Meehl, G. A., J. M. Arblaster, and G. Branstator, 2012: Mechanisms contributing to the warming hole and the consequent U.S. east-west differential of heat extremes. J. Climate, doi:10.1175/JCLI-D-11-00655.1.
Meehl, G. A., J. M. Arblaster, J. Caron, H. Annamalai, M. Jochum, A. Chakraborty, and R. Murtugudde, 2012: Monsoon regimes and processes in CCSM4. Part 1: The Asian-Australian monsoon. J. Climate, 25, 2583-2608, doi:10.1175/JCLI-D-11-00184.1.
Meehl, G. A., A. Hu, C. Tebaldi, J. M. Arblaster, W. M. Washington, H. Teng, B. M. Sanderson, T. Ault, W. G. Strand, and J. B. White III, 2012: Relative outcomes of climate change mitigation related to temperature versus sea level rise. Nature Climate Change, 10.1038/NCLIMATE1529.
Meehl, G. A., and H. Teng, 2012: Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett., doi:10.1029/2012GL053423.
Meehl, G. A., et al., 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 3661-3683, doi: 10.1175/JCLI-D-11-00240.1.
Meehl, G. A., J. M. Arblaster, and D. R. Marsh, 2013: Could a future “Grand Solar Minimum” like the Maunder Minimum stop global warming? Geophys. Res. Lett., doi:10.1002/grl.50361.
Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Climate, 26, 7298-7310, doi: http://dx.doi.org/10.1175/JCLI-D-12-00548.1.
Meehl, G. A., and H. Teng, 2014: CMIP5 multi-model initialized decadal hindcasts for the mid-1970s shift and early-2000s hiatus and predictions for 2016-2035. Geophys. Res. Lett., doi:10.1002/2014GL059256.
Meehl, G. A., and H. Teng, 2014: Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophys. Res. Lett., doi:10.1002/2014GL061778.
Meehl, G. A., H. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4, 898-902, doi:10.1038/nclimate2357.
Meehl, G. A., J. M. Arblaster, and C. T. Y. Chung, 2015: Disappearance of the southeast U. S. "warming hole" with the late 1990s transition of the Interdecadal Pacific Oscillation. Geophys. Res. Lett., 42, 5564-5570, doin:10.1002/2015GL064586.
Meehl, G., A. H. Teng, N. Maher, and M. H. England, 2015: Effects of the Mt. Pinatubo eruption on decadal climate prediction skill. Geophys. Res. Lett., 42, 10,840-10,846, doi:10.1002/2015GL066608.
Meehl, G. A., A. Hu, B. D. Santer, and S. -P. Xie, 2016: Interdecadal Pacific Oscillation contributions to multi-decadal variability of 20th century globally averaged surface temperatures. Nature Climate Change, doi:10.1038/NCLIMATE3107.
Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nature Comms., doi:10.1038/NCOMMS11718.
Meehl, G. A., J. M. Arblaster, C. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea ice expansion between 2000-2014 driven by tropical Pacific decadal climate variability. Nature Geoscience, doi:10.1038/NEGO2751.
Meehl, G. A., C. Tebaldi, and D. Adams-Smith, 2016: U. S. daily temperature records past, present, and future. Proc. Nat. Acad. Sci., doi:10.1073/pnas.1606117113.
Meehl, G. A., C. Tebaldi, S. Tilmes, J. -F. Lamarque, S. Bates, A. Pendergrass, and D. Lombardozzi, 2018: Future heat waves and surface ozone. Env. Res. Lett., doi:10.1088/1748-9326/aabcdc.
Mei, R., and G. L. Wang, 2010: Rain follows the logging in Amazon? Interpretation of results from the CAM3-CLM3 model. Clim. Dyn., 34, 983-996, doi:10.1007/s00382-009-0592-x.
Mei, R., and G. L. Wang, 2012: Summer land-atmosphere coupling strength in the United States: Comparison among observations, reanalysis data and numerical models. Journal of Hydrometeorology, 13, 1010-1022, doi:10.1175/JHM-D-11-075.1.
Melott, A. L., B. C. Thomas, C. M. Laird, B. Neuenswander, and D. Atri, 2016: Atmospheric ionization by high-fluence, hard-spectrum solar proton events and their probable appearance in the ice core archive. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024064.
Melton, J. R., et al., 2013: Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10, 753-788, doi:10.5194/bg-10-753-2013.
Meng, L., and S. M. Quiring, 2010: Examining the influence of spring soil moisture anomalies on summer precipitation in the U. S. Great Plains using the Community Atmosphere Model version 3. J. Geophys. Res., 115, D21118, doi:10.1029/2010JD014449.
Meng, L., P. Hess, N. Mahowald, J. Yavitt, W. J. Riley, Z. M. Subin, D. M. Lawrence, S. Swenson, J. Jauhiainen, and D. Fuka, 2012: Sensitivity of wetland methane emissions to model assumptions: Application and model testing against site observations. Biogeosciences, 9, 2793-2819.
Meng, L., R. Paudel, P. G. Hess, and N. M. Mahowald, 2015: Seasonal and interannual variability in wetland methane emissions simulated by CLM4Me' and CAM-chem and comparisons to observations of concentrations. Biogeosciences, 12, 4029-4049, doi:10.5194/bg-12-4029-2015.
Meraner, K., and H. Schmidt, 2016: Transport of nitrogen oxides through the winter mesopause in HAMMONIA. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024136.
Merkel, A. W., D. R. Marsh, A. Gettelman, and E. J. Jensen, 2009: On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models. Atmos. Chem. Phys., 9, 8889-8901.
Merkel, U., M. Prange, and M. Schulz, 2010: ENSO variability and teleconnections during glacial climates. Quaternary Science Reviews, 29, 86-100.
Merkel, A. W., J. W. Harder, D. R. Marsh, A. K. Smith, J. M. Fontenla, and T. Woods, 2011: The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophys. Res. Lett., 38, L13802, doi:10.1029/2011GL047561.
Merrifield, A., F. Lehner, S. –P. Xie, and C. Deser, 2017: Removing circulation effects to assess central U.S. land‐atmosphere interactions in the CESM Large Ensemble. Geophys. Res. Lett., 44, 9938–9946, doi:10.1002/2017GL074831.
Merryfield, W. J., M. M. Holland, and A. H. Monahan, 2008: Multiple equilibria and abrupt transitions in Arctic summer sea ice extent. In Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr. Ser., 180. E. T. DeWeaver, C. M. Bitz, and L.-B. Tremblay, Eds., pp. 151-174, AGU, Washington, D. C.
Merz, N., C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker, 2013: Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations. Climate of the Past, 9, 2433-2450, doi:10.5194/cp-9-2433-2013.
Merz, N., C. C. Raible, A. Born, H. Fischer, and T. F. Stocker 2014: Dependance of Eemian Greelannd temperature reconstructions on ice sheet topography changes. Climate of the Past, 10, 1221-1238, doi:10.5194/cp-10-1221-2014.
Mickelson, S., Bertini, A., Strand, G., Paul, K., Nienhouse, E., Dennis, J., and Vertenstein, M.: A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6), 2020, Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020
Mikaloff Fletcher, S. E., et al., 2006: Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glogal Biogeochemical Cycles, 20, GB2002.
Mikaloff Fletcher, S. E., et al., 2007: Inverse estimates of the oceanic sources and sinks of natural CO2 and their implied oceanic transport. Global Biogeochem. Cycles, 21, GB1010, 10.1029/2006GB002751.
Milker, Y., R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kucera, 2013: Global and regional sea surface temperature trends during Marine Isotope Stage 11. Climate of the Past, 9, 2231-2252, doi:10.5194/cp-9-2231-2013.
Millan, L., S. Wang, N. Livesey, D. E. Kinnison, H. Sagawa, and Y. Kasai, 2015: Stratospheric and mesospheric HO2 observations from the aura microwave limb sounder. Atmos. Chem. Phys., 15, 2889-2902, doi:10.5194/acp-15-2889-2015.
Miller, G. H., et al., 2012: Abrupt onset of Little Ice Age cold triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, doi:10.1029/2011GL050168.
Miller, N. B., M. D. Shupe, J. T. M. Lenaerts, J. E. Kay, G. de Boer and R. Bennartz, 2018: Process-based model evaluation using surface energy budget observations in central Greenland. J. Geophys. Res.: Atmospheres, 123, doi:10.1029/2017JD027377.
Mills, M. J., O. B. Toon, R. Turco, D. E. Kinnison, and R. R. Garcia, 2008: Catastrophic ozone loss following a regional nuclear conflict. Proc. Nat. Acad. Sci., 105, 5307-5312, doi:10.1073/pnas.0710058105.
Mills, M. J., O. B. Toon, J. Lee-Taylor, and A. Robock, 2014: Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict. Earth's Future, 2(4), 161–176, doi:10.1002/2013EF000205.
Mills, M. J., A. Schmidt, R. Easter, S. Solomon, D. E. Kinnison, S. J. Ghan, R. R. Neely III, D. R. Marsh, A. Conley, C. G. Bardeen, and A. Gettelman, 2016: Global volcanic aerosol properties derived from emissions, 1990-2014 using CESM1 (WACCM). J. Geophys. Res., 121, 2332-2348, doi:10.1002/2015JD024290.
Mills M. J. , J. H. Richter, S. Tilmes, B. Kravitz, D. MacMartin, S. Glanville, A. Schmidt, J. J. Tribbia, A. Gettelman, C. Hannay, J. T. Bacmeister, D. E. Kinnison, F. Vitt, and J.-F. Lamarque, 2017: Radiative and chemical response to interactive stratospheric aerosols in fully coupled CESM1(WACCM). JGR-Atmospheres, doi:10.1002/2017JD027006.
Milroy, D. J., A. H. Baker, D. M. Hammerling, J. M. Dennis, S. A. Mickelson, and E. J. Jessup, 2016: Towards characterizing the variability of statistically consistent Community Earth System Model simulations. Procedia Computer Science (ICCS 2016), 80, 1589-1600.
Milroy, D. J., A. H. Baker, D. M. Hammerling, and E. R. Jessup, 2018: Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0). Geoscientific Model Development, 11, 697-711, doi:10.5194/gmd-11-697-2018.
Mioduszewski, J., S. Vavrus, and M. Wang, 2018: Diminishing Arctic sea ice promotes stronger surface winds. J. Climate, 31, 8101-8119, doi:10.1175/JCLI-D-18-0109.1.
Mirin, A. A., and W. B. Sawyer, 2005: A scalable implementation of a finite-volume dynamical core in the Community Atmosphere Model. International Journal of High Performance Computing Applications, 19 (3), 203-212.
Mirin, A. A., and P. H. Worley, 2007: Extending Scalability of the Community Atmosphere Model. Journal of Physics, 78, 1-7.
Mirin, A. A., and P. H. Worley, 2012: Improving the Performance Scalability of the Community Atmosphere Model. International Journal for High Performance Computer Applications, 26 (1), 17-30.
Mishra, S. K., 2008: The impact of changes in temporal resolution and convective parameterization on the simulation of tropical climate in NCAR CAM3 GCM Ph. D. thesis. IISc Bangalore, 216 pp.
Mishra, S. K., J. Srinivasan, and R. S. Nanjundiah, 2008: The impact of time step on the intensity of ITCZ in aqua-planet GCM. Mon. Wea. Rev., 136, 4077-4091.
Mishra, S. K., and J. Srinivasan, 2010: Sensitivity of the simulated precipitation to changes in convective relaxation time scale. Ann. Geophys., 28, 1827-1846.
Mishra, S. K., M. A. Taylor, D. N. Ramachandran, P. H. Lauritzen, H. M. Tufo, and J. J. Tribbia, 2011: Evaluation of the HOMME dynamical dore in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, pp.4037-4055. Doi:10.1175/2011JCLI3860.1.
Mishra, S. K., A. Anand, S. Bhagat, and J.T. Fasullo, 2018: Importance of the resolution of surface topography in Indian monsoon simulation. J. Climate, doi:10.1175/JCLI-D-17-0324.1.
Misios, S., et al., 2016: Solar signals in CMIP-5 simulations: Effects of atmosphere-ocean coupling. Q. J. R. Meteorol. Soc., 142, 928-941, doi:10.1002/qj.2695.
Misumi, K., et al., 2011: Mechanisms controlling dissolved iron distribution in the North Pacific: A model study. J. Geophys. Res. Biogeosci., 116, G03005, doi:10.1029/2010JG001541.
Misumi, K. K. Lindsay, J. K. Moore, S. C. Doney, D. Tsumune, and Y. Yoshida, 2013: Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations. Global Biogeochem. Cycles, 27, 450-562, doi:10.1002/gbc.20039.
Misumi, K., K. Lindsay, J. K. Moore, S. C. Doney, F. O. Bryan, D. Tsumune, and Y. Yoshida, 2014: The iron budget in ocean surface waters in the 20th and 21st centuries: projections by the Community Earth System Model version 1. Biogeosciences, 11, 33-55, doi:10.5194/bg-11-33-2014.
Mitchell, D. M., et al., 2015: Solar signals in CMIP5 simulations: The stratospheric pathway. QJR Meteorol. Soc., 141, 2390-2403, doi:10.1002/qj.2530.
Mitchell, D., et al., 2017: Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geoscientific Model Development, 10, 571-583.
Miyakawa, T., Y. N. Takayabu, T. Nasuno, H. Miura, M. Satoh, and M. W. Moncrieff, 2012: Convective momentum transport by rainbands within a MJO in a global nonhydrostatic model. J. Atmos. Sci., 69, 1317-1338, doi:10.1175/JAS-D-11-024.1.
Modak, A., and G. Bala, 2014: Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in solar radiation management. Atmos. Chem. Phys., 14, 7769-7779.
Modak, A., G. Bala, L. Cao, and K. Caldeira, 2016: Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change? Environmental Research Letters, doi:10.1088/1748-9326/11/4/044013.
Modak, A., G. Bala, K. Caldeira, and L. Cao, 2018: Does shortwave absorption by methane influence its effectiveness? Clim. Dyn., doi:10.1007/s00382-018-4102-x.
Mohtadi, M., M. Prange, D. W. Oppo, R. De Pol-Holz, U. Merkel, X. Zhang, S. Steinke, and A. Lückge, 2014: North Atlantic forcing of tropical Indian Ocean climate. Nature, 509, 76-80, doi:10.1038/nature13196.
Mohtadi, M., M. Prange, and S. Steinke, 2016: Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature, 533, 191-199, doi:10.1038/nature17450.
Molders, N. C. L. Bruyere, S. Gende, and M. A. Pirhalla, 2014: Assessment of the 2006-2012 climatological fields and mesoscale features from regional downscaling of CESM data by WRF-chem over Southeast Alaska. Atmospheric and Climate Sciences, 4, 589-613, doi:10.4236/acs.2014.44053.
Molders, N., and S. Gende, 2015: Anticipated inversion and visibility conditions over Glacier Bay with a changing climate. J. Environ. Protection, 6, 515-536, doi:10.4236/jep.2015.65048.
Molders, N., D. Khordakova, S. Gende, and G. Kramm, 2015: Uncertainty of wind power usage in complex terrain - a case study. Atmospheric and Climate Science, 5, 228-244, doi:10.4236/acs.2015.53017.
Molg, T., M. Renold, M. Vuille, N. J. Cullen, T. F. Stocker, and G. Kaser, 2006: Indian Ocean zonal mode activity in a multicentury integration of a coupled AOGCM consistent with climate proxy data. Geophys. Res. Lett, 33, L18710.
Monaghan, A. J., D. H. Bromwich, and D. P. Schneider, 2008: Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophys. Res. Lett, 35, L07502, doi:10.1029/2007GL032630.
Monaghan, A. J., K. M. Sampson, D. F. Steinhoff, K. C. Ernst, K. L. Ebi, B. Jones, and M. H. Hayden, 2016: The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti. Climatic Change, 1-14, doi:10.1007/s10584-016-1679-0.
Moncrieff, M. W., and C. Liu, 2006: Representing convective organization in prediction models by a hybrid strategy. J. Atmos. Sci., 63, 3404-3420.
Moncrieff, M. W., D. E. Waliser, and J. Caughey, 2012: Progress and direction in tropical convection research. Bull. Amer. Meteorol. Soc., 93, ES65-ES69, doi:10.1175/BAMS-D-11-02053.1.
Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. E. Shapiro, G. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteorol. Soc., 93, 1171-1187, doi:10.1175/BAMS-D-11-00233.1.
Moncrieff, M. W., and T. P. Lane, 2015: Long-lived convective systems in a low-convective inhibition environment. Part II: Downshear propagation. J. Atmos. Sci., 72, 4319-4436, doi:10.1175/JAS-D-15-0074.1.
Moncrieff, M. W., and D. E. Waliser, 2015: Organized convection and the YOTC project, seamless prediction of the Earth-System: From minutes to months, (G. Brunet, S. Jones, and P. M. Ruti, Eds.) WMO-No. 1156, ISBN 978-92-63-11156-2, 283-309.
Moncrieff, M. W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling and dynamically based parameterization of organized tropical convection for global climate models. J. Atmos. Sci., 74, 1363-1380, doi:10.1175/JAS-D-16-0166.1.
Monier, E., J. R. Scott, A. P. Sokolov, C. E. Forest, and C. A. Schlosser, 2013: An integrated assessment modeling framework for uncertainty studies in global and regional climate change: The MIT IGSM-CAM (version 1.0). Geosci. Model Dev., 6, 2063-2085, doi:10.5194/gmd-6-2063-2013.
Monier, E., A. P. Sokolov, C. A. Schlosser, J. R. Scott, and X. Gao, 2013: Probabilistic projections of 21st century climate change over Northern Eurasia. Environ. Res. Lett., 8, 045008, doi:10.1088/1748-9326/8/4/045008.
Monier, E., and X. Gao, 2015: Climate change impacts on extreme events in the United States: An uncertainty analysis. Climatic Change, 131, 67-81, doi:10.1007/s10584-013-1048-1.
Monier, E., X. Gao, J. R. Scott, A. P. Sokolov, and C. A. Schlosser, 2015: A framework for modeling uncertainty in regional climate change. Climatic Change, 131, 51-66, doi:10.1007/s10584-014-1112-5.
Monier, E., L. Xu, and R. Snyder, 2016: Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation. Environ. Res. Lett., 11, 055001, doi:10.1088/1748-9326/11/5/055001.
Monks, S. A., et al., 2015: Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmos. Chem. Phys., 15, 3575-3603, doi:10.5194/acp-15-3575-2015.
Moore, J. C., et al., 2014: Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario. J. Geophys. Res., 119, 567-583, doi:10.1002/2013JD021060.
Moore, J. K., S. C. Doney, K. Lindsay, N. Mahowald, and A. F. Michaels, 2006: Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus, 58B, 560-572.
Moore, J. K., and S. C. Doney, 2007: Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation, Global Biogeochem. Cycl., 21, GB2001, doi:10.1029/2006GB002762.
Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model CESM1(BGC). J. Climate, 26(23), 9291-9321, doi: 10.1175/JCLI-D-12-00566.1.
Moore, J. K., W. Fu, F. Primeau, G. L. Britten, K. Lindsay, M. Long, S. C. Doney, N. Mahowald, F. Hoffman, and J. T. Randerson, 2018: Sustained climate warming drives declining marine biological productivity. Science, 359(6380), 1139–1143, doi:10.1126/science.aao6379.
Morgenstern, O., et al., 2010: Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. J. Geophys. Res., 115, D00M03, doi:10.1029/2009JD013347.
Morales Betancourt, R., and Nenes, A., 2014: Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a Global Climate Model. Atmos.Chem.Phys., 14, 4793–4807.
Morcrette, C. J., and coauthors, 2018: Introduction to CAUSES: Near-surface temperature errors in NWP and climate model 5-day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683.
Morgenstern, O., et al., 2010: Review of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.
Morrill, C., A. J. Wagner, B. L. Otto-Bliesner, and N. Rosenbloom, 2011: Evidence for significant climate impacts in monsoonal Asia at 8.2 ka from multiple proxies and model simulations. Journal of Earth Environment, 2, 426-441.
Morrill, C., A. N. LeGrande, H. Renssen, P. Bakker, and B. L. Otto-Bliesner, 2013: Model sensitivity to North Atlantic freshwater forcing at 8.2 ka. Climate of the Past, 9, 955-968.
Morrill, C., E. M. Ward, A. J. Wagner, B. L. Otto-Bliesner, and N. Rosenbloom, 2014: Large sensitivity to freshwater forcing location in 8.2ka simulations. Paleoceanography, 29, doi:10.1002/2014PA002669.
Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmospheric Model (CAM3), Part I: Formulation and numerical tests. J. Climate, 21, 3642-3659.
Morrison, H., et al., 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layer cloud. Quart. J. Roy. Met. Soc., 135, 1003-1019, doi:10.1002/qj.415.
Morss, R., O. Wilhelmi, G.A. Meehl, and L. Dilling, 2011: Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Ann. Rev. of Environment and Resources, 36, 1-25.
Mouw, C. B., J. A. Yoder, and S. C. Doney, 2012: Impact of phytoplankton community size on a linked global ocean optical and ecosystem model. J. Mar. Systems, 89(1), 61-75, doi:10.1016/j.jmarsys.2011.08.002.
Msadek, R., W. E. Johns, S. G. Yeager, G. Danabasoglu, T. L. Delworth, and A. Rosati, 2013: The Atlantic Meridional Heat transport at 26.5oN and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J. Climate, 26, 4335-4356, doi:10.1175/JCLI-D-12-00081.1.
Mu, M., and G. J. Zhang, 2006: Energetics of Madden Julian oscillations in the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3). J. Geophys. Res., 111, D24112, doi:10.1029/2005JD007003.
Mu, M., and J. G. Zhang, 2008: Energetics of the Madden Julian Oscillation in the NCAR CAM3: A composite view. J. Geophys. Res., 113, D05108, doi:10.1029/2007JD008700.
Mu, Q., C. S. Jackson, and P. L. Stoffa, 2004: A multivariate empirical-orthogonal-function-based measure of climate model performance. J. Geophys. Res., 109, D15101, doi:10.10292004JD004584.
Mudryk, L. R., P. J. Kushner, and C. Derksen, 2014: Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Clim. Dyn., 43, 345-359, doi:10.1007/s00382-013-1954-y.
Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919-926, doi:10.1002/2016GL071789.
Mulitza, S., M. Prange, J. -B. Stuut, M. Zabel, T. von Dobeneck, A. C. Itambi, J. Nizou, M. Schulz, and G. Wefer, 2008: Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography, 23, PA4206, doi:10.1029/2008PA001637.
Mulitza, S., C. M. Chiessi, E. Schefuß, J. Lippold, D. Wichmann, B. Antz, A. Mackensen, A. Paul, M. Prange, K. Rehfeld, M. Werner, T. Bickert, N. Frank, H. Kuhnert, J. Lynch-Stieglitz, R. C. Portilho-Ramos, A. O. Sawakuchi, M. Schulz, T. Schwenk, R. Tiedemann, M. Vahlenkamp, and Y. Zhang, 2017: Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography, 32, 622-633, doi:10.1002/2017PA003084.
Munoz, E., W. Weijer, S. A. Grodsky, S. Bates, and I. Wainer, 2012: Mean and variability of the Tropical Atlantic Ocean in the CCSM4. J. Climate, 25, 4860-4882.
Murakami, S., R. Ohgaito, A. Abe-Ouchi, M. Crucifix, and B. L. Otto-Bliesner, 2009: Global scale energy and freshwater balance in glacial climate: A comparison of three PMIP2 LGM simulations. J. Climate, 21, 5008-5033.
Muri, H., J. E. Kristjánsson, T. Storelvmo, and M. A. Pfeffer, 2014: The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res. Atmos., 119, 4174–4191, doi:10.1002/2013JD021063.
Muri, H., U. Niemeier, and J. E. Kristjansson, 2015: Tropical rainforest response to marine sky bightening climate engineering. Geophys. Res. Lett., 42, 2951-2960, doi:10.1002/2015GL063363.
Murphy, L. N., D. B. Kirk-Davidoff, N. Mahowald, and B. L. Otto-Bliesner, 2009: A numerical study of the climate response to lowered Mediterranean Sea level during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 41-59.
Murphy, L. N., W. D. Collins, and W. J. Riley, 2012: Local and remote climate impacts from expansion of woody biomass for bioenergy feedstock in the Southeastern US. J. Climate, doi:10.1175/JCLI-D-11-00535.1.
Murphy, L. N., A. C. Clement, S. Albani, N. M. Mahowald, P. K. Swart, and M. M. Arienzo, 2014: Simulated changes in atmospheric dust in response to a Heinrich stadial. Paleoceanography, 29 (1), 30-43. DOI: 10.1002/2013PA002550.
Murray, D. S., A. E. Carlson, B. S. Singer, F. S. Anslow, F. He, M. Caffee, S. A. Marcott, Z. Liu, and B. L. Otto-Bliesner, 2012: Northern Hemisphere forcing of the last deglaciation in souther Patagonia. Geology, 40, 631-634.
Murray-Tortarolo, G., et al., 2016: The carbon cycle in Mexico: Past, present, and future of C stocks and fluxes. Biogeosciences, 13, 223-238, doi:10.5194/bg-13-223-2016.
Muthyala, R., G. Bala, and A. Nalam, 2018: Regional scale analysis of climate extremes in an SRM geoengineering simulation. Part 1: Precipitation Extremes. Current Science, 114 (5), 1024-1035.
Muthyala, R., G. Bala, A. Nalam, 2018: Regional scale analysis of climate extremes in an SRM geoengineering simulation. Part 2: Temperature Extremes. Current Science, 114 (5), 1036-1045.
Myhre, G., et al., 2007: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atm. Chem. Phys., 7, 3081-3101.
Myhrvold, N. P., and K. Caldeira, 2012: Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environmental Research Letters, 7, 014019. doi:10.1088/1748-9326/7/1/014019.
Nace, T. E., P. A. Baker, G. S. Dwyer, C. G. Silva, C. A. Rigsby, S. J. Burns, L. Giosan, B. Otto-Bliesner, Z. Liu, and J. Zhu, 2014: The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeography, Paleoclimatology, Paleoecology, 1415, 3-13.
Nagase, H., D. E. Kinnison, A. K. Petersen, F. Vitt, and G. P. Brasseur, 2015: Effects of injected ice particles in the lower stratosphere on the Antarctic ozone hole. Earth's Future, 3, 143-158, doi:10.1002/2014EF000266.
Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational flow test-cases for the advection problems on the sphere. J. Comput. Phys., 229(23), 8868-8887.
Najjar, R. G., et al., 2007: Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: Results from Phae II of the Ocean-Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007, doi:10.1029/2006GB002857.
Nalam, A., G. Bala, and A. Modak, 2017: Effects of Arctic Geoengineering on Tropical Precipitation. Clim. Dyn., doi:10.1007/s00382-017-3810-y.
Nasrollahi, N., A. AghaKouchak, L. Cheng, L. Damberg, T. J. Phillips, C. Miao, K. Hsu, and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 2847-2864, doi:10.1002/2014WR016318.
Ndarana, T., D. W. Waugh, L. M. Polvani, G. J. P. Correa, and E. P. Gerber, 2012: Antarctic ozone depletion and trends in tropopause Rossby wave breaking. Atmos. Sci. Lett., 13, 164-168, doi:10.1002/asl.384.
Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 5904-5924.
Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 5150-5168, doi:10.1175/JCLI-D-12-00236.1.
Neelin, J. D. M. Munnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Nat. Act. Sci., 103, 6110-6115.
Neelin, J. D., 2011: Climate Change and Climate Modeling. Cambridge Univ. Press, Cambridge, UK.
Neely, R., R., et al., 2013: Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett., 40, doi:10.1002/grl.50263.
Neely, R. R., III, P. Yu, K. H. Rosenlof, O. B. Toon, J. S. Daniel, S. Solomon, and H. L. Miller, 2014: The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer. J. Geophys. Res.-Atmos., 119(3), 1571–1579, doi:10.1002/2013JD020578.
Neely, R. R., III, D. R. Marsh, K. L. Smith, S. M. Davis, and L. Polvani, 2014: Biases in Southern Hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys. Res Lett, doi:10.1002/2014GL061627.
Negron-Juarez, R. I., C. D. Koven, W. J. Riley, R. G. Knox, and J. Q. Chambers, 2015: Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 earth system models. Environmental Research Letters, 10, 064017, doi:10.1088/1748-9326/10/6/064017.
Negron-Juarez, R. I., W. J. Riley, C. D. Koven, R. G. Knox, P. G. Taylor, and J. Q. Chambers, 2015: The rainfall sensitivity of tropical net primary production in CMIP5 20th and 21st century simulations. J. Climate, 28, 9313-9331, doi:10.1175/JCLI-D-14-00675.1.
Nerem, R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters and G. T. Mitchum, 2018: Climate-change–driven accelerated sea-level rise detected in the altimeter era. PNAS, doi:10.1073/pnas.1717312115.
Neukom, R., et al., 2014: Inter-hemispheric temperature variability over the last millennium. Nature Climate Change, 4, 362-267, doi:10.1038/CLIMATE2174.
Nevison, C. D., D. E. Kinnison, and R. F. Weiss, 2004: Stratospheric influences on the tropospheric seasonal cycles of nitrous oxide and chlorofluorocarbons. Geophys. Res. Lett., 31, L20103, doi:10.1029/2004GL020398.
Nevison, C.D., N.M. Mahowald, S.C. Doney, I.D. Lima, and N. Cassar, 2008: Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning. Biogeosciences, 5, 875-889.
Nevison, C. D., N. M. Mahowald, S. C. Doney, I. D. Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley, 2008: Contribution of ocean, fossil fuel, land biosphere and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2. J. Geophys. Res. Biogeosci., 113, G01010, doi:10.1029/2007JG000408.
Nevison, C. D., P.G. Hess, S. Riddick and D. Ward, 2016: Denitrification, leaching and river nitrogen export in the Community Land Model. J. Adv. Model. Earth Syst.,8, doi: 10.1002/2015MS000573.
Nevison, C. D., et al., 2016: Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen (APO): Present day performance and future projection. Geophys. Res. Lett., 43.
Newman, M., et al., 2016: The Pacific Decadal Oscillation, Revisited. J. Climate, 29, 4399-4427, doi:10.1175/JCLI-D-15-0508.1.
Newnham, D., M. Clilverd, C. Rodger, K. Hendrickx, L. Megner, A. Kavanagh, A. Seppala, P. Verronen, M. Andersson, D. Marsh, T. Kovacs, W. Feng and J. Plane, 2018: Observations and modelling of increased nitric oxide in the Antarctic polar middle atmosphere associated with geomagnetic storm driven energetic electron precipitation. J. Geophys. Res.-Space Physics, doi:10.1029/2018JA025507.
Newsom, E., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 2597-2618, doi:10.1175/JCLI-D-15-0513.1.
Nicholson, D., R. H. R. Stanley, and S. C. Doney, 2014: The triple oxygen isotope tracer of primary productivity in a dynamic ocean model. Global Biogeochem. Cycles, 28, 538–552, doi:10.1002/2013GB004704.
Nicolsky D. J., V. E. Romanovsky, V. A. Alexeev, and D. M. Lawrence, 2007: Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys. Res. Lett., 34, L08501, doi:10.1029/2007GL029525.
Nieder, H., H. Winkler, D. R. Marsh, and M. Sinnhuber, 2014: NOx production due to energetic particle precipitation in the MLT region: Results from ion chemistry model studies. J. Geophys. Res.-Sp. Phys., 119, doi:10.1002/2013JA01904.
Niedermeyer, E. M., M. Prange, S. Mulitza, G. Mollenhauer, E. Schefuß, and M. Schulz, 2009: Extratropical forcing of Sahel aridity during Heinrich stadials. Geophys. Res. Lett., 36, L20707, doi:10.1029/2009GL039687.
Nigam, S., and C. Chung, 2000: ENSO surface winds in CCM3 simulation: Diagnosis of errors. J. Climate, 13, 3172-3186.
Nigam, S., C. Chung, and E. De Weaver, 2000: ENSO diabatic heating in ECMWF and NCEP reanalyses, and NCAR CCM3 simulation. J. Climate, 13, 3152-3171.
Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP Simulations: A mixed assessment. J. Climate, 19, 815-837.
Niu, G. -Y., and Z. -L. Yang, 2003: The Versatile Integrator of Surface and Atmosphere processes (VISA). Part II: Evaluation of three topography-based runoff schemes. Global and Planetary Change, 38, 191-208.
Niu, H., H. Niu, S. Kang, H. Wang, R. Zhang, X. Lu, Y Qian, R. Paudyal, S. Wang, X. Shi, and X. Yan, 2018: Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetal Plateau. Atmos. Chem. Phys., 18, 6441-6460, doi:10.5194/acp-18-6441.
Nohara, D. Y. Yoshida, K. Misumi, and M. Ohba, 2013: Dependency of climate change and carbon cycle on CO2 emission pathways. Env. Res. Let., 8, 014047, doi:10.1088/1748-9326/8/1/014047.
Nong, G. T., R. G. Najjar, D. Seidov, and W. H. Peterson, 2000: Simulation of ocean temperature change due to the opening of Drake Passage. Geophys. Res. Lett., 27 (17), 2689-2692.
Norris, J. R., and C. P. Weaver, 2000: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14, 2540-2550.
Notaro, M., Y. Wang, Z. Liu, R. Gallimore, and S. Levis, 2008: Combined statistical and dynamical assessment of simulated vegetation-rainfall interactions in North Africa during the mid-Holocene. Global Change Biol., 14, 347-368, doi:10.111/j.1365-2486.2007.001495.x.
Nuijens, L., B. Medeiros, I. Sandu, and M. Ahlgrimm, 2015: Observed and modeled patterns of co-variability between low-level cloudiness and the structure of the trade-wind layer. J. Adv. Model. Earth Syst., 7, 1741-1764, doi:10.1002/2015MS000483.
Nuijens, L., B. Medeiros, I. Sandu, and M. Ahlgrimm, 2015: The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability. J Adv. Model. Earth Syst., 7, 600-616, doi:10.1002/2014MS000390.
Nusbaumer, J., T. E. Wong, C. Bardeen, and D. no one, 2017: Evaluating hydrological processes in the CAM5 using stable isotope ratios of water. J. Adv. Model. Earth Syst., 9, doi:10.1002/2016MS000839.
Nusbaumer, J., and D. Noone, 2018: Numerical Evalulation of the Modern and Future Origins of Atmospheric River Moisture over the West Coast of the United States. J. Geophys. Res. – Atmospheres, 123, 6423-6422, doi: 10.1029/2017JD028081.
O'Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. Taylor, S. M. Hagos, L. R. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 9313-9333. doi:10.1175/JCLI-D-13-00005.1.
O'Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, 2014: Reducing the computational cost of the ECF using a nuFFT: A fast and objective probability density estimation method, Comput. Stat. Data An., 79, 222-234. doi:10.1016/j.csda.2014.06.002
O’Brien, T. A., W. D. Collins, K. Kashinath, O. Rubel, S. Byna, J. Gu, H. Krishnan, and P. A. Ullrich, 2016: Resolution dependence of precipitation statistical fidelity in Hindcast simulations. J. Adv. Model. Earth Syst., 8, 976-990, doi:10.1002/2016MS00671.
Offermann, D., M. Jarisch, M. Donner, J. Oberheide, I. Wohltmann, R. Garcia, D. Marsh, B. Naujokat, and P. Winkler, 2005: Middle atmosphere summer duration as an indicator of long-term circulation changes. Adv. Space Res., 35 (8), 1416-1422.
Offermann, D., O. Goussev, C. Kalicinsky, R. Koppmann, K. Matthes, H. Schmidt, W. Steinbrecht, and J. Wintel, 2015: A case study of multi-annual temperature oscillations in the atmosphere: Middle Europe. J. Atm. Sol.-Terr. Phys., 135, 1-11, doi:10.1016/j.jastp.2015.10.003.
Oh, J. H., H. S. Chaudhari, and R. H. Kripalani, 2005: Impact of IODM and ENSO on the East Asian monsoon: Simulations through NCAR Community Atmospheric Model. Korean Journal of Agricultural and Forest Meteorology, 7, 240-249.
Oh, J. -H., X. Jiang, D. E. Waliser, M. W. Moncrieff, and R. H. Johnson, 2015: Convective momentum transport associated with the MJO based on a reanalysis dataset. J. Climate, 28, 5763-5782, doi:10.1175/JCLI-D-14-00570.1.
Oh, J.- H., X. Jiang, D. E. Waliser, M. W. Moncrieff, R. H. Johnson, and P. Ciesielski, 2015: A momentum budget analysis of westerly wind events associated with the MJO during DYNAMO. J. Atmos. Sci., 72, 3780-3799, doi:10.1175/JAS-D-15-0044.1.
Ohba, M., J. Tsutsui, and D. Nohara, 2014: Statistical parameterization expressing ENSO variability and reversibility in response to CO2 concentrations changes. J. Climate, 27, 398-410.
Okumura, Y. M., C. Deser, A. Hu, A. Timmermann, and S. -P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 1424-1445.
Oleson, K. W., and G. B. Bonan, 2000: The effects of remotely sensed plant functional type and leaf area index on simulations of boreal forest surface fluxes by the NCAR Land Surface Model. J. Hydrometeorology, 1, 431-446.
Oleson, K. W., G. B. Bonan, C. Schaaf, F. Gao, Y. Jin, and A. Strahler, 2003: Assessment of global climate model land surface albedo using MODIS data. Geophys. Res. Lett., 30(8), doi:10.10292002GL016749.
Oleson, K. W., et al., 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.
Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. 1. Formulation and evaluation for two cities. J. Appl. Meteorol. Clim., 47, 1038-1060.
Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008: An urban parameterization for a global climate model. 2. Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteorol. Clim., 47, 1061-1076.
Oleson, K. W., et al., 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.
Oleson, K. W., G. B. Bonan, and J. Feddema, 2010: The effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett., 37, L03701, doi:10.1029/2009GL042194.
Oleson, K. W., G. B. Bonan, J. J. Feddema, M. Vertenstein, and E. Kluzek, 2010: Technical description of a urban parameterization for the Community Land Model (CLMU). NCAR Technical Note NCAR/TN-480+STR, 169 pp.
Oleson, K.W., et al., 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, 257 pp.
Oleson, K.W., G. B. Bonan, J. Feddema, and T. Jackson, 2011: An examination of urban heat
island characteristics in a global climate model. Int. J. Climate, 31, 1848-1865, doi:10.1002/joc.2201.
Oleson, K.W., 2012: Contrasts between urban and rural climate in CCSM4 CMIP5 climate
change scenarios. J. Climate, 25, 1390-1412, doi:10.1175/JCLI-D-11-00098.1.
Oleson, K. W., et al., 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-503+STR, 434 pp.
Oleson, K. W., A. Monaghan, O. Wilhelmi, M. Barlage, N. Brunsell, J. Feddema, L. Hu, and D. F. Steinhoff, 2015: Interactions between urbanization, heat stress, and climate change. Climatic Change, 129, 525-541, doi:10.1007/s10584-013-0936-8.
Oleson, K. W., G. B. Anderson, B. Jones, S. A. McGinnis, and B. Sanderson, 2018: Avoided climate impacts of urban and rural heat and cold waves over the U. S. using large climate model ensembles for RCP8.5 and RCP4.5. Climatic Change, 146, 377-392, doi:10.1007/s10584-015-1504-1.
Oliveira, P. J. C., E. L. Davin, S. Levis, and S. I. Seneviratne, 2011: Vegetation-mediated impacts of trends in global radiation on hydrology: A global sensitivity study. Global Change Biol., 17, 3453-3467, doi:10.1111/j.1365-2486.2011.02506.x.
Oman, L. D., et al., 2010: Multi-model assessment of the factors driving the ozone evolution over the 21st century. J. Geophys. Res., 115, D24306, doi:10.1029/2010JD014362.
O'Neill, B., J. Done, A. Gettelman, P. Lawrence, F. Lehner, J.-F. Lamarque, L. Lin; A. Monaghan, K. Oleson, X. Ren, B. Sanderson, C. Tebaldi, M. Weitzel, Y. Xu, B. Anderson, M. Fix, and S. Levis, 2017: The Benefits of Reduced Anthropogenic Climate changE (BRACE): A synthesis. Climatic Change, doi: 10.1007/s10584-017-2009-x
Orr, J. C., et al., 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681-686.
Orr, J. C., et al., 2017: Biogeochemical protocols and idagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 10, 2169-2199, doi:10.5194/gmd-10-2168-2017.
Osborne, J. M., et al., 2015: Reconciling precipitation with runoff: Observed hydrological change in the mid-latitudes. Journal of Hydrometeorology, doi:10.1175/JHM-D-15-0055.1.
Otto-Bliesner, B. L., 1999: El Niño/La Niña and Sahel precipitation during the middle Holocene. Geophys. Res. Let., 26, 87-90.
Otto-Bliesner, B. L., and E. C. Brady, 2001: Tropical Pacific variability in the NCAR Climate System Model. J. Climate, 14, 3587-3601.
Otto-Bliesner B. L., E. C. Brady, and C. Shields, 2002: Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model. J. Geophys. Res., 107 (D2), 4019, doi:10.10292001JD000821.
Otto-Bliesner, B. L., E. C. Brady, S. Shin, Z. Liu, and C. Shields, 2003: Modeling El Niño and its teleconnections during the last glacial-interglacial cycle. Geophys. Res. Let., 30, 2198, doi:10.1029/2003GL018553.
Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last glacial maximum and holocene climate in CCSM3. J. Climate, 19 (11), 2526-2544.
Otto-Bliesner, B. L., S. Marshall, J. Overpeck, G. Miller, A. Hu, and CAPE Last Interglacial Project Members, 2006: Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311, 1751-1753.
Otto-Bliesner, B. L., R. Tomas, E. C. Brady, C. Ammann, Z. Kothavala, and G. Clauzet, 2006: Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings. J. Climate, 19 (11), 2567-2583.
Otto-Bliesner, B. L., C. D. Hewitt, T. M. Marchitto, E. Brady, A. Abe-Ouchi, M. Crucifix, S. Murakami, and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2model intercomparisons and data constraints. Geophys. Res. Lett, 34, L12706, doi:10.1029/2007GL029475.
Otto-Bliesner, et al., 2009: A comparison of PMIP-2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at Last Glacial Maximum. Climate Dynamic, 32, 799-815.
Otto-Bliesner, B. L., and E. C. Brady, 2010: The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last glacial maximum experiments. Quaternary Science Reviews, 29, 56-73.
Otto-Bliesner, B. L., N. Rosenbloom, E. J. Stone, N. McKay, D. Lunt, E. C. Brady, and J. T. Overpeck, 2013: How well do models reproduce Last Interglacial warmth? New model-data comparisons. Philosophical Transactions of the Royal Society, 371, 20130097, 10.1098.
Otto-Bliesner, B. L., J. M. Russell, P. U. Clark, Z. Liu, J. T. Overpeck, B. Konecky, P. deMenocal, S. E. Nicholson, F. He, and Z. Lu, 2014: Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science, 346, 1223-1227.
Otto-Bliesner, B., E. Brady, J. Fasullo, A. Jahn, L. Landrum, S. Stevenson, N. Rosenbloom, A. Mai, and G. Strand, 2016: Climate variability and change since 850 C.E.: An ensemble approach with the Community Earth System Model (CESM). BAMS, 97, 735-754, doi:10.1175/BAMS-D-14-00233.1.
Otto-Bliesner, B. L., A. Jahn, R. Feng, E. C. Brady, A. Hu, and M. Lofverstrom, 2017: Arctic gateways and a stronger Atlantic Ocean conveyer during the Pliocene. Geophys. Res. Lett., 44, doi:10.1002/2016GL071805.
Overpeck, J. T., B. L. Otto-Bliesner, G. H. Miller, D. R. Muhs, R. Alley, and J. T. Kiehl, 2006: Paleoclimatic evidence for future ice sheet instability and rapid sea level rise. Science, 311, 1747-1750.
Ovtchinnikov, M., T. Ackerman, R. Marchand, and M. Khairoutdinov, 2006: Evaluation of the Multiscale Modeling Framework Using Data from the Atmospheric Radiation Measurement Program. J. Climate, 19, 1716-1729.
Owens, M. J., M. Lockwood, E. Hawkins, I. Usoskin, G. Jones, L. Barnard, A. Schurer; J. T. Fasullo, 2017: The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. J. Space Weather Space Clim., 7, A33, doi:10.1051/swsc/2017034.
Paciorek, C. J., D. Stone, M. Wehner, 2018: Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather and Climate Extremes, 20, 69-80, doi:10.1016/j.wace.2018.01.002.
Pagani, M., et al., 2006: Arctic hydrology during global warming at the Paleocene/Eocene thermal maximum. Nature, 442, 671-675, doi:10.1038/nature05043.
PAGES Hydro2k Consortium, 2017: Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 13, 1851-1900.
PaiMazumder, D., J. Miller, Z. Li, J. E. Walsh, A. Etringer, J. McCreight, T. Zhang, and N. Mölders, 2008: Evaluation of Community Climate System Model soil temperatures using observations from Russia. Theor. Appl. Climatol., 94, 187-213.
PaiMazumder, D., and N. Mölders, 2008: Sources of discrepancy between CCSM simulated and gridded observation-based soil-temperature over Siberia: The influence of site density and distribution. Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, 1351-1357.
Palevsky, H. I., and S. C. Doney, 2018: How choice of depth horizon influences the estimated spatial patterns and global magnitude of ocean carbon export flux. Geophys. Res. Lett., 45, 4171–4179, doi:10.1029/2017GL076498.
Pall, P., C. M. Patricola¬, M. F. Wehner, D. A. Stone, C. Paciorek, and W. D. Collins, 2017: Diagnosing anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather and Climate Extremes, 17, 1-6. 10.1016/j.wace.2017.03.004.
Pan, L. L., J. C. Wei, D. E. Kinnison, R. R. Garcia, D. J. Wuebbles, and G. P. Brasseur, 2007: A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region. J. Geophys. Res., 112, D09316, doi:10.1029/2006JD007792.
Pan, L. L., R. Grotjahn, and J. Tribbia, 2009: Sources of CAM3 temperature bias during northern winter from diagnostic study of the temperature bias equation. Clim. Dyn., 35, 1411-1427, doi:10.1007/s00382-009-0608-6.
Pan, L. L., et al., 2015: Bi-modal distribution of tropical free troposphere ozone over the western Pacific revealed by airborne observations. Geophys. Res. Lett., 42, 7844-7851, doi:10.1002/2015GL065562.
Pan, X., 2009: The impact of mean climate on ENSO simulation and prediction. Ph.D. George Mason University.
Pan X., B. Huang, and J. Shukla, 2010: Sensitivity of the tropical Pacific seasonal cycle and ENSO to changes in mean state induced by a surface heat flux adjustment in CCSM3. Clim. Dyn., doi:10.1007/s00382-010-0923-y.
Paolino, D. A., J. L. Kinter III, B. P. Kirtman, D. Min, and D. M. Straus, 2015: The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Climate 25, 1007-1021.
Parazoo, N. C., R. Commane, S. C. Wofsy, C. D. Koven, C. Sweeney, D. M. Lawrence, J. Lindaas, R. Y. W. Chang, and C. E. Miller, 2016: Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1601085113.
Parazoo, N., C. D. Koven, D. M. Lawrence, V. Romanovsky, and C. E. Miller, 2018: Detecting the permafrost carbon feedback: Talik formation and increased cold-season respiration as precursors to sink-to-source transitions. The Cryosphere, 12, 123-144, doi:10.5194/tc-12-123-2018.
Park, G. -H., R. Wanninkhof, S. C. Doney, T. Takahashi, K. Lee, R. A. Feely, C. L. Sabine, J. Triñanes, and I. D. Lima, 2010: Variability of global net air-sea CO2 fluxes over the last three decades using empirical relationships. Tellus, 62B, 352-368, doi:10.1111/j.1600-0889.2010.00498.x.
Park, M., W. J. Randel, D. E. Kinnison, R. R. Garcia, and W. Choi, 2004: Seasonal variations of methane, water vapor and nitrogen oxides near the tropopause: Satellite observations and model simulations. J. Geophys. Res., 109, D03302, doi:10.1029/2003JD003706.
Park, M., et al., 2013: Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM. J. Geophys. Res., 118, 1-17, doi:10.1029/2012JD018327.
Park, S., M. A. Alexander, and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19, 6243-6261.
Parsons, D., et al., 2017: THORPEX research and the science of prediction. Bull. Amer. Meteor. Soc., 98, 807-830, doi:10.1175/BAMS-D-14-00025.1.
Parsons, L. A., G. Loope, J. Overpeck, T. Ault, R. Stouffer, J. Cole, 2017: Temperature and precipitation variance in CMIP5 simulations and paleoclimate records of the past millennium. J. Climate, doi:10.1175/JCLI-D-16-0863.1.
Patra, P. K., J. K. Moore, N. Mahowald, M. Uematsu, S. C. Doney, and T. Nakazawa, 2007: Exploring the sensitivity of interannual basin-scale air-sea CO2 fluxes to variability in atmospheric dust deposition using ocean carbon models and atmospheric CO2 inversions. J. Geophys. Res. Biogeosci., 112, G02012, doi:10.1029/2006JG000236.
Patrinos, A., 2005: Preface. International Journal of High Performance Computing Applications, 19 (3), 175.
Paudel, R., N. M. Mahowald, P. G. M. Hess, L. Meng, and W. J. Riley, 2016: Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environmental Research Letters, 11, doi:10.1088/1748-9326/11/3/034020.
Pauling, A. G., C. M. Bitz, I. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and the Antarctic sea ice to fresh water from ice shelves in an earth system model. J. Climate, 29, 1655-1672, doi:10.1175/JCLI-D-15-0501.1.
Pauling, A. G., I. J. Smith, P. J. Langhorne, and C. M. Bitz, 2017: Time-dependent freshwater input from ice shelves: Impacts on Antarctic Sea Ice and the Southern Ocean in an earth system model. Geophys. Res. Lett., 44(20), 10,454–10,461, doi:10.1002/2017GL075017.
Paulot, F., D. J. Jacob, M. T. Johnson, T. G. Bell, A. R. Baker, W. C. Keene, I. D. Lima, S. C. Doney, and C. A. Stock, 2015: Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations. Global Biogeochem. Cycles, 29, 1165-1178, doi:10.1002/2015GB005106.
Pausata, F. S. R., C. Li, J. J. Wettstein, K. H. Nisancioglu, and D. S. Battisti, 2009: Changes in atmospheric variability in a glacial climate and the impacts on proxy data: A model intercomparison. Clim. Past, 5, 489-502.
Pausata, F. S. R., A. Grini, R. Caballero, R. Hannachi, and O. Seland, 2015: High-latitude volcanic eruptions in the Norwegian Earth System Model: The effect of different initial conditions and of the ensemble size. Tellus B, 67, 26728.
Paytan, A., K. R. M. Mackey, Y. Chen, I. D. Lima, S. C. Doney, N. Mahowald, R. Labiosa, and A. F. Post, 2009: Toxicity of atmospheric aerosols on marine phytoplankton. Proc. Nat. Acad. Sci. USA, 106, 4601-4605, 10.1073/pnas.0811486106.
Peacock, S., 2012: Projected 21st century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Climate, 25, 4405-4429.
Pearson, B., B. Fox-Kemper, S. D. Bachman, and F. O. Bryan, 2017: Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modelling, 115, 42-58.
Pearson, B., and B. Fox-Kemper, 2018: Log-normal turbulence dissipation in global ocean models. Physical Review Letters, 120(9):094501.
Peck, E. D., C. E. Randall, V. L. Harvey, and D. R. Marsh, 2015: Simulated solar cycle effects on the middle atmosphere: WACCM3 versus WACCM4. J. Adv. Model. Earth Syst., 07, doi:10.1002/2014MS000387.
Pedatella, N. M., H. -L. Liu, and A. D. Richmond, 2012: Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model. J. Geophys. Res., 117, A06327, doi:10.1029/2012JA017855.
Pedatella, N. M., H.-L. Liu, A. D. Richmond, A. Maute, and T. -W. Fand, 2012: Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratospheric warmings and their influence on the low-latitude ionosphere. J. Geophys. Res., 117, A08326, doi:10.1029/2012JA017858.
Pedatella, N. M., and H. -L. Liu, 2013: Tidal variability in the mesosphere and lower thermosphere due to the El Nino Southern Oscillation. Geophys. Res. Lett., 39, L19802, doi:10.1029/2012GL053383.
Pedatella, N. M., and H.-L. Liu, 2013: Influence of the El Nino Southern Oscillation on the middle and upper atmosphere. J. Geophys Res., 118, 2744-2755, doi:10.1002/jgra.50286.
Pedatella, N., K. D. Raeder, J. L. Anderson, and H. Liu, 2013: Application of data assimilation in the Whole Atmosphere Community Climate Model to the study of day-to-day variability in the middle and upper atmosphere. Geophys. Res. Lett., 40, 4469-4474, DOI: 10.1002/grl.50884.
Pedatella, N. M., et al., 2014: The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models. J. Geophys. Res.-Sp. Phys., doi:10.1002/2013JA019421.
Pedatella, N. M., 2014: Observations and simulations of the ionospheric lunar tide: Seasonal variability. J. Geophys. Res. Space Physics, 119, 5800-5806, doi:10.1002/2014JA020189.
Pedatella, N. M., H. -L. Liu, F. Sassi, J. Lei, J. L. Chau, and X. Zhang, 2014: Ionosphere variability during the 2009 SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability. J. Geophys. Res. Space Physics, 119, 3828–3843, doi:10.1002/2014JA019849.
Pedatella, N. M., K. Raeder, J. L. Anderson, and H.-L. Liu, 2014: Ensemble data assimilation in the Whole Atmosphere Community Climate Model. J. Geophys Res-Atmos, 119, doi:10.1002/2014JD021776.
Pedatella, N. M., J. Oberheide, E. K. Sutton, H. -L. Liu, J. L. Anderson, and K. Raeder, 2016: Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere. J. Geophys. Res., 121, 3621-3633, doi:10.1002/2016JA022528.
Pedatella, N. M., and H. –L. Liu, 2018: The influence of internal atmospheric variability on the ionosphere response to a geomagnetic storm. Geophys. Res. Lett., 45, doi:10.1029/2018GL077867.
Pedatella, N. M., H. -L. Liu, D. R. Marsh, K. Raeder, J. L. Anderson, J. L. Chau, L. P. Goncharenko, and T. A. Siddiqui, 2018: Analysis and hindcast experiments of the 2009 sudden stratospheric warming in WACCMX+DART. J. Geophys. Res. Space Physics, 123, 3131, doi:10.1002/2017JA025107.
Pedro, J. B., H. C. Bostock, C. M. Bitz, F. He, M. J. Vandergoes, E. J. Steig, B. Chase, C. E. Krause, S. O. Rasmussen, and G. Cortese, 2016: The spatial extent and dynamics of the Antarctic cold reversal. Nature Geo., 9, 51-55, doi:10.1038/nge02580.
Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Env Res Letters, 9, 8pp, doi:10.1088/1748-9326/9/3/034018.
Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemispheric atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J. Climate, 27, 244-264.
Peings, Y., and G. Magnusdottir, 2014: Role of sea surface temperature: Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013. Climate Dyn., doi: 10.1007/s00382-014-2368-1.
Peings, Y., and G. Magnusdottir, 2015: Wintertime atmospheric response to Atlantic multidecadal variability: Effect of stratospheric representation and ocean–atmosphere coupling. Clim. Dyn., doi:10.1007/s00382-015-2887-4.
Peings, Y., G. Simpkins, and G. Magnusdottir, 2016: Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J. Geophys. Res. Atmos., 121, 2571–2592, doi:10.1002/2015JD024107.
Peings, Y., J. Cattiaux, S. Vavrus, and G. Magnusdottir, 2017: Arctic change and resulting impact on the midlatitude atmospheric circulation in the CESM Large Ensemble Project. J. Climate, 30, 5943-5960, doi:10.1175/JCLI-D-16-0340.1.
Peings, Y., J. Cattiaux, S. Vavrus, and G. Magnusdottir, 2018: Projected squeezing of the wintertime North Atlantic jet. Env. Res. Lett., 13, 074016, doi:10.1088/1748-9326/aacc79.
Peltier, W. R., and G. Vettoretti, 2014: Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climat: A “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett., doi:10.1002/2014GL061413.
Pendergrass, A. G., K. A. Reed, and B. Medeiros, 2016: The link between extreme precipitation and convective organization in a warming climate; Global radiative-convection equilibrium simulation. Geophys. Res. Lett., 43, doi:10.1002/2016GL071285.
Pendergrass, A. G., C. Deser, 2017: Climatological characteristics of typical daily precipitation. J. Climate, 30, 5985-6003, doi:10.1175/JCLI-D-16-0684.
Pendergrass, A. G., R. Knutti, F. Lehner, C. Deser, and B. M. Sanderson, 2017: Precipitation variability increases in a warmer climate. Scientific Reports, 7(1), 17966, doi:10.1038/s41598-017-17966-y.
Pendleton, S. L., G. Miller, R. A. Anderson, S. E. Crump, Y. Zhong, A. Jahn, A. Geirsdottir, 2017: Episodic neoglacial expansion and rapid 20th Century retreat of a small ice cap on Baffin Island, Arctic Canada. Climate of the Past, 13, 1527–1537, doi:10.5194/cp-2017-27.
Peng, B., K. Guan, M. Chen, D. M. Lawrence, Y. Pokhrel, A. Suyker, T. Arkebauer, and Y. Lu, 2018: Improving maize growth processes in the Community Land Model: Implementation and evaluation. Agric. Forest Met., 250-251, 64-89, doi:10.1016/j.agrformet.2017.11.012.
Penner, J., J. Quaas, T. Storelvmo, T. Takemura, O. Boucher, H. Guo, A. Kirkevåg, J. E. Kristjánsson, and Ø. Seland, 2006: Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys., 6, 3391-3405.
Penner, J. E., L. Xu, and M. Wang, 2011: Satellite methods underestimate indirect climate forcing by aerosols. Proc. Nat. Acad. Sci., 108, 13,404–13,408.
Penner, J. E., C. Zhou, L. Xu, and M. Wang, 2011: Reply to Quaas et al.: Can satellites be used to estimate indirect climate forcing by aerosols? Proc. Nat. Acad. Sci., Proc., doi:10.1073/pnas.1116135108.
Penner, J. E., C. Zhou, and L. Xu, 2012: Consistent estimates from satellites and models for the first aerosol indirect forcing. Geophys. Res. Lett., 39, L13810, doi:10.1029/2012GL051870.
Perket, J., M. G. Flanner, and J. E. Kay, 2014: Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM. J. Geophys. Res. Atmos., 119, 1356-1362, doi:10.1002/2013JD021139.
Perkins, S. E., and E. M. Fischer, 2013: The usefulness of different realizations for the model evaluation of regional trends in heatwaves. Geophys. Res. Lett., 40, doi:10.1002/2013GL057833.
Perovich D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107 (C10), doi:10.10292000JC000438.
Persson, P. O. G., J. -W. Bao, and S. Michelson, 2002: Mesoscale modeling of the wintertime boundary layer structure over the Arctic pack ice. Preprints: 15th Symposium on Boundary Layers and Turbulence, Wadeningen, The Netherlands, Amer. Meteor. Soc., 335-338.
Peltier, W. R., and G. Vettoretti, 2014: Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A kicked salt oscillator in the Atlantic. Geophys. Res. Lett., 7306-7313, doi:10.1002/2014GL061413.
Petersen, S. V., C. R. Tabor, K. C. Lohmann, C. J. Poulsen, K. W. Meyer, S. J. Carpenter, K. Matsunaga, S. Y. Smith, and N. D. Sheldon, 2016: Temperature and salinity of the Late Cretaceous western interior seaway. Geology, doi:10.1130/G38311.1.
Pettit, J., C. E. Randall, D. R. Marsh, C. Bardeen, L. Qian, C. H. Jackman, T. N. Woods, A. Coster, and V. L. Harvey, 2018: Effects of the September 2005 solar flares and solar proton events on the middle atmosphere in WACCM. J. Geophys. Res. Space Physics, doi:10.1029/2018JA025294.
Philippon-Berthier, G., S. J. Vavrus, J. E. Kutzbach, and W. F. Ruddiman, 2010: The role of plant physiology and dynamic vegetation feedbacks in the climate response to low GHG concentrations typical of late stages of previous interglacials. Geophys. Res. Lett., 37, L08705, doi:10.1029/2010GL042905.
Phillips, T. J., and C. J. W. Bonfils, 2015: Koppen bioclimatic evaluation of CMIP historical climate simulations. Environmental Research Letters, 10, doi:10.1088.1748-9326-10-6-064005.
Phillips, T. J., S. A. Klein, H.-Y. Ma, Q. Tang, S. Xie, I. N. Williams, J. A. Santanello, D. R. Cook, and M. S. Torn, 2017: Using ARM observations to evaluate climate model simulations of land-atmosphere coupling on the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 122, 11,524–11,548.
Piao, S. L., et al., 2012: The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 9, 3571-3586.
Pierazzo, E., A. N. Hahmann, and L. C. Sloan, 2003: Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology, 3 (1), 99-118.
Pierazzo, E., R. R. Garcia, D. E. Kinnison, D. R. Marsh, J. Lee-Taylor, and P. J. Crutzen, 2010: Ozone perturbation from medium-size asteroid impacts in the ocean. Earth Planet. Sci. Lett., 299, 263-273. doi:10.1016/j.epsl.2010.08.036.
Pierce, D. W., T. P. Barnet, K. AchutaRao, P. Gleckler, B. Santer, J. Gregory, and W. M. Washington, 2006: Anthropogenic warming of the oceans: Observations and model results. J. Climate, 19, 1873-1900.
Pierce, D. W., et al., 2008: Attribution of declining Western U.S. snowpack to human effects. J. Climate, 21, 6425-6444.
Pitman, A. J., and M. Zhao, 2000: The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys. Res. Lett., 27, 1267-1270.
Plane, J. M. C., W. Feng, E. Dawkins, M. P. Chipperfield, J. Hoffner, J. Janches, and D. R. Marsh, 2014: Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere. Geophys. Res. Lett. 41, 4753-4760, doi:10.1002/2014GL060334.
Plane, J. M. C., W. Feng, and E. Dawkins, 2015: The mesosphere and metals: Chemistry and changes. Chem. Rev., doi:10.1021/cr500501m.2015.
Plane J. M. C., J. C. Gomez Martin, W. Feng, and D. Janches, 2016: Silicon chemistry in the mesosphere and thermosphere. J. Geophys. Res., 121, 3718-3728, doi:10.1002/2015JD024691.
Polito, P. S., O. T. Sato, and I. Wainer, 2008: Height variability from the MIROC – IPCC model for the 20th century compared to that of the TOPEX/POSEIDON altimeter. Ocean Modelling, 24, 73-91, doi:10.1016/j.ocemod.2008.04.007.
Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. -W. Son, 2011: Stratospheric ozone depletion: The main driver of 20th Century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795-812, doi: 10.1175/2010JCLI3772.1.
Polvani, L. M., M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, doi:10.1029/2011GL046712.
Polvani, L. M., and S. Solomon, 2012: The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcing. J. Geophys. Res., 117, D17102, doi:10.1029/2012JD017719.
Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, doi:10.1002/grl.50578.
Polvani, L. M., S. J. Camargo, and R. R. Garcia, 2016: The importance of the Montreal Protocol in mitigating the potential intensity of tropical cyclones. J. Climate, 29, 2275-2289.
Polyakov, I. V., V. A. Alexeev, U. S. Bhatt, E. V. Polyakova, and X. Zhang, 2010: North Atlantic warming: Patterns of long-term trend and multidecadal variability. Clim. Dyn., doi:10.1007/s00382-008-0522-3.
Pongratz, J. D. B. Lobell, L. Cao, and K. Caldeira, 2012: Crop yields in a geoengineered climate. Nature Climate Change, 2, 101-105, doi:10.1038/nclimate1373.
Portilho-Ramos, R. C., C. M. Chiessi, Y. Zhang, S. Mulitza, M. Kucera, M. Siccha, M. Prange, and A. Paul, 2017: Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt.
Scientific Reports, 7, 1561, doi:10.1038/s41598-017-01629-z.
Poulsen, C. J., and J. Zhou, 2013: Sensitivity of Arctic climate variability to mean state: Insights from the Cretaceous. J. Climate, doi:10.1175/JCLI-D-12-00825.1.
Prado, L. F., I. Wainer, C. M. Chiessi, M.-P. Ledru, and B. Turcq, 2013: A mid-holocene climate reconstruction for eastern South America. Climate of the Past, 9, 2117-2133.
Prado, L. F., I. Wainer, and C. Chiessi, 2013: Mid-holocene PMIP / CMIP5 model results: Intercomparison for the South American Monsoon System. Holocene, 23, 1915-1920.
Prados-Roman, C., et al., 2015: Iodine oxide in the global marine boundary layer. Atmos. Chem. Phys., 15, 583-593, doi:10.5194/acp-15-583-2015.
Prange, M., 2008: The low-resolution CCSM2 revisited: New adjustments and a present-day control run. Ocean Science, 4, 151-181.
Pritchard, M. S., and R. C. J. Somerville, 2009: Empirical orthogonal function analysis of the diurnal cycle of precipitation in a multi-scale climate model. Geophys. Res. Lett., 36, L05812, doi:10.1029/2008GL036964.
Privalsky, V., and V. Yushkov, 2015: Validation of CMIP5 models for the contiguous United States. Atmosph. Sci. Lett., 16, 461-464, doi:10.1002/asl.582.
Proedrou, E., and K. Hocke, 2014: A traveling atmospheric disturbance generated by a soil colour change in a high-resolution climate model experiment. Geoscience Letters, 1(1), 13, doi:10.1186/s40562-014-0013-9.
Proedrou, E., and K. Hocke, 2016: Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet. Earth, Planets, and Space, 68, 96.
Proshutinsky, A., et al., 2011: Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project. Oceanography, 24, 102-113, doi:10.5670/oceanog.2011.61.
Pu, B., and R. E. Dickinson, 2012: Examining vegetation feedbacks on global warming in the Community Earth System Model. J. Geophys. Res., 117, D20110, doi:10.1029/2012JD017623.
Pu, B., and R. E. Dickinson, 2014: Hydrological changes in the climate system from leaf responses to increasing CO2. Clim. Dyn., 42 (7-8), 1905-1923, doi:10.1007/s00382-013-1781-1.
Purich, A., M. H. England, W. Cai, Y. Chikamoto, A. Timmermann, J. C. Fyfe, L. Frankcombe, G. A. Meehl, and J. M. Arblaster, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 8931-8948, doi:10.1175/JCLI-D-0440.1.
Qian, L., D. Marsh, A. Merkel, S. C. Solomon, and R. G. Roble, 2013: Effect of trends of middle atmosphere gases on the mesosphere and thermosphere. J. Geophys. Res. Space Physics, 118, 38463855, doi:10.1002/jgra.50354.
Qian, L., A. G. Burns, S. S. Solomon, A. K. Smith, J. McInerney, L. Hunt, D. Marsh, H. Liu, M. Mlynczak, F. Vitt, 2018: Temporal variability of atomic hydrogen from the mesopause to the upper thermosphere. J. Geophys. Res., doi: 10.1002/2017JA024998.
Qian, L., A. G. Burns, S. C. Solomon, and W. Wang, 2018: Temporal variability of atomic hydrogen from the mesopause to the upper thermosphere. J. Geophys. Res. Space Physics, 123, 1006, doi:10.1002/2017JA024998.
Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948-2004. Part I: Forcing data and evaluation. J. Hydrometeorology, 7, 953-975.
Qian, T., A. Dai, and K. E. Trenberth, 2007: Hydroclimate trends in the Mississippi River basin from 1948-2004. J. Climate, 20, 4599-4614.
Qian, Y., H. Wang, R. Zhang, M. G. Flanner, and P. J. Rasch, 2014: A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ. Res. Lett., 9, doi:10.1088/1748-9326/9/6/064001.
Qian, Y., et al., 2015: Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst., 07, 382-411, doi:10.1002/2014MS000354.
Qin, H., M. S. Pritchard, G. J. Kooperman, and H. Parishani, 2018: Global effects of superparameterization on hydrothermal land‐atmosphere coupling on multiple timescales. Journal of Advances in Modeling Earth Systems, 10, 530–549, doi:10.1002/2017MS001185.
Qin, Y., Y. Lin, S. Xu, H.-Y Ma, and S. Xie, 2018: A diagnostic PDF cloud scheme to improve subtropical low clouds in NCAR Community Atmosphere Model (CAM5). Journal of Advances in Modeling Earth Systems, 10, 320–341, doi:10.1002/2017MS001095.
Qu, X., and A. Hall, 2006: Assessing snow albedo feedback in simulated climate change. J. Climate, 19 (11), 2617-2630.
Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014a: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Clim. Dyn., 42, 2603–2626, doi:10.1007/s00382-013-1945-z.
Quaas, J., et al., 2009: Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697-8717.
Quan, X. W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 1999-2013.
Quan, X. W., M. P. Hoerling, L. Smith, J. Perlwitz, T. Zhang, A. Hoell, K. Wolter, and J. Eischeid, 2017: Extreme California rains during winter 2015/16: A change in El Nino teleconnection? Bull. Amer. Meteor. Soc., 98 (12), S51-S53, doi:10.1175/BAMS-D-17-0118.1.
Quan, X. W., M. Hoerling, J. Perlwitz, and H. Diaz, 2018: On the time of emergence of tropical width change J. Climate, doi:10.1175/JCLI-D-18-0068.1 .
Rachmayani, R., M. Prange, and M. Schulz, 2015: North African vegetation-precipitation feedback in early and mid-Holocene climate simulationa with CCSM-DGVM. Climate of the Past, 11, 175-185, doi:10.5194/cp-11-175-2015.
Rachmayani, R., M. Prange, and M. Schulz, 2016: Intra-interglacial climate variability: Model simulations of marine isotope stages 1, 5, 11, 13, and 15. Climate of the Past, 12, 677-695, doi:10.5194/cp-12-677-2016.
Rachmayani, R., M. Prange, D. J. Lunt, E. J. Stone, and M. Schulz, 2017: Sensitivity of the Greenland Ice Sheet to interglacial climate forcing: MIS 5e versus MIS 11. Paleoceanography, 32, 1089-1101, doi:10.1002/2017PA003149.
Raczka, B., H. F. Duarte, C. D. Koven, D. Ricciuto, P. E. Thornton, J. C. Lin, and D. R. Bowling, 2016: An observational constraint on stomatal function in forests: Evaluating coupled carbon and water vapor exchange with carbon isotopes in the CLM4.5. Biogeosciences, 13, 583-5204, doi:10.5194/bg-13-5183-2016.
Raeder, K., J. L. Anderson, N. Collins, T. J. Hoar, J. E. Kay, P. H. Lauritzen, R. Pincus, 2012: DART/CAM: An ensemble data assimilation system for CESM atmospheric models. J. Climate, 25(18), 6304-6317.
Raible, C. C., et al., 2006: Climate Variability - Observations, Reconstructions and Model Simulations. Clim. Change, 79, 9-29.
Raible, C. C., M. Yoshimori, T. F. Stocker, and C. Casty, 2007: Extreme midlatitude cyclones and their implications to precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Clim. Dyn., 28, 409-423.
Raible, C. C., 2008: Atmospheric high-frequency and climate low-frequency variability: A perspective on observations, reconstructions, and models, habilitation thesis. University of Bern, 264pp.
Raible, C. C., R. De Jong, T. F. Stocker, and M. Yoshimori, 2008: Maunder Minimum climate variability from wind and moisture-sentitive proxies and model simulations. PAGES Newsletter, 16/2, 10-11.
Raible, C. C., F. Lehner, J. F. Gonzalez-Rouco, and L. Fernandez-Donado, 2014: Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Climate of the Past, 10, 537-550. doi:10:.5194/cp-10-537-2014.
Raisanen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 2047-2068.
Randall, C. E., V. L. Harvey, L. A. Holt, D. R. Marsh, D. Kinnison, B. Funke, and P. F. Bernath, 2015: Simulation of energetic particle precipitation effects during the 2003-2004 Arctic winter. J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021196.
Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547-1564.
Randall, D. A., M. D. Branson, M. Wang, S. J. Ghan, C. Craig, A. Gettelman, and J. Edwards, 2013: SP-CAM Version 2: A community atmosphere model with a super-parameterization. EOS, 94, 221-228, doi:10.1002/2013eo250001.
Randel, W. J., R. R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 3584 doi:10.1175/2008JAS2756.1.
Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.
Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611, doi:10.1126/science.1182274.
Randerson, J. T., K. Lindsay, E. Munoz, W. Fu, J. K. Moore, F. M. Hoffman, N. M. Mahowald, and S. C. Doney, 2015: Multicentury changes in ocean and land contributions to the climate-carbon feedback. Global Boegeochem. Cycles, 29, doi:10.1002/2014GB005079.
Randerson, J. T., et al., 2009: Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Global Change Biology, 15, 2462-2484. doi:10.1111/j.1365-2486.2009.01912.x.
Randerson, J. T., K. Lindsay, E. Munoz, W. Fu, J. K. Moore, F. M. Hoffman, N. M. Mahowald, and S. C. Doney, 2015: Multicentury changes in ocean and land contributions to the climate-carbon feedback. Global Biogeochem. Cycles, 29, doi:10.1002/2014GB005079.
Raphael, M. N., 1998: Quasi-stationary waves in the Southern Hemisphere: An examination of their simulation by the NCAR Climate System Model, with and without an interactive ocean. J. Climate, 11, 1405-1418.
Raphael, M. N., 2001: Response of the large-scale Southern Hemisphere extratropical atmospheric circulation to extremes of Antarctic sea-ice concentration in a general circulation model. Polar Geography, 25, 218-238.
Raphael, M. N., 2003: The impact of observed sea-ice concentration on the Southern Hemisphere extratropical circulation in summer. J. Geophys. Res., Atmos., 108, 4687-4697.
Raphael, M., and M. M. Holland, 2006: Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part I: Large scale circulation variability. Clim. Dyn., 26, 217-228, doi:10.1007/s00382-005-0082-8.
Raphael, M. N., W. R.Hobbs, and I. Wainer, 2010: The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer. Clim. Dyn., doi:10.1007/s00382-010-0892-1.
Raphael, M. N. G. J. Marshall, J. Turner, R. L. Fogt, D. Schneider, D. A. Dixon, J. S. Hosking, J. M. Jones, and W. R. Hobbs; 2016. The Amundsen Sea Low: Variability, change, and impact on Antarctic climate. Bulletin of the American Meteorological Society, 97,111–121.
Rasch, P., D. Coleman, N. Mahowald, D. Williamson, S. J. Lin, B. Boville, and P. Hess, 2006: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19, 2243-2266.
Rasch, P. J., M. J. Stevens, L. Ricciardulli, A. Dai, A. Negri, R. Wood, B. A. Boville, B. Eaton, and J. J. Hack, 2006: A characterization of tropical transient activity in the CAM3 atmospheric hydrologic cycle. J. Climate, 19 (11), 2222-2242.
Rawlins, M. M., et al., 2010: Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. J. Climate, 23, doi:10.1175/2010JCLI3421.1.
Rawlins, M. A., et al., 2015: Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia. Biogeosciences, 14, 4385-4405, doi:10.5194/bg-12-4385-2015.
Ray, P., C. Zhang, J. Dudhia, T. Li, and M. W. Moncrieff, 2012: Tropical channel model. L M. Druyan (Ed.) Climate Models, InTech Publisher, ISBN:978-953-308-181-6, pp. 350.
Reed, K. A. and C. Jablonowski, 2011a: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689-710, doi:10.1175/2010MWR3488.1.
Reed, K. A. and C. Jablonowski, 2011b: Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett., 38, L04805, doi:10.1029/2010GL046297.
Reed, K. A. and C. Jablonowski, 2011c: Assessing the uncertainty of tropical cyclone simulations in NCAR’s Community Atmosphere Model. J. Adv. Model. Earth Syst., 3, M08002, doi:10.1029/2011MS000076.
Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: a test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.
Reed, K. A., C. Jablonowski, and M. A. Taylor, 2012: Tropical cyclones in the spectral element configuration of the community Atmosphere Model. Atm. Sci. Lett., 13, 303-310, doi:10.1002/asl.399.
Reed, K. A. and D. R. Chavas, 2015: Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst., 7, 1938-1955, doi: 10.1002/2015MS000519.
Reed, K. A. B. Medeiros, J. T. Bacmeister, and P. H. Lauritzen, 2015: Global radiative-convective equilibrium in the Community Atmosphere Model. J. Atmos. Sci., 72, 2183-2197, doi:10.1175/JAS-D-14-0268.1.
Reed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay, 2015: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 3603-3608, doi:10.1002/2015GL063974.
Reed, K. A. and B. Medeiros, 2016: A reduced complexity framework to bridge the gap between AGCMs and cloud-resolving models. Geophys. Res. Lett., 43, 860-866, doi:10.1002/2015GL066713.
Ren, X., M. Weitzel, B. C. O’Neill, P. Lawrence, P. Meyappan, S. Levis, E. J. Balistreri, and M. Dalton, 2016: Avoided economic impacts of climate change on agriculture: Integratinga land surface model (CLM) with a global economic model (iPETS). Climatic Change, 1-15, doi:10.1007/s10584-016-1791-1.
Renold, M., 2007: Simulations using the CCSM3 comprehensive AOGCM: Mechanisms of abrupt climate change and natural variability during the last centuries. PhD thesis, University of Bern.
Renold, M., C. C. Raible, T. F. Stocker, and M. Yoshimori, 2010: Simulated resumption of the North Atlantic meridional overturning circulation. Quat. Sci. Rev., 29, 101-112.
Rezac, L., Y. Jian, J. Yue, J. M. Russell III, A. Kutepov, R. Garcia, K. Walker, and P. Bernath, 2015: Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. J. Geophys. Res. Atmos., 120, 12,067-12,081, doi:10.1002/2015JD023955.
Rhoades, A. M., X. Huang, P. A. Ullrich, and C. M. Zarzycki, 2016: Characterizing Sierra Nevade snowpack using variable-resolution CESM. J. Appl. Meteor. Climatol., 55, 173-196, doi:10.1175/JAMC-C-15-0156.1.
Rhoades, A.M., P. A. Ullrich and C. M. Zarzycki, 2017: Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn., 50, 261–288, doi:10.1007/s00382-017-3606-0.
Rhoades, A. M., P. A. Ullrich, C. M. Zarzycki, H. Johansen, S. A. Margulis, H. Morrison, Z. Xu, and W. D. Collins, 2018: Sensitivity of mountain hydroclimate simulations in variable‐resolution CESM to microphysics and horizontal resolution. Journal of Advances in Modeling Earth Systems, 10, doi:10.1029/2018MS001326.
Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57, 3461-3487.
Richter, J., and R. R. Garcia, 2006: On the forcing of the mesospheric semi-annual oscillation in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett., 33, L01806, doi:10.1029/2005GL024378.
Richter, J., F. Sassi, R. R. Garcia, K. Matthes, and C.A. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 133, D08101, doi:10.1029/2007JD009269.
Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a General Circulation Model. J. Atmos. Sci., 67, 136-156, doi:10.1175/2009JAS3112.1, 2010.
Richter, J. H., J. T. Bacmeister, and A. Solomon, 2014: On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5 (CAM5). J. Geophys. Res, doi:10.1002/2013JD021122.
Richter, J. H., A. Solomon, and J. T. Bacmeister, 2014: Effects of increased vertical resolution on the simulation of tropospheric and stratospheric climate. J. of Adv. in Modeling Earth Sys., doi:10.1002/2013MS000303.
Richter J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021.
Richter J. H., S. Tilmes, M. J. Mills, J. J. Tribbia, B. Kravitz, D.G. MacMartin, F. Vitt and J. F. Lamarque, 2017: Stratospheric dynamical response to SO2 injection. JGR-Atmospheres, doi:10.1002/2017JD026912.
Richter, J. H., Tilmes, S., Glanville, A., Kravitz, B., MacMartin, D. G., Mills, M. J., et al., 2018; Stratospheric response in the first geoengineering simulation meeting multiple surface climate objectives. J. Geophys. Res.: Atmospheres, 123, 5762–5782, doi:10.1029/2018JD028285.
Ricke, K. L., J. C. Orr, K. Schneider, and K. Caldeira, 2013: Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environmental Research Letters, 8, 034003, doi:10.1088/1748-9326/8/3/034003.
Ricke, K. L., and K. Caldeira, 2014: Natural climate variability and future climate policy. Nature Climate Change, 4, 333-338, doi:10.1038/nclimate2186.
Ricke, K. L., and K. Caldeira, 2014: Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett., 9, 124002, doi:10.1088/1748-9326/9/12/124002.
Riley, W., C. Still, M. Torn, and J. Berry, 2002: A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochemical Cycles, 16, 1095-1109.
Riley, W. J., C. J. Still, B. R. Helliker, M. Ribas-Carbo, and J. A. Berry, 2003: 18O composition of CO2 and H2O ecosystem pools and fluxes in a tallgrass prairie: Simulations and comparisons to measurements. Global Change Biology, 9, 1567-1581.
Riley, W. J., 2005: A modeling study of the impact of the delta O-18 value of near-surface soil water on the delta O-18 value of the soil-surface CO2 flux. Geochim Cosmochim Ac, 69,1939-1946.
Riley, W. J., J. T. Randerson, P. N. Foster, and T. J. Lueker, 2005: The influence of terrestrial ecosystems and topography on coastal CO2 measurements: A case study at Trinidad Head, California, JGR-Biogeosciences, 110.
Riley, W. J., D. Y. Hsueh, J. T. Randerson, M. L. Fischer, J. G. Hatch, D. E. Pataki, W. Wang, and M. L. Goulden, 2008: Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J. Geophys. Res.-Biogeosciences, 113.
Riley, W. J., S. C. Biraud, M. S. Torn, M. L. Fischer, D. P. Billesbach, and J. A. Berry, 2009: Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling. J. Geophys. Res.-Biogeosciences, 114, G04009, doi:10.1029/2009jg001003.
Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. Mahowald, and P. Hess, 2011: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 1925-1953, doi:10.5194/bg-8-1925-2011.
Riley, W. J., Z. M. Subin, M. S. Torn, L. Meng, N. Mahowald, P. G. Hess, and D. M. Lawrence, 2011: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using CLM4ME, a methane biogeochemistry model integrated in CESM. Biogeosciences Discussion, 8, doi:10.5194/bgd-8-1733-2011, 1733-1807.
Riley, W. J., and C. Shen, 2014b: Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations and reduced-order models. Hydrology and Earth System Science, 18, doi:10.5194/hess-18-2463-2014, 2463-2483.
Risser, M. D., D. A. Stone, C. J. Paciorek, M. F. Wehner, and O. Angelil, 2017: Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence. Clim. Dyn.,, doi:10.1007/s00382-016-3492-x.
Roberts, A. F., A. Craig, W. Maslowski, R. Osinski, A. Duvivier, M. Hughes, B. Nijssen, J. Cassano, and M. Brunke, 2015: Simulating transient ice-ocean Ekman transport n the Regional Arctic System Model and Community Earth System Model. Ann. Glaciol., 56(69), 211-228, doi:10.3189/2015AoG9A760.
Robertson, A. W., 2001: On the influence of ocean-atmosphere interaction on the Arctic Oscillation in two general circulation models. J. Climate, 14, 3240-3254.
Robock A., C. M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov, 2009: Did the Toba volcanic eruption of ~74k BP produce widespread glaciation? J. Geophys. Res., 114, D10107, doi:10.1029/2008JD011652.
Rodgers, K. B., et al., 2009: Using altimetry to help explain patchy changes in hydrographic carbon measurements. J. Geophys. Res. Oceans, 114, C09013, doi:10.1029/2008JC005183.
Rogers, B. M., J. T. Randerson, and G. B. Bonan, 2013: High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences, 10 (2), 699-718, doi:10.5194/bg-10-699-2013.
Rogers, B. M., A. J. Soja, M. L. Goulden, and J. T. Randerson, 2015: Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geosci., 8, 228-234, doi:10.1038/ngeo2352.
Rohr, T., M. C. Long, M. T. Kavanaugh, K. Lindsay, and S. C. Doney, 2017: Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations. Global Biogeochem. Cycles, 31(5) 922-940, doi:10.1002/2016GB005615.
Rohrer, F., D. Ehhalt, D. Blake, D. Kinnison, and P. Konopka, 2007: On the use of NMHC from the determination of age spectra in the lower stratosphere. J. Geophys. Res., 112, D12208, doi:10.1029/2006JD007686.
Ronge, T. A., S. Steph, R. Tiedemann, M. Prange, U. Merkel, D. Nurnberg, and G. Kuhn, 2015: Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years. Paleooceanography, 30, doi:10.1002/2014PA002727.
Rosenbloom N., C. Shields, E. Brady, S. Levis, and S. Yeager, 2011: Using CCSM3 for paleoclimate applications. NCAR Technical Note NCAR/TN-483+STR, 81 pp.
Rosenbloom, N. A., B. L. Otto-Bliesner, E. C. Brady, and P. J. Lawrence, 2013: simulating the mid-Pliocene warm period with the CCSM4 model. Geosci. Model Dev., 6, 549-561, doi:10.5194/gmd-6-549-2013.
Ross, M., M. Mills, and D. Toohey, 2010: Potential climate impact of black carbon emitted by rockets. Geophys. Res. Lett., 37, L24810, doi:10.1029/2010GL044548.
Rothenberg, D., N. Mahowald, K. Lindsay, S. C. Doney, J. K. Moore, and P. Thornton, 2012: Volcano impacts on climate and biogeochemistry in a coupled carbon-climate model. Earth System Dynamics, 3, 121-136.
Roy, T., L. Bopp, M. Gehlen, B. Schneider, P. Cadule, T. L. Frölicher, J. Segschneider, J. Tjiputra, C. Heinze, and F. Joos, 2011: Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: A multi-model linear feedback analysis. J. of Clim.,24, 2300-2318, doi:10.1175/2010JCLI3787.1.
Ruckstuhl, C., and J. R. Norris, 2009: How do aerosol histories affect solar “dimming” and “brightening” over Europe?: IPCC-AR4 models versus observations. J. Geophys. Res.-Atmos., 114, D00D04, doi:10.1029/2008JD011066.
Ruddiman, W., S. Vavrus, J. Kutzbach, and F. He, 2014: Does pre-industrial warming double the anthropogenic total? The Anthropocene Review, 1, 1-7, doi:10.1177/2053019614529263.
Ruiz-Barradas, A., and S. Nigam, 2005: Warm-season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 Reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 1808-1830.
Ruiz-Barradas, A., and S. Nigam, 2006: IPCC's 20th Century Climate Simulations: Varied representations of North American hydroclimate variability. J. Climate, 19, 4041-4058.
Ruiz-Barradas, A., and S. Nigam, 2010: Great Plains precipitation and its SST links in 20th century climate simulations, and 21st and 22nd century climate projections. J. Climate, 23, 6409-6429.
Ruiz-Barradas, A., and S. Nigam, 2010: SST-North American hydroclimate links in AMIP simulations of the drought working group models: A proxy for the idealized drought modeling experiments. J. Climate, 23, 2585-2598.
Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. G. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 2785-2810, doi: 10.1175/JCLI-D016-0127.1.
Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 3679-3700, doi:10.1175/JCLI-D-17-0270.1
Rydbeck, A. V., E. D. Maloney, S.-P. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of east Pacific intraseasonal variability. J. Climate, 26, 3575-3596.
Saba, V. S., et al., 2010: Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochem. Cycles, 24, GB3020, doi:10.1029/2009GB003655.
Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Clim. Dyn., 33, 159-175.
Sacks, W. J., 2010: Improving the representation of agricultural management in land surface models. Ph.D. thesis. University of Wisconsin-Madison, Madison, WI.
Sadiq, M., A. P. K. Tai, D. Lombardozzi, and M. Val Martin, 2017: Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks. Atmospheric Chemistry and Physics, 17, 3055-3066.
Sagoo, N., and T. Storelvmo, 2017: Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett., doi: 10.1002/2017GL072584.
Sahany S., and R. S. Nanjundiah, 2008: Impact of convective downdrafts on model simulations: Results from aqua-planet integrations. Ann. Geophys., 26, 1877-1887.
Sahaney, S., J. D. Neelin, K. Hales, and R. Neale, 2012: Temperature-moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 1340-1358, doi:10.1175/JAS-D-11-0164.1.
Saikawa, E., C. A. Schlosser, and R. G. Prinn, 2013: Global modeling of soil nitrous oxide emissions from natural processes. Global Biogeochem. Cycles, 27, doi:10.1002/gbc.20087.
Sailley, S., M. Vogt, S. C. Doney, M. N. Aita, L. Bopp, E. T. Buitenhuis, T. Hashioka, I. Lima, C. Le Quéré, and Y. Yamanaka, 2013: Comparing food web structures and dynamics across a suite of global marine ecosystem models. Ecological Modeling, 261-262, 43-57, doi:10.1016/j.ecolmodel.2013,04.006.
Saito, K., T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa, 2013: LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction? Clim. Past, 9, 1697-1714.
Saiz-Lopez, A., R. P. Fernandez, C. Ordonez, D. E. Kinnison, J. C. Gomez Martin, J.-F. Lamarque, and S. Tilmes, 2014: Iodine chemistry in the troposphere and its effect on ozone. Atmos. Chem Phys, 14(23), 13,119-13143, doi:10.5194/acp-14-13119-2014.
Saiz-Lopez, A., et al., 2015: Injection of idodine to the stratosphere. Geophys. Res. Lett., 42, 6852-6859, doi:10.1002/2015GL064796.
Sakaguchi, K., and X. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J. Geophys. Res., 114, D01107, doi:10.1029/2008JD010834.
Sakaguchi, K., X. Zeng, B. Christoffersen, N. Coupe, S. Saleska, and P. Brando, 2011: An evaluation of National Center for Atmospheric Research Community Land Model 3.5 with three biogeochemical models under natural and drought scenarios in an east-central Amazon forest. J. Geophys. Res. – Biogeosci., 116, G01029, doi:10.1029/2010JG001477.
Sakaguchi, K., X. Zeng, and M. Brunke, 2012: Temporal and spatial scale dependence of three CMIP3 climate models in simulating the surface temperature trend in the 20th century. J. Climate, 25, 2456-2470, doi:10.1175/JCLI-D-11-00106.1.
Sakaguchi, K., X. Zeng, and M. Brunke, 2012: The hindcast skill of the CMIP ensembles of rthe surface air temperature trend. J. Geophys. Res., 117, D16113, doi:10.1029/2012JD017765.
Sakaguchi, K., L. R. Leung, C. Zhao, Q. Yang, J. Lu, S. Hagos, T. D. Ringler, S. A. Rauscher, and L. Dong, 2015: Exploring a multi-resolution approach using AMIP simulations. J. Climate, 28(14), 5549-5574, doi:10.1175/JCLI-D-14-00729.1.
Sakaguchi, K., J. Lu, L. R. Leung, C. Zhao, Y. Li, and S. Hagos, 2016: Sources and pathways of the upscale effects on the Southern Hemisphere jets in MPAS-CAM4 variable resolution simulations. J. Adv. Mod. Earth Syst., 8, doi:10.1002/2016MS000743.
Sakaguchi, K., X. Zeng, L. Leung, and P. Shao, 2016: Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the CLM4. Environ. Res. Lett., 11(12), 124029, doi:10.1088/1748-9326/aa51d9.
Sakazaki, T., T. Sasaki, M. Shiotani, Y. Tomikawa, and D. Kinnison, 2015: Zonally uniform tidal oscillations in the tropical stratosphere. Geophys. Res. Lett., 42, 9553-9560, doi:10.1002/2015GL066054.
Sakazaki, T., Shiotani, M. Suzuki, D. E. Kinnison, J. M. Zawodny, M. McHugh, and K. A. Walker, 2015: Sunset/Sunrise difference in solar occultation ozone measurements (SAGEII, HALOE, and ACD-FTS) and its relationship to tidal vertical winds. Atmos. Chem. Phys., 15, 829-843, doi:10.5194/acp-15-829-2015.
Salawitch, R. J., et al., 2010: A new interpretation of total column BrO during Arctic spring. Geophys. Res. Lett., doi:10.1029/2010GL043798.
Salzmann, U., et al., 2013: Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nature Climate Change, 3, 969-974.
Samartin, S., O. Heiri, F. Joos, H. Renssen, J. Franke, S. Bronnimann, and W. Tinner, 2017: Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nature Geosci, doi:10.1038/ngeo2891.
Samset, B. H., et al., 2013: Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys., 13, 2423-2434, doi:10.5194/acp-13-2423-2013.
Samset, B. H., et al., 2014: Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos. Chem. Phys., 14, 12,465-12,477, doi:10.5194/acp-14-12465-2014.
Sánchez, P. M., A. Born, I. R. Hall, D. J. R. Thornalley, and S. Barker, 2014: Solar forcing of North Atlantic temperature and salinity over the past millennium. Nature Geoscience, 7, 275-278.
Sanchez-Gomez, E., C. Cassou, D. L. R. Hodson, N. Keenlyside, Y. Okumura, and T. Zhou, 2008: North Atlantic weather regimes response to Indian-western Pacific Ocean warming: a multi-model study. Geophys. Res. Lett, 35, L15706, doi:10.1029/2008GL034345.
Sand, M., T. K. Berntsen, O. Seland, and J. E. Kristjansson, 2013: Arctic surface temperature change to emission of black carbon within Arctic or midlatitudes. J. Geophys. Res. Atmos., 118, 7788-7798, doi:10.1002/jgrd.50613.
Sand, M., T. K. Berntsen, J. E. Kay, J. F. Lamarque, O. Seland, and A. Kirkevag, 2013: The Arctic response to remote and local forcing of black carbon. Atm. Chem. Phys., 13, 211-224, doi:10.5194/acp-13-211-2013.
Sand, M., T. Iversen, P. Bohlinger, A. Kirkevag, I. Seierstad, O. Seland, and A. Sorteberg, 2015: A standardized global climate model study showing unique properties for the climate response to black carbon aerosols. J. Climate, 28, 2512-2525, doi:10.1175/JCLI-D-14-00050.1.
Sanderson, B. M., B. O’Neill, J. T. Kiehl, G. A. Meehl, R. Knutti, and W. M. Washington, 2011: The response of the climate system to very high greenhouse gas emission scenarios. Env. Res. Lett., 6, doi:10.1088/1748-9326/6/3/034005.
Sanderson, B. M., K. W. Oleson, W. G. Strand, F. Lehner, and B. C. O’Neill, 2015: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change, 1-16, doi:10.1007/s10584-015-1567-z.
Sanderson, B., Y. Xu, C. Tebaldi, M. Wehner, B. O’Neill, A. Jahn, A. Pendergrass, F. Lehner, W. Strand, L. Lin, R. Knutti, and J.-F. Lamarque, 2017: Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth Syst. Dynam., 8, 827–847, doi:10.5194/esd-8-827- 2017.
Santer, B. D., et al., 2000: Interpreting differential temperature trends at the surface and in the lower troposphere. Science, 287, 1227-1232.
Santer, B. D., T. M. L. Wigley, C. Doutriaux, J. S. Boyle, J. E. Hansen, P. D. Jones, G. A. Meehl, E. Roeckner, S. Sengupta, and K. E. Taylor, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28,033-28,059.
Santer, B. D., et al., 2003: Behavior of tropopause height and atmospheric temperature in models, reanlayses, and observations: Decadal changes. J. Geophys. Res., 108 (D1), 4002, doi:10.10292002JD002258.
Santer, B. D., et al., 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479-483.
Santer, B. D., et al., 2003: Influence of satellite data uncertainties on the detection of externally-forced climate changes. Science, 300, 1280-1284.
Santer, B. D., et al., 2006: Causes of ocean surface temperature changes in Atlantic and Pacific hurricane formation regions. In: Proceedings of the National Academy of Sciences, 103, 13,905-13,910.
Santer, B. D., et al., 2007: Identification of human-induced changes in atmospheric moisture content. Proc. Nat. Acad. Sci., 104, 15,248-15,253.
Santer, B. D., et al., 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.
Santer, B. D., et. al. 2013: Identifying human influences on atmospheric temperature. PNAS, 110(1), 26-33.
Saravanan, R., 1998: Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies using the NCAR Climate System Model. J. Climate, 11, 1386-1404.
Sarma, V. V. S. S., A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala, 2013: Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 10, 7035-7052, doi:10.5194/bg-10-7035-2013.
Sarmiento, J. L., et al., 2004: Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles, 18, GB3003, doi:10292003GB002134.
Sarnthein, M., G. Bartoli, M. Prange, A. Schmittner, B. Schneider, M. Weinelt, N. Andersen, and D. Garbe-Schönberg, 2009: Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Climate of the Past, 5, 269-283.
Sarthi, P. P., S. Ghosh, and P. Kumar, 2015: Possible future projection of Indian Summer Monsoon Rainfall (ISMR) with the evaluation of model performance in CMIP5. Glob. Plan. Change, 129, 92-106, doi:10.1016/j.gloplacha.2015.03.005.
Sassi, F. S., R. R. Garcia, B. A. Boville, and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107 (D19), 4380, doi:10.1029/2001JD001525.
Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: The effect of ENSO on the dynamical, thermal and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.
Sassi, F., B. A. Boville, D. Kinnison, and R. R. Garcia, 2005: The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131.
Sassi, F., H. -L. Liu, J. Ma, and R. R. Garcia, 2013: The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using high-altitude data assimilation products in WACCM-X. J. Geophys. Res. Atmos., 118, 8954-8968, doi:10.1002/jgrd.50632, 2013.
Sassi, F., R. R. Garcia, D. R. Marsh, and K. W. Hoppel, 2010: The role of the middle atmosphere in simulations of the troposphere during Northern Hemisphere winter: Differences between high- and low-top models. J. Atmos. Sci., 67, 3048-3064, doi:10.1175/2010JAS3255.1.
Sassi, F., H. -L. Liu, and J. T. Emmert, 2016: Traveling planetary-scale waves in the lower thermosphere: Effects on neutral density and composition during solar minimum conditions. J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022082.
Sassi, F., et al., 2018: Simulations of the Boreal winter upper mesosphere and lower thermosphere with meteorological specifications in SD-WACCM-X. J. Geophys. Res. Atmos., 123, 3791, doi: 10.1002/2017JD027782.
Scanza, R. S., N. Mahowald, S. Ghan, C. S. Zender, J. F. Kok, X. Liu, Y. Zhang, and S. Ablani, 2015: Modeling dust as component minerals in the Community Atmosphere Model: Development of framework and impact on radiative forcing. Atmospheric Chemistry and Physics, 15, 537-561.
Schanz, A., K. Hocke, and N. Kampfer, 2014: Daily ozone cycle in the stratosphere: Global, regional, and seasonal behaviour modelled with the Whole Atmosphere Community Climate Model. Atmos. Chem. Phys., 14, 7645-7663, doi:10.5194/acp-14-7645-2014.
Schanz, A., K. Hocke, and N. Kaempfer, 2016: On forced and free atmospheric oscillations near the 27-day periodicity. Earth, Planets, and Space, 68, doi:10.1186/s40623-016-0460-y.
Scheiben, D., A. Schanz, B. Tschang, and N. Kampfer, 2013: Diurnal variations in middle-atmospheric water vapor by ground-based microwave radiometry. Atmos. Chem. Phys., 13, 6877-6886, doi:10.5194/acp-13-6877-2013.
Schiemann, R., M. E. Demory, L. C. Shaffrey, J. Strachan, P. L. Vidale, M. S. Mizielinski, M. J. Roberts, M. Matsueda, M. F. Wehner, and T. Jung, 2016: The resolution sensitivity of northern hemisphere blocking in four 25-km atmospheric global circulation models. J. Climate, doi:10.1175/JCLI-D-16-0100.1.
Schenk, F., Väliranta, M., Muschitiello, F., Tarasov, L., Heikkilä, M., Björck, S., Brandefelt, J., Johansson, A. V., Näslund, J.-O., and B. Wohlfarth, 2018: Warm summers during the Younger Dryas cold reversal. Nat. Commun., 9, 1634, doi:10.1038/s41467-018-04071-5.
Schleussner, C.-F., D. Deryng, C. Müller, J. Elliott, C. Folberth, W. Liu, X. Wang, T. Pugh, W. Thiery, S. Seneviratne, and J. Rogelj, Crop productivity changes at 1.5°C and 2°C under climate response uncertainty, Environmental Research Letters, 13(6), 064007.
Schmidt, G. A., D. Bader, L. J. Donner, G. S. Elsaesser, J. –C. Golaz, C. Hannay, A. Molod, R. B. Neale and S. Saha, 2017: Practice and philosophy of climate model tuning across six US modeling centers. Geosci. Model Dev., 10, 3207-3223, doi:10.5194/gmd-10-3207-2017.
Schmidt, M. W., P. Chang, J. E. Hertzberg, T. R. Them II, L. Ji, and B. L. Otto-Bliesner, 2012: Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. PNAS, 109, 14348-14352.
Schneider, B., L. Bopp, M. Gehlen, J. Segschneider, T. L. Frolicher, P. Cadule, P. Friedlingstein, S. C. Doney, M. J. Behrenfeld, and F. Joos, 2008: Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597-614.
Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.
Schneider, D. P., C. Deser, and T. Fan, 2015: Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J. Climate, 28, 9350-9372.
Schneider, D. P., and D. Reusch, 2016: Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J. Climate, 29, 1689-1716.
Schneider, E. K., 2002: The causes of differences between equatorial Pacific SST simulations of two coupled ocean-atmosphere general circulation models. J. Climate, 15, 449-69.
Schneider, E. K., M. J. Fennessy, and J. L. Kinter III, 2009: A statistical/dynamical estimate of winter ENSO teleconnections in a future climate. J. Climate, 22, 6624-6638, doi:10.1175/2009JCLI3147.1.
Schonau, M. C. D. L.Rudnick, I. Cerovecki, G. Gopalakrishnan, B. D. Cornuelle, J. L. McClean, and B. Qiu, 2015: The Mindanao Current: Mean structure and connectivity. Oceanography, 28 (4), 34-45, doi:org/10.5670/oceanog.2015.79.
Schoonover, J., W. Dewar, N. Wiender, J. Gula, J.C. McWilliams, M.J. Molemaker, S.C. Bates, G. Danabasoglu, and S. Yeager, 2016: North Atlantic Barotropic Vorticity Balances in Numerical Models. Journal of Physical Oceanography, 46, 289-303, doi: 10.1175/JPO-D-15-0133.1.
Schubert, S., D. et al., 2009: A USCLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 5251-5272, doi:10.1175/2009JCLI3060.1
Schuster, U., et al., 2013: An assessment of Atlantic and Arctic sea-air CO2 fluxes, 1990-2009. Biogeosciences, 10, 607-627, doi:10.5194/bg-10-607-2013.
Schwalm, C. R., et al., 2010: A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program Site Synthesis. J. Geophysical Research-Biogeosciences, doi:10.1029/2009JG001229.
Seferian, R., et al., 2016: Inconsistent strategies to spin up models in CMIP5: Implications for ocean biogeochemical model performance assessment. Geosci. Model Dev., 9, 1827-1851, doi:10.5194/gmd-9-1827-2016.
Sejas, S. A., M. Cai, A. Hu, G. A. Meehl, W. Washington, P. C. Taylor, 2014: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27, 5653-5669, doi:10.1175/JCLI-D-13-00658.1.
Seidel, D. J., Y. Zhang, A. C. M. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117(D17), D17106, doi:10.1029/2012JD018143.
Seidenglanz, A., M. Prange, V. Varma, and M. Schulz, 2012: Ocean temperature response to idealized Gleissberg and de Vries solar cycles in a comprehensive climate model. Geophys. Res. Lett., 39, L22602, doi:10.1029/2012GL053624.
Seland, Ø., T. Iversen, A. Kirkevåg, and T. Storelvmo, 2008: Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigations of associated shortcomings. Tellus, 60A, 459-491.
Sen, O. L., L. A. Bastidas, W. J. Shuttleworth, Z. -L. Yang, H. V. Gupta, and S. Sorooshian, 2001: Impact of field-calibrated vegetation parameters on GCM climate simulations. Quart. J. Roy. Meteor. Soc., 127, 1199-1223.
Sen Gupta, A., and M. England, 2006a: Coupled ocean-atmosphere-ice response to variations in the Southern Annular Mode . J. Climate, 19 (18), 4457–4486.
Sen Gupta, A., and M. England, 2006b: Coupled ocean-atmosphere feedback in the Southern Annular Mode. J. Climate, 20, 3677-3692.
Sen Gupta A., A. Santoso, A. S. Taschetto, C. C. Ummenhofer, M. H. England, and J. Trevena, 2009: Projected changes to the southern hemisphere Ocean and sea ice in the IPCC AR4 climate models. J. Climate, doi:10.1175/2008JCLI2827.1.
Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024178.
Sewall, J. O., M. Huber, and L. C. Sloan, 2004: A method for using a fully coupled climate system model to generate detailed surface boundary conditions for paleoclimate modeling investigations: An early Paleogene example. Glob. Planet. Change, 43, 173-182.
Shaevitz, D. A., et al., 2014: Characteristics of tropical cyclones in high-resolution models of the present climate. Journal of Modeling the Earth System, 6, 1154-1172, doi:10.1002.2014MS000372.
Shakun, J. D., P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B.Otto-Bliesner, A. Schmittner, and E. Bard, 2012: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 49-55.
Shakun, J. D., P. U. Clark, F. He, N. A. Lifton, Z. Liu, and B. L. Otto-Bliesner, 2015: Regional and global forcing of glacier retreat during the last glaciations. Nature Communications, 6.
Shaman, Amra, 2007: Master thesis - Simulations of the indirect effect of aerosols using SCAM - comparison to observations.
Shaman, J., and E. D. Maloney, 2012: Shortcomings in climate model simulations of the ENSO-Atlantic hurricane teleconnections. Clim. Dyn.,, 38, 1973-1988.
Shanahan, T. M., N. P. McKay, K. A. Hughen, J. T. Overpeck, B. Otto-Bliesner, C. W. Heil, J. King, C. A. Schold, and J. Peck, 2015: The time-transgressive demise of the African Humid Period. Nature Geoscience, 8, 140-144.
Sheese, P. E., K. Strong, R. L. Gattinger, E. J. Llewellyn, J. Urban, C. D. Boone, and A. K. Smith, 2013: Odin observations of Antarctic nighttime NO densities in the mesosphere-lower thermosphere and observations of a lower NO layer. J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50563.
Sheffield, J., et al., 2013: North American climate in CMIP5 experiments. Part I: Evaluation of 20th Century continental and regional climatology. J. Climate, 26, 9209-9245.
Sheffield, J., et al., 2013: North American climate in CMIP5 experiments. Part II: Evaluation of 20th Century intra-seasonal to decadal variability. J. Climate, 26, 9247-9290.
Shellito, C., L. C. Sloan, and M. Huber, 2003: Climate model constraints on atmospheric CO2 levels in the early-middle Palaeogene. Palaeogeog., Palaeoclimatol., Palaeoecol., 193, 113-123
Shellito, C. J., J. F. Lamarque, and L .C. Sloan, 2009: Early Eocene Arctic climate sensitivity to pCO2 and basin geography. Geophys. Res. Lett., 36, L09707, doi:10.1029/2009GL037248.
Shen, C., W. J. Riley, K. M. Smithgall, J. M. Melack, and K. Fan, 2016: The fan of influence of streams and channel feedbacks to simulated water and carbon fluxes. Water Resources Research, doi:10.1002/2015WR018086.
Sherwood, S., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Nat. Acad. Sci., doi:10.1073/pnas.0913352107.
Shi, M., Z. -L. Yang, D. M. Lawrence, R. E. Dickinson, and Z. M. Subin, 2013: Spin-up processes in the community land model version 4 with explicit carbon and nitrogen components. Ecological Modelling, 263, 308-325, doi:10.1016/j.ecolmodel.2013.04.008.
Shi, M., Fisher. J. B., Brzostek, E. R., and Phillips R. P., 2016: Carbon cost of plant nitrogen acquisition: Global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Global Change Biology, 22, 1299–1314, doi: 10.1111/gcb.13131.
Shi, X., J. Mao, P. E. Thornton, F. M Hoffman, and W. F. Post, 2011: The impact of climate, CO2, nitrogen deposition, and land use change on simulated contemporary global river flow. Geophys. Res. Lett., 38(8), L08704, doi:10.1029/2011GL046773.
Shi, X., S. Liu, and K. Zhang, 2015: Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmospheric Chemistry and Physics, 15, 1503-1520, doi:10.5194/acp-15-1503-2015.
Shi, X., and X. Liu, 2016: Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing. Geophysical Research Letter, 43, 6588-6595, doi:10.1002/2016GL069531.
Shields, A. L., V. S. Meadows, C. M. Bitz, R. T. Pierrehumbert, M. M. Joshi, and T. D. Robinson, 2013: The effect of host star spectral energy distribution and ice-albedo feedback on the lcimate of extrasolar planets. Astrobiology, 13, 715-739, doi:10.1089/ast.2012.0961.
Shields, A. L., C. M. Bitz, V. S. Meadows, M. M. Joshi, and T. D. Robinson, 2014: Spectrum-driven planetary deglaciation due to increases in stellar luminosity. Astrophysical Journal Letters, 785, L9, doi:1088/2041-8205/785/1/L9.
Shields, A. L., R. Barnes, E. Agol, B. Charnay, C. M. Bitz, and V. S. Meadows, 2016: The effect of orbital configuration on the possible climates and habitability of Kepler-62f. Astrobiology, 16, doi:10.1089/ast.2015.1353.
Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The Low-Resolution CCSM4. J. Climate, 25, 3993-4014. doi:10.1175/JCLI-D-11-00260.1.
Shields, C. A., and J. T. Kiehl, 2016: Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophys. Res. Lett., 43, doi:10.1002/2016GL069476.
Shields, C. A., J. T. Kiehl, and G. A. Meehl, 2016: Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution. J.Adv. Model. Earth Syst., 8, doi:10.1002/2015MS000584.
Shields, C. A., and J. T. Kiehl, 2016: Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett., 43, 8775-8782, doi:10.1002/2016GL070470.
Shields, C. A., and J. T. Kiehl, 2018: Monsoonal precipitation in the Paleo-Tethys warm pool during the latest Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 123-136, doi:10.1016/j.palaeo.2017.12.001.
Shim, J. H., H. H. Powers, C. W. Meyer, A. Knohl, T. E. Dawson, W. J. Riley, W. T. Pockman, and N. McDowell, 2013: Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland. Biogeosciences, 10, 4937-4956, doi:10.5194/Bg-10-4937-2013.
Simpson, I. R., Hitchcock, P., Seager, R., Wu, Y., Callaghan, P., 2018; The downward influence of uncertainty in the Northern Hemisphere stratospheric polar vortex response to climate change. J. Climate, 31, 6371—6391, doi:10.1175/JCLI-D-18-0041.1.
Shin, C. -S., and B. Huang, 2017: A spurious warming trend in the NMME equatorial Pacific SST hindcasts. Climate Dyn., doi:10.1007/s00382-017-3777-8.
Shin, Sank- Ik, Z. Liu, B. L. Otto-Bliesner, J. E. Kutzbach, and S. J. Vavrus, 2003: Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys. Res. Lett., 30 (2), 1096, doi:10.10292002GL015513.
Shin, S. -I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the last glacial maximum climate using the NCAR-CCSM. Clim. Dyn., 20, 127-151, doi:10.1007s00382-002-0260-x.
Shindell, D. T., et al., 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 2939-2974, doi:10.5194/acp-13-2939-2013.
Shiogama, H., Y. Imada, M. Mori, R. Mizuta, D. Stone, K. Yoshida, O. Arakawa, M. Ikeda, C. Takahashi, M. Arai, M. Ishii, M. Watanabe, and M. Kimoto, 2016: Attributing historical changes in probabilities of record-breaking daily temperature and precipitation extreme events. SOLA, 12, 225−231, doi:10.2151/sola.2016-045.
Shrivastava, M., et al., 2015: Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions. J. Geophys. Res.-Atmospheres, 120, 4169-4195.
Si, D., and A. Hu, 2017: Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J. Climate, 30, 8299-8316, doi:10.1175/JCLI-D-17-0065.1.
Simkins, G., Y. Peings, and G. Magnusdottir, 2016: Pacific influences on Atlantic teleconnections to the Southern Hemisphere high latitudes. J. Climate, 29, 6425-6444, doi:10.1175/JCLI-D-15-0645.1.
Singh, H. K. A., C. M. Bitz, and D. M. W. Frierson, 2016: Climate response to lowering surface orography of Antarctica and the importance of atmosphere-ocean coupling. J. Climate, 29, 4137-4153, doi:10.1175/JCLI-D-15-0442.1.
Singh, H. K. A., C. M. Bitz, J. Nusbaumer, and D. C. Noone, 2016: Mathematical framework for analysis of water tracers. Part I: Development of theory and application to the preindustrial mean state. J. of Advances in Modeling Earth Systems, 8, 991-1013, doi:10.1002/2016MS000649.
Singh, H. K. A., C. M. Bitz, A. Donahoe, J. Nusbaumer, and D. C. Noone, 2016: A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle due to CO2 doubling. J. Climate, 29, 6765-6782, doi:10.1175/JCLI-D-16-0293.1.
Singh, H. K. A., A. Donahoe, C. M. Bitz, J. Nusbaumer, and D. C. Noone, 2016: Greater aerial moisture transport distances with warming amplify interbasin salinity contrasts. Geophys. Res. Lett., 43, 8677-8684, doi:10.1002/2016GL069796.
Singh, H. K. A., C. M. Bitz, A. Donohoe, and P. Rasch, 2017: A source-receptor perspective on the polar hydrologic cycle: Source regions, seasonality, and Arctic-Antarctic parity in the hydrologic cycle response to CO2-doubling. J. Climate, 30, 9,999-10,017. doi:10.1175/JCLI-D-16-0917.1.
Siswanto, S., 2010: Pacific climate variability changes in response to freshwater discharge in the North Atlantic. Master thesis, University of Bern.
Sitch, S., et al., 2015: Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12, 653-679, doi:10.5194/bg-12-653-2015.
Skinner, C. B., C. J. Poulsen, R. Chadwick, N. S. Diffenbaugh, and R. P. Fiorella, 2017: The role of plant CO2 physiological forcing in shaping future daily-scale precipitation. J. Climate, 20(7), 2319-2340, doi:10.1175/JCLI-D-16-0603.1.
Skinner, C. B., and C. J. Poulsen, 2016: The role of fall season tropical plumes in enhancing Saharan rainfall during the African humid period. Geophys. Res. Lett., 43, 349-358, doi:10.1002/2015GL066318.
Sluijs, A., et al., 2006: Subtropical Arctic Ocean conditions during the Palaeocene Eocene thermal maximum. Nature, 441, doi:10.1038/nature/04668, 610-613.
Small, J. R., et al., 2014: A new synoptic-scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 1065-1094. doi:10.1002/2014MS000363.
Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Clim. Dyn., doi:10.1007/s00382-013-1980-9.
Small, R. J., E. Curchitser, K. Hedstrom, B. Kauffman, and W. G. Large, 2015: The Benguela upwelling system: Quantifying the sensitivity to resolution and coastal wind representation in a global climate model. J. Climate, 28, 9409-9432, doi:10.1175/JCLI-D-15-0192.1
Smerdon, J. E., et al., 2017: Comparing proxy and model estimates of hydroclimate variability and change over the common era. Climate of the Past, doi: 10.5194/cp-13-1851-2017.
Smirnov, D., M. Newman, M. A. Alexander, Y. -O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 1126-1147.
Smith, A. K., R. R. Garcia, D. R. Marsh, D. E. Kinnison, and J. H. Richter, 2010: Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophys. Res. Lett., 37, L22803, 10.1029/2010GL045255.
Smith, A. K., R. R. Garcia, D. R. Marsh, and J. H. Richter, 2011: WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res., 116, D20115, doi:10.1029/2011JD016083.
Smith, A. K, 2012: Global dynamics of the MLT. Surv. Geophys., doi:10.1007/s10712-012-9196-9, 2012.
Smith, A. K., M. Lopez-Puertas, B. Funke, M. Garcia-Comas, M. G. Mlynczak, and L. A. Holt, 2015: Nighttime ozone variability in the high latitude winter mesosphere. J. Geophys. Res. Atmos., 119, 13,547-13,564, doi:10.1002/2014JD021987.
Smith, A. K., M. Lopez-Puertas, J. Xu, and M. G. Mlynczak, 2015: The heating efficiency of the exothermic reaction H+O3 in the mesosphere. J. Geophys. Res., 120, doi:10.1002/2015JD024061.
Smith, A., N. M. Pedatella, D. R. Marsh, and T. Matsuo, 2017: On the dynamical control of the mesosphere-lower thermosphere by the lower and middle atmosphere. J. Atmos. Sci., 74, 993-947, doi:10.1175/JAS-D-16-0226.1.
Smith, K. L. R. R. Neely, D. R. Marsh, and L. M. Polvani, 2014: TheSpecified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 06, doi:10.1002/2014MS000346.
Smith, K. M., L. M. Polvani, and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39, L20701, doi:10.1029/2012GL053325.
Smith, L. M., G. H. Miller, B. L. Otto-Bliesner, and S. Shin, 2003: Sensitivity of the Northern Hemisphere climate system to extreme changes in Holocene Arctic sea ice. Quaternary Science Reviews, 22, 645-658.
Smith, N., D. Lombardozzi, A. Tawfik, G. Bonan, and J. S. Dukes. 2017. Biophysical consequences of photosynthetic temperature acclimation for climate. Journal of Advances in Modeling Earth Systems, 9.
Smith, W. K., S. C. Reed, C. C. Cleveland, A. P. Ballantyne, W. R. L. Anderegg, W. R. Wieder, and S. W. Running, 2015: Satellite observations call into question Earth system model projections of global terrestrial CO2 fertilization. Nature Climate Change, doi:10.1038/nclimate2879.
Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 1, 653-657.
Sobel, A. H., E. D. Maloney, Bellon, G., and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: a reassessment. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.2.
Sokolov, A. P., and E. Monier, 2012; Changing the climte sensitivity of an atmospheric general circulation model through cloud radiative adjustment. J. Climate, 25, 6567-6584, doi:10.1175/JCLI-D-11-00590.1.
Solomon, A., and I. Wainer, 2006: Pacific tropical-extratropical thermocline water mass exchanges in the NCAR coupled climate system model v.3. Ocean Modelling, 15, 218-235, doi:10.1016/j.ocemod.2006.04.003.
Solomon, A., S. -I. Shin, M. A. Alexander, and J. P. McCreary, 2007: The relative importance of tropical variability forced from the North Pacific through ocean pathways. Clim. Dyn.,, doi:10.1007/s00382-007-0353-7.
Solomon, A., and L. M. Polvani, 2016: Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. J. Climate, 29, 3463-3470.
Solomon, A., L. M. Polvani, K. L. Smith, and R. P. Abernathey, 2015: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1 (WACCM). Geophys. Res. Lett., 42, 5547-5555, doi:10.1002/2015GL064744.
Solomon, S. C., and L. Qian, 2005: Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160.
Solomon, S., D. J. Ivy, D. E. Kinnison, M. J. Mills, R. R. Neely III, and A. Schmidt, 2016: Emergence of healing in the Antarctic ozone layer. Science, doi:10.1126/science.aae0061.
Solomon, S., D. E. Kinnison, J. Bandoro, and R. Garcia, 2015: Simulations of polar ozone depletion: An update. J. Geophys. Res., 120, 7958-7974, doi:10.1002/2015JD0233652015.
Solomon, S. C., H. -L. Liu, D. R. Marsh, J. M. McInerney, L. Qian, and F. M. Vitt, 2018: Whole atmosphere simulation of anthropogenic climate change. Geophys. Res. Lett., 45, doi:10.1002/2017GL076950.
Son, S. -W., L. M. Polvani, D. W. Waugh, H. Akiyoshi, R. Garcia, D. Kinnison, S. Pawson, E. Rozanov, T. G. Shepherd, and K. Shibata, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 1486-1489, doi:10.1126/science.1155939.
Son, S. -W., L. M. Polvani, D. W. Waugh, T. Birner, H. Akiyoshi, R. R. Garcia, A. Gettelman, D. A. Plummer, and E. Rozanov, 2009: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22(2), 429-445, doi:10.1175/2008JCLI2215.1.
Son, S. -W., et al., 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.
Song, F., and T. Zhou, 2014: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? J. Climate, 27, 8761-8777, doi:10.1175/JCLI-D-14-00396.1.
Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, doi:10.1002/2013GL058705.
Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-Western Pacific anticyclone teleconnection. J. Climate, 27, 1679-1697.
Song, F., T. Zhou, and Y.Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res.Lett., 41, doi:10.1002/2013GL058705.
Song, F., and T. Zhou, 2014: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations ? J. Climate, 27, 8761–8777.
Song, F., and T. Zhou, 2015: The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the 20th century. J. Climate, 28, 7093-7107.
Song, F., and G. Zhang, 2016: Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1. J. Climate, 29, 7417-7433.
Song, F., and G. Zhang, 2017: Impact of tropical SSTs in the North Atlantic and southeastern Pacific on the eastern Pacific ITCZ. J. Climate, 30, 1291-1305.
Song, I. -S., H. -Y. Chun, R. R. Garcia, and B. A. Boville, 2007: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM). J. Atmos. Sci., 64, 2286-2308, doi:10.1175/JAS3954.1.
Song, X., X. Wu, G. J. Zhang, and R. W. Arritt, 2008: Dynamic effects of convective momentum transports on global climate simulations. J. Climate, 21, 180-194.
Song, X., X. Wu, G. J. Zhang, and R. W. Arritt, 2008: Understanding the effects of convective momentum transport on climate simulations: The role of convective heating. J. Climate, 21, 5034-5047.
Song, X., and G. J. Zhang, 2009: Convection parameterization, tropical Pacific double ITCZ, and upper ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. J. Climate, 22, 4299-4315.
Song, X., D. Lubin, and G. J. Zhang, 2010: Increased greenhouse gases enhance regional climate response to a Maunder Minimum. Geophys. Res. Lett., 37, L01703, doi:10.1029/2009GL041290.
Song, X., and G. J. Zhang, 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, doi:10.1029/2010JD014833.
Song, X., G. J. Zhang, and J. –L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. J. Climate, 25, 8568-8590, doi:10.1175/JCLI-D-11-00563.1.
Song, X, G. J. Zhang, and M. Cai, 2013: Quantifying contributions of climate feedbacks to tropospheric warming in the NCAR CCSM3.0. Clim. Dyn., doi:10.1007/s00382-013-1805-x.
Song, X. and G. J. Zhang, 2014: Role of climate feedback in El Niño-like SST response to global warming. J. Climate, 27, 7301-7318, doi:10.1175/JCLI-D-14-00071.1.
Song, X., G. J. Zhang, and M. Cai, 2014: Characterizing the climate feedback pattern in the NCAR CCSM3-SOM using hourly data. J. Climate, 27, 2912- 2930, doi:10.1175/JCLI-D-13-00567.1.
Song, X., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. J. Adv. Mod. Earth Syst., 10, doi:10.1002/2017MS001191.
Song, Y. T., and Y. Chao, 2000: An embedded bottom boundary layer formulation for z-coordinate ocean models. J. Atmos. Oceanic Tech., 17, 546-560.
Song, Z., S.-K. Lee, C. Wang, B. Kirtman, and F. Qiao, 2015: Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1. Ocean Modelling, 96, 280-290, doi:10.1016/j.ocemod.2015.09.0098.
Soreghan, G. S., N. G. Heavens, L. A. Hinnov, S. M. Aciego, and C. Simpson, 2015: Reconstructing the dust cycle in deep time: The case of the Late Paleozoic Icehouse. In: Earth-Life Transitions: Paleobiology in the Context of Earth System Evolution: The Paleontology Short Course. October 31, 2015., Paleo. Soc. Spec. Pap., 21, 83–120. D. Polly, J. J. Head, and D. L Fox, eds.
Spall, M. A., R. A. Weller, and P. W. Furey, 2000: Modelling the three-dimensional upper ocean heat budget and subduction rate during the subduction experiment. J. Geophys. Res., 105, 26,151-26,166.
Spangehl, T., and C. C. Raible, 2008: Variationen der NAO auf Basis von langen Zeitreihen, Datenrekonstruktionen und Simulationen der letzten 500 Jahre, Promet, 34, 101-107.
Spangehl,T., U. Cubasch, C. C. Raible, U. Langematz, S. Schimanke, J. Koerper, and D. Hofer, 2010: Transient climate simulations from the Maunder Minimum to present day: The role of the stratosphere. J. Geophy. Res., 115, doi:10.1029/2009JD012358.
Speelman, E. N., J. O. Sewall, D. Noone, M. Huber, A. von der Heydt, J. S. Damsté, and G. J. Reichart, 2010: Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene. Earth and Planetary Science Letters, 298, 57-65.
Sperber, K. R., 2004: Madden-Julian variability in NCAR CAM2.0 and CCSM2.0. Clim. Dyn., 23, 259-278 doi:10.1007s00382-004-0447-4.
Sperber, K. R., and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30-50 day) variability, Part 1: Systematic Errors and caution on use of metrics. Clim. Dynam., 31, 345-372.
Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th Century. Clim. Dyn., 41, 2711-2744, doi:10.1007/s00382-012-1607-6.
Sriver, R. L., and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, doi:10.1029/2010GL042836.
Sriver, R. L., M. Huber, and L. Chafik, 2013: Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model. Earth Syst. Dynam., 4, 1-10, doi:10.5194/esd-4-1-2013.
Sriver, R. L., C. E. Forest, and K. Keller, 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, doi:10.1002/2015GL064546.
Stan, C., M. Khairoutdinov, C. A. DeMott, V. Krishnamurthy, D. M. Straus, D. A. Randall, J. L. Kinter, III, and J. Shukla, 2010: An ocean-atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, doi:10.1029/2009GL040822.
Stark, S. C., et al., 2015: Toward accounting for ecoclimate teleconnections: Intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 1-14.
Steinacher, M., F. Joos, T. L. Frölicher, G. -K. Plattner, and S. C. Doney, 2009: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6, 515-533.
Steinacher, M., et al., 2010: Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7, 979-1005.
Steinke, S., M. Mohtadi, M. Prange, V. Varma, D. Pittauerova, and H. W. Fischer, 2014: Mid- to late-holocene Australian-Indonesian summer monsoon variability. Quaternary Science Reviews, 93, 142-154, doi:10.1016/j.quascirev.2014.04.006.
Steinweg, C., and W. J. Gutowski, 2015: Projected changes in Greater St. Louis summer heat stress in NARCCAP simulations. Weather, Climate, and Society, 7, 159-168.
Steph, S., R. Tiedemann, M. Prange, J. Groeneveld, D. Nürnberg, L. Reuning, M. Schulz, and G. Haug, 2006: Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway. Paleoceanography, 21, PA4221, doi:10.1029/2004PA001092.
Stephens, B. B., M. C. Long, R. F. Keeling, E. A. Kort, C. Sweeney, and others, 2018: The O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study. Bull. Amer. Meteor. Soc., 10.1175/BAMS-D-16-0206.1.
Sterling, K., 2006: Multi-Decadal Variability of Atlantic Water Heat Transports as Seen in the Community Climate Systems Model Version 3.0, MS. Thesis, Dept. of Atmospheric Sciences, University of Alaska Fairbanks, 42 pp.
Stevenson, S., B. Fox-Kemper, M. Jochum, B. Rajagopalan, and S. G. Yeager, 2010: ENSO model validation using wavelet probability analysis. J. Climate, 23, 5540-5547.
Stevenson, S., B. Fox-Kemper, M. Jochum, R. Neale, C. Deser and G.A. Meehl, 2012: Will there be a significant change to El Nino in the 21st century? J. Climate, 25, 2129-2145, doi: http://dx.doi.org/10.1175/JCLI-D-11-00252.1.
Stevenson, S., B. Fox-Kemper, and M. Jochum, 2012: Understanding the ENSO-CO2 link using stabilized climate simulations. J. Climate, 25(22), 7917-7936.
Stevenson, S., B. Rajagopalan, and B. Fox-Kemper, 2013: Generalized linear modeling of the El Nino/Southern Oscillation with application to seasonal forecasting and climate change projections. J. Geophys. Res.-Oceans, 118(8), 3764-3781.
Stevenson, S., A. Timmermann, Y. Chikamoto, and S. Langford, 2015: Stochastically generated North American megadroughts. J. Climate, 28 (5), 1865-1880.
Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: El Nino-like hydroclimate
responses to lastmMillennium volcanic eruptions. J. Climate, 29, 2907-2921.
Stevenson, S., A. Capotondi, J. Fasullo, and B. Otto-Bliesner, 2017: Forced changes to 20th century ENSO diversity in a last millennium context. Clim. Dyn., doi:10.1007/s00382-017-3573-5.
Stevenson, S., B. Otto-Bliesner, and J. Fasullo, 2017: Considering eruption season to reconcile model and proxy responses to tropical volcanism. Proc. Nat. Acad. Sci., 114, 1822-1826, doi:10.1073/pnas.1612505114.
Stevenson, S, J. Overpeck, J. T. Fasullo, S. Coats, L. Parsons, T. Ault, B. Otto-Bliesner, G. Loope, J. Cole, 2018: Dynamical controls on last millennium hydroclimate extremes. J. Climate, doi:10.1175/JCLI-D-17-0407.1.
Stevenson, S., J. Overpeck, J. Fasullo, S. Coats, L. A. Parsons, B. Otto-Bliesner, T. Ault, G. Loope, and J. Cole 2018: Climate variability, volcanic forcing, and last millennium hydroclimate extremes. J. Climate, 31, 4309-4327, doi:10.1175/JCLI-D-17-0407.1.
Still, C. J., W. J. Riley, B. A. Helliker, and J. A. Berry, 2005: Simulation of ecosystem oxygen-18 CO2 isotope fluxes in a tallgrass prairie: Biological and physical controls, in Stable Isotopes and Biosphere-Atmosphere Interactions, L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, Eds. Elsevier-Academic Press.
Still, C. J., et al., 2009: Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and (COO)-O-18 exchanges. J. Geophys. Res.-Biogeosciences, 114.
Stocker, T. F., A. Timmermann, M. Renold, and O. Timm, 2007: Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic meridional overturning circulation. J. Climate, 20, 5912-5928.
Stockli, R., D. M. Lawrence, G. -Y. Niu, J. W. Oleson, P. E. Thornton, Z.-L. Yang, G. B. Bonan, A. S. Denning, and S. W. Running, 2008: Use of FLUXNET in the Community Land Model development. J. Geophys. Res., 113, G01025, doi:10.1029/2007JG000562.
Stone, D. A., M. D. Risser, O. M. Angelil, M. F. Wehner, S. Cholia, N. Keen, H. Krishnan, T. A. O'Brien, C. J. Paciorek, and W. D. Collins, 2017: A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather and Climate Extremes, 19, 10-19, doi:10.1016/j.wace.2017.12.003.
Storelvmo, T., 2006: Ph.D. thesis – Modeling aerosol influence on clouds in CAM-Oslo.
Storelvmo, T., J. E. Kristjánsson, S. J. Ghan, A. Kirkevåg, Ø. Seland, and T. Iversen, 2006: Predicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo. J. Geophys. Res., 111, 10.1029/2005JD006300.
Storelvmo, T., J. E. Kristjánsson, G. Myhre, M. Johnsrud, and F. Stordal, 2006: Combined observational and modeling based study of the aerosol indirect effect (COMBINE). Atmos. Chem. Phys., 6, 3583-3601.
Storelvmo, T., J. E. Kristjánsson, and U. Lohmann, 2008: Aerosol influence on mixed-phase clouds in CAM-Oslo. J. Atmos. Sci., 65, 3214-3230.
Storelvmo, T., J. E. Kristjánsson, U. Lohmann, T. Iversen, A. Kirkevåg, and Ø. Seland, 2008: Modeling of the Wegener-Bergeron-Findeisen process – implications for aerosol indirect effects. Env. Res. Lett., 3, doi:10.1088/1748-9326/3/4/045001.
Storelvmo, T., J. E. Kristjánsson, U. Lohmann, T. Iversen, A. Kirkevåg, and Ø. Seland, 2010: Corrigendum: Modeling of the Wegener-Bergeron-Findeisen process – implications for aerosol indirect effects. Env. Res. Lett., 5, doi:10.1088/1748-9326/5/1/019801.
Storer, R., G. J. Zhang, and X. Song, 2015: Effects of convective microphysics parameterization on large-scale cloud hydrological cycle and radiative budget in tropical and midlatitude convective regions. J. Climate, 28, 9277-9297, doi:10.1175/JCLI-D-15-0064.1.
Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl, and B. D. Santer, 2006: Observational constraints on past attributable warming and predictions of future global warming. J. Climate, 19, 3055-3069.
Stoy, P. C., et al., 2013: Evaluating the agreement between measurements and models of net ecosystem exchange at different times and time scales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis, Biogeosciences Discussion, 10, 3039-3077, doi:10.5194/bgd-10-3039-2013.
Straub, C., B. Tschanz, K. Hocke, N. Kampfer, and A. K. Smith, 2012: Transport of mesospheric H20 during and after the stratospheric sudden warming of January 2010: Observation and simulation. Atmos. Chem. Phys., 12, 5413-5427.
Straus, D. M., E. Swenson, and C. -L. Lappen, 2015: The MJO cycle forcing of the North Atlantic circulation: Intervention experiments with the Community Earth System Model. J. Atmos. Sci., 72 (2) 660-681.
Stray, N. H., Y. J. Orsolini, P. J. Espy, V. Limpasuvan, and R. E. Hibbins, 2015: Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events. Atmos. Chem. Phys., 15, 4997-5005, doi:10.5194/acp-15-4997-2015.
Strazzo, S. E., J. B. Elsner, T. E. LaRow, H. Murakami, M. Wehner, and M. Zhao, 2016: The influence of model resolution on the simulated sensitivity of tropical cyclone maximum intensity to sea surface temperature. Journal of Advances in Modeling Earth Systems, 8, 1037-1054, doi:10.1002/2016MS000635.
Strode, S. A., et al., 2016: Interpreting space-based trends in carbon monoxide with multiple models. Atmos. Chem. Phys., 16, 7285-7294, doi:10.5194/acp-16-7285-2016, 2016.
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M.C. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703, 2007.
Struthers, H., A. M. L. Ekman, P. Glantz, T. Iversen, A. Kirkevåg, E. M. Mårtensson, Ø. Seland, and E. D. Nilsson, 2010: The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance of the Arctic. Atmos. Chem. Phys. Discuss.,10, 28,859-28,908.
Struthers, H., A. M. L. Ekman, P. Glantz, A. Kirkevag, O. Seland, E. M. Martensson, K. Noone, and E. D. Nilsson, 2013: Climate-induced changes in sea salt aerosol number emissions: 1870 to 2100. J. Geophys Res. Atmos., 118, 670-682, doi:10.1002/jgrd.50129.
Studer, S., K. Hocke, A. Schanz, H. Schmidt, and N. Kampfer, 2014: A climatology of the diurnal variations in stratospheric and mesospheric ozone over Bern, Switzerland. Atmos. Chem. Phys., 14, 5905-5919, doi:10.5194/acp-14-5905-2014.
Stuecker, M. F., C. M. Bitz, and K. C. Armour, 2017: Conditions leading to the unprecedented Antarctic sea ice extent during the 2016 austral spring season. Geophys. Res. Lett., doi:10.1002/2017GL074691.
Su, L., and O. B. Toon, 2009: Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model. J. Geophys. Res., 114, D14202, doi:10.1029/2008JD010956.
Su, L., and O. B. Toon, 2010: Saharan and Asian dust: similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model. Atmos. Chem. Phys. Discuss., 10, 29513-29567.
Subin, Z. M., W. J. Riley, L. M. Kueppers, J. Jin, Z. M. Subin, D. S. Christianson, and M. S. Torn, 2010: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5). Earth Interactions, doi:10.1175/2010EI331.1.
Subin, Z. M., L. N. Murphy, F. Y. Li, C. Bonfils, and W. J. Riley, 2012b: Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1). Tellus A, 64, doi:10.3402/Tellusa.V64i0.15639.
Subin, Z. M., W. J. Riley, and D. Mironov, 2012c: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Sys., 4, doi:10.1029/2011MS000072.
Subin, Z. M., C. D. Koven, W. J. Riley, M. S. Torn, D. M. Lawrence, and S. C. Swenson, 2013: Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions. J. Climate, 26, 3139-3158, doi:10.1175/JCLI-D-12-00305.1.
Subramanian, A. E., M. Jochum, A. J. Miller, R. Murtugudde, R. B. Neale, and D. E. Waliser, 2011: The Madden-Julian Oscillation in CCSM4. J. Climate, 24, 6261-6282.
Subramanian, A., and G. J. Zhang, 2014: Diagnosing MJO hindcast biases in NCAR CAM3 using nudging during the DYNAMO field campaign. J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021370.
Sun, D. -Z., and K. E. Trenberth, 1998: Coordinated heat removal from the equatorial Pacific during the 1986-87 El Nino. Geophys. Res. Lett., 25, 2659-2662.
Sun, D. -Z., C. Covey, and R. S. Lindzen, 2001: Vertical correlations of water vapor in GCMs. Geophys. Res. Lett., 28, 259-262.
Sun, D. -Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185-205.
Sun, D. -Z., J. Fasullo, T. Zhang, and A. Roubicek, 2003: On the radiative and dynamical feedbacks over the equatorial cold-tongue. J. Climate, 16, 2425-2432.
Sun, D. -Z., 2004: The control of meridional differential heating over the level of ENSO activity: A heat-pump hypothesis. Earth's Climate: The Ocean-Atmosphere Interaction, C. Wang, S.-P. Xie, and J. Carton, Eds., American Geophysical Union, 147, 71-83.
Sun, D. -Z., T. Zhang, and S. -I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17, 3786-3798.
Sun, D. -Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, doi:10.1029/2005GL025296.
Sun, D. -Z. Sun, T. Zhang, C. Cover, S. A. Klein, W. D. Collins, J. J. Hack, J. T. Kiehl, G. A. Meehl, I. M. Held, and M. Suarez, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 4059-4074.
Sun, D. -Z., T. Zhang, R. B. Neale and P. J. Rasch, 2009: An evaluation of ENSO asymmetry in the Community Climate System Models: A view from the subsurface. J. Climate, 22, 5933-5961, doi:10.1175/2009JCLI2933.1.
Sun, D. -Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Nino-Southern Oscillation into climate anomalies of decadal and longer time-scales: Results from forced ocean GCM Experiments. J. Climate, 27, 2545-2561.
Sun, L. T., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic Sea ice loss. J. Climate, 28, 7824-7845, doi:10.1175/JCLI-D-15-0169.1.
Sun, Q., M. Whitney, F. O. Bryan, P. MacCready and Y. -H. Tseng, 2017: A box model for representing estuarine physical processes in Earth system models. Ocean Modeling, 112, 139-153.
Sun, S. D., and G. L. Wang, 2012: The complexity of using a feedback parameter to quantify the soil moisture-precipitation relationship. JGR-Atmospheres, 117, D11113, doi:10.1029/2011JD017173.
Sun, S. S., and G. L. Wang, 2011: Diagnosing the equilibrium state of a coupled global biosphere-atmosphere model. JGR– Atmospheres, 116, D09108, doi:10.1029/2010JD015224.
Sun, Y., E. Ess, D. Sapirstein, and M. Huber, 2006: Visualizing Oceanic and Atmospheric Flows with Streamline Splatting, in Visualization and Data Analysis, Proc. of SPIE and IS&T Electronic Imaging 2006, R. F. Erbacher, J. C. Roberts, and M. T. Katy, Eds., San Jose, CA, 12-23.
Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2006: How often does it rain? J. Climate, 19, 916-934.
Sun, Y., S. Solomon, a. Dai, and R. Portmann, 2007: How often will it rain? J. Climate, 20, 4801-4818.
Sun, Y., Y. Ding, and A. Dai, 2010: Changing links between South Asian summer monsoon circulation and tropospheric land-sea thermal contrasts under a warming scenario. Geophys. Res. Lett., 37, L02704, doi:10.1029/2009GL041662.
Sun, Y., S. C. Clemens, C. Morrill, X. Lin, X. Wang, and Z. An, 2012: Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience, 5, 46-49.
Sun, Y., G. Ramstein, C. Contoux, and T. Zhou, 2013: A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Clim. Past, 9, 1613-1627.
Sun, Y., D. -Z. Sun, L. Wu, and F. Wang, 2013: Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci., 30(3), 940-953.
Sun, Y., L. Gu, R. E. Dickinson, R. J. Norby, S. G. Pallardy, and F. M. Hoffman, 2014: Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Nat. Acad. Sci., 111(44) 15774-15779, doi:10.1073/pnas.1418075111.
Sur, S., J. D. Owens, G. S. Soreghan, T.W. Lyons, R. Raiswell, N. G. Heavens, and N. M. Mahowald, 2015: Extreme eolian delivery of reactive iron to late Paleozoic icehouse seas. Geology, 43, 1099–1102, doi:10.1130/G37226.1.
Svensson, G. and J. Lindvall, 2015: Evaluation of near-surface variables and the vertical structure of the boundary layer in CMIP5 models. J. Climate, 28, 5233-5253, doi:10.1175/JCLI-D-14-00596.1
Swann, A. L., 2010: Ecoclimate: Variations, interactions and teleconnections. Ph.D. thesis, University of California, Berkeley.
Swann, A. L., I. Y. Fung, S. Levis, G. B. Bonan, and S. C. Doney, 2010: Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Nat. Acad. Sci. USA, 107, 1295-1300, doi:10.1073/pnas.0913846107.
Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2011: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences, 109, pp712-716, doi:10.1073/pnas.1116706108.
Swann, A. L. S., F. Hoffman, C. D. Koven, and J. R. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci., doi:10.1073/pnas.1604581113.
Swann, A. L. S., M. M. Lagu ̈e, E. S. Garcia, J. P. Field, D. D. Breshears, D. J. P. Moore, S. R. Saleska, S. C. Stark, J. C. Villegas, D. J. Law, and D. M. Minor, 2018: Continental-scale consequences of tree die-offs in North America: Identifying where forest loss matters most. Environmental Research Letters, 13(5):055014, 2018. doi:10.1088/1748-9326/aaba0f.
Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability of Arctic sea-ice trends. Nature Climate Change, 5, 86-89, doi:10.1038/nclimate2483.
Swenson, E., and D. M. Straus, 2015: Transient tropical diabatic heating and the seasonal mean response to ENSO. J. Atmos. Sci., 72(5) 1891-1907.
Tabor, C. R., C. J. Poulsen, D. J. Lunt, N. A. Rosenbloom, B. L. Otto-Bliesner, P. J. Markwick, E. C. Brady, and A. Farnsworth, 2016: The cause of Late Cretaceous cooling: A multi-model/proxy comparison. Geology, 44, 963-966, doi:10.1130/G38363.1.
Tabor, C., B. Otto-Bliesner, E. Brady, J. Nusbaumer, J. Zhu, M. Erb, A. Wong, Z. Liu, and D. Noone, 2018: Interpreting precession driven del18O variability in the South Asian monsoon region. JGR-Atmospheres, 123, doi:10.1029/2018JD028424.
Tai, A. P. K., M. Val Martin, and C. L. Heald, 2014: Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, doi:10.1038/nclimate2317.
Taguchi, M. and D. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño simulated by WACCM. J. Climate, 19, 324-332, doi:10.1175/JCLI3655.1.
Taguchi, M., 2008: Interannual variations of the stratosphere and troposphere during northern winter as simulated by WACCM. J. Climate, 21 (10), 2326-2331, doi:10.1016/10.1175/2007JCLI1744.1.
Taguchi, M., 2009: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part I: Annual cycle. J. Atmos Sci., 66 (7), 2029-2043, doi:10.1175/2009JAS2854.1.
Taguchi, M., 2010: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part II: ENSO-induced changes for northern winter. J. Atmos Sci., 67 (2), 543-555, doi:10.1175/2009JAS3144.1.
Tan, H., P. Ray, B. S. Barrett, M. Tewari, and M. W. Moncrieff, 2018: Role of topography on the MJO in the maritime continent: A numerical case study. Clim Dyn., doi:10.1007/s00382-018-4275-3.
Tang, J. Y., and W. J. Riley, 2013b: Impacts of a new bare-soil evaporation formulation on site, regional, and global surface energy and water budgets in CLM4. J Adv Model Earth Sy, 5, doi:10.1002/Jame.20034, 558-571.
Tang, J. Y., and W. J. Riley, 2013a: A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: Theoretical analysis and application to soil evaporation. Hydrology and Earth System Sciences, 17, 873-893, doi:10.5194/hess-17-873-2013.
Tang, J. Y., W. J. Riley, C. D. Koven, and Z. M. Subin, 2013c: CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation and application, Geoscientific Model Development, 6, 127-140, doi:10.5194/gmd-6-127-2013, 127-140.
Tang, Q., P. G. Hess, B. Brown-Steiner, and D. E. Kinnison, 2013: Tropospheric ozone decrease due to the Mount Pinatubo eruption: Reduced stratospheric influx. Geophys. Res. Lett., 40, 5553–5558, doi:10.1002/2013GL056563.
Tang, X., N. Y. Liu, W. G. Wang, L. M. Song, and W. L. Li, 2015: Changes in stratospheric CIO and HCI concentrations under different greenhouse gas emission scenarios. J. Met. Res., 29, 639-653, doi:10.1007/sl13351-015-4065-3.
Tao, W. -K., et al., 2009: A multi-scale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515-534.
Taschetto, A. S., and I. Wainer, 2002: Estudo Climatológico dos Parâmetros de Superfície Marinha no Atlântico Sudoeste. Brazilian Journal of Meteorology, 17 (2), 229-242.
Taschetto, A., I Wainer, and M. Raphael, 2007: Interannual variability associated with semiannual oscillation in southern high latitudes. J. Geophys. Res. – Atmopsheres, 112, D02106, doi:10.1029/2006JD007648.
Taschetto, A. S., and I. Wainer, 2008: Reproducibility of South American precipitation due to subtropical South Atlantic SSTs. J. Climate, 21 (12), doi:10.1175/2007JCLI1865.1.
Taschetto, A. S., and I Wainer, 2008: The impact of the subtropical South Atlantic SST on South American precipitation. Annales Geophysicae, 26 (11), 3457-3476.
Taschetto, A .S., C. C. Ummenhofer, A. Sen Gupta, and M. H. England, 2009: The effect of anomalous warming in the central Pacific on the Australian monsoon. Geophys. Res. Lett., 36, L12704, doi:10.1029/2009GL038416.
Taschetto, A. S., A. Sen Gupta, N. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. Englad, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27(8) 2861-2885.
Taschetto, A. S., A. Sen Gupta, C. C. Ummenhofer, and M. H. England, 2016: Can Australian multi-year droughts and wet spells be generated in the absence of oceanic variability? J. Climate, doi:10.1175/JCLI-D-15-0694.1.
Taschetto, A. S., R. R. Rodrigues, G. A. Meehl, S. McGregor, and M. H. England, 2016: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Clim. Dyn., 46, 1841–1860.
Taylor, M. A., J. Edwards, and A. St.Cyr, 2008: Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores. J. Phys. Conf. Ser., 125.
Taylor, M. A., A. St-Cyr, and A. Fournier, 2009: A non-oscillatory advection operator for the compatible spectral element method. Lecture Notes in Computer Science, 5545, 273-282.
Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comp. Phys., 229, 5879-5895.
Taylor, P. C., M. Cai, A. Hu, G. A. Meehl, W. M. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, doi:10.1175/JCLI-D-12-00696, 26, 7023-7043.
Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climate Change, 79, 185-211.
Tebaldi, C., and G. A. Meehl, 2008: Beyond mean climate change: What climate models tell us about future climate extremes. In: Climate Extremes and Society, H.F. Diaz and R.J. Murnane, Eds., Cambridge University Press, 99-119.
Tebaldi, C., and J. M. Arblaster, 2014: Pattern scaling: A review of its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 3, 459-471.
Tebaldi, C., B. C. O'Neill, and J.-F. Lamarque, 2015: Sensitivity of regional climate to global temperature and forcing. Environmental Research Letters, 10, 074001, doi:10.1088/1748-9326/10/7/074001.
Tebaldi, C., and M. Wehner, 2016: Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Climatic Change, 1-13, doi:10.1007/s10584-016-1605-5.
Tebaldi, C., and D. Lobell, 2015: Estimated impacts of emission reductions on wheat and maize crops. Climatic Change, 1-13, doi:10.1007/s10584-015-1537-5.
Teng, H., W. M. Washington, G. A. Meehl, L. A. Buja, and G. W. Strand, 2006: 21st Century Arctic Climate Change in the CCSM3 IPCC Scenario Simulations. Clim. Dyn., doi:10.1007/s00382-005-0099-z.
Teng, H., W. M. Washington, and G. A. Meehl, 2007: Interannual variations and future change of wintertime extratropical cyclone activity over North America in CCSM3. Clim. Dyn., doi:10.1007/s00382-007-0314-1.
Teng, H., and G. Branstator, 2011: Predictability of North Pacific subsurface temperature prominent modes in a CGCM. Clim Dyn, 36, 1813-1834.
Teng, H., G. Branstator, and G.A. Meehl, 2011: Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J. Climate, doi:10.1175/JCLI4207.1.
Teng, H. and G. Branstator, 2012: A zonal wavenumber-3 pattern of Northern Hemisphere wintertime planetary wave variability at high latitudes. J. Climate, 25, 6756-6769.
Teng, H., W. M. Washington, G. Branstator, G. A. Meehl, and J. -F. Lamarque, 2012: Potential impacts of Asian carbon aerosols on future US warming. Geophys. Res. Lett., 39, 11, doi:10.1029/2012GL051723.
Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Impact of a circulation pattern on US heat wave likelihood on subseasonal time scales. Nature Geoscience, 6, 1056-1061.
Teng, H., G. Branstator, G. A. Meehl, and W. M. Washington, 2016: Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophy. Res. Lett., doi: 1002/2015GL067574.
Tesfa, T. K., L. Y. R Leung, M. Huang, H. Li, N. Voisin, and M. S. Wigmosta, 2014: Scalability of grid- and sub-basin-based land surface modeling approaches for hydrologic simulations. J. Geophys. Res.. D. (Atmospheres), 119(6), 3166-3184, doi:10.1002/2013JD020493.
Tesfa, T. K., H. Li, LYR Leung, M Huang, Y Ke, Y Sun, and Y Liu, 2014: A Subbasin-based framework to represent land surface processes in an earth system model. Geoscientific Model Development, 7(3), 947-963, doi:10.5194/gmd-7-947-2014.
Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos., 119, 9810-9821, doi:10.1002/2014JD021858.
Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2015: Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J. Geophys. Res. Atmos., 120, 5831-5849, doi:10.1002/2015JD023325.
Thackeray, C. W., C. G. Fletcher, L. R. Mudryk, and C. Derksen, 2016: Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Climate, 29, 8647-8663, doi:10.1175/JCLI-D-16-0341.1.
Thatcher, D. R., and C. Jablonowski, 2016: A moist aquaplanet variant of the Heid-Suarez test for atmospheric model dynamical cores. Geosci. Model Dev., 9, 1263-1292.
Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the formation and progression of the MJO. J. Climate, 66, 3297-3312.
Thayer-Calder, K., et al., 2015: A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model. Geosci. Model Dev. Discuss., 8, 3801-3812, doi:10:5194/gmdd-8-3801-2015.
Thejna, T., G. Bala, and D. Noone, 2017: Impact of deep convection on the isotopic amount effect in tropical precipitation. J. Geophys. Res.-Atmospheres, doi:10.1002/2016JD025555.
Thiery, W., E. L. David, S. I. Seneviratne, K. Bedka, S. Lhermitte, N. P. M. van Lipzig, 2016: Hazardous thunderstorm intensification over Lake Victoria. Nature Communications, 7, 12786.
Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme April 2016 temperatures in Southeast Asia caused by El Nino and worsened by global warming. Nature Comm., 15531, doi:10.1038/ncomms15531.
Thomas, H., et al., 2007: Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochem. Cycles, 21, GB4001, doi:10.1029/2006GB002825.
Thomas, H., A. E. Friederike Prowe, I. D. Lima, S. C. Doney, R. Wanninkhof, R. J. Greatbatch, U. Schuster, and A. Corbière, 2008: Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Global Biogeochem. Cycles, 22, GB4027, doi:10.1029/2007GB003167.
Thomas, R. Q., S. Zaehle, P. H. Templer, and C. L. Goodale, 2013: Global patterns of nitrogen limitation: Confronting two global biogeochemical models with observations. Global Change Biology, 19, 2986-2998.
Thomas, R. Q., G. B. Bonan, and C. L. Goodale, 2013: Insights into mechanisms governing forest carbon response to nitrogen deposition: A model-data comparison using observed responses to nitrogen addition. Biogeosciences, doi:10:3869–3887.
Thomas, R. Q., G. A. McKinley, and M. C. Long. 2013: Examining uncertainties in representations of the carbon cycle in earth system models. EOS Transactions, 94, 460.
Thompson, L., and W. Cheng, 2008: Water Masses in the Pacific in CCSM3. J. Climate, 21, 4514-4528.
Thompson, L., and Y. -O. Kwon, 2010: An enhancement of a coupled mode of variability in CCSM3 in the North Pacific owing to ocean model biases. J. Climate, 23, 6221–6233.
Thompson, S. L., B. Govindasamy, A. Mirin, K. Caldeira, C. Delire, J. Milovich, M. Wickett, and D. Erickson, 2004: Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys. Res. Lett., 31, L23211, doi:10.10292004GL021239.
Thornton, P. E., J. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogemchem. Cycles, 21, GB4018, doi:10.1029/2006GB002868.
Thornton, P. E., S. C. Doney, K. Lindsay, J. K. Moore, N. Mahowald, J. T. Randerson, I. Fung, J. -F. Lamarque, J. J. Feddema, and Y. -H. Lee, 2009: Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: Results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120.
Tharammal, T., A. Paul, U. Merkel, and D. Noone, 2013: Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model. Climate of the Past, 9, 789-809, doi:10.5194/cp-9-789-2013.
Thiery, W., E. L. Davin, H. J. Panitz, M. Demuzere, S. Lhermitte, and N. van Lipzig, 2015: The impact of the African great lakes on the regional climate. J. Climate, 28, 4061-4085, doi:10.1175/JCLI-D-14-00565.1.
Thiery, W., E. L. Davin, D. M. Lawrence, A. L. Hirsch, M. Hauser, and S. I. Seneviratne, 2017: Present‐day irrigation mitigates heat extremes. J. Geophys. Res. Atmos., 122, 1403-1422, doi:10.1002/2016JD025740.
Thiery, W., L. Gudmundsson, K. Bedka, F. H. M. Semazzi, S. Lhermitte, P. Willems, N. P. M. van Lipzig, S. I. Seneviratne, 2017: Early warnings of hazardous thunderstorms over Lake Victoria. Environmental Research Letters, 12, 074012, doi:10.1088/1748-9326/aa7521.
Tian, Y., R. E. Dickinson, L. Zhou, R. B. Myneni, M. Friedl, C. B. Schaaf, M. Carroll, and F. Gao, 2004: Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett., 31 (5), doi:10.10292003GL019104.
Tian, Y., et al., 2004: Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res., 109 (D1), doi:10.10292003JD003777.
Tian, X., A. Dai, D. Yang, and Z. Xie, 2007: Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J. Geophys. Res.-Atmospheres, 112, D14101, doi:10.029/2007JD008420.
Tian, X., Z. Xie, and A. Dai, 2008: A land surface soil moisture data assimilation system based on the dual-UKF method and the Community Land Model. J. Geophys Res., 113, D14127, doi:10.1029/2007JD009650.
Tierney, J. E., C. C. Ummenhofer, and P. B. deMenocal, 2015: Past and future rainfall in the Horn of Africa. Science Advances, 1, doi:10.1126/sciadv.1500682.
Tilmes, S., D. E. Kinnison, R. R. Garcia, R. Müller, F. Sassi, D. R. Marsh, and B. A. Boville, 2007: Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model. J. Geophys. Res., 112, D24301, doi:10.1029/2006JD008334.
Tilmes, S., R. R. Garcia, D. E. Kinnison, A. Gettelman, and P. J. Rasch, 2009: Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res., 114, D12305, doi:10.1029/2008JD011420.
Tilmes, S., et al., 2013: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res., 118(19), 11036-11058, doi:10.1002/jgrd.50868.
Tilmes, S., A. Jahn, J. E. Kay, M. Holland, and J.-F. Lamarque, 2014: Can regional climate engineering save the summer Arctic sea ice? Geophys. Res. Lett., 41, doi:10.1002/2013GL058731.
Tilmes, S., et al., 2015: Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geosci. Model Dev., 8, 1395-1426, doi:10.5194/gmd-8-1395-2015.
Tilmes, S., et al., Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev., 9, 1853-1890, doi:10.5194/gmd-9-1853-2016.
Tilmes, S., J. H. Richter, M. J. Mills, B. Kravitz, D.G. MacMartin, F. Vitt, J. J. Tribbia, and J.-F. Lamarque, 2017: Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations. JGR-Atmospheres, doi:10.1002/2017JD026888.
Tilmes, S., Richter, J. H., Mills, M. J., Kravitz, B., MacMartin, D. G., Garcia, R. R., et al., 2018: Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics. J. Geophys. Res.: Atmospheres, 123, 4654–4673, 10.1002/2017JD028146.
Timbal, B., and J. M. Arblaster, 2005: Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia. Geophys. Res. Letts., 33, doi:10.1029/2005GL025361.
Timbal B., J. M. Arblaster, and S. B. Power, 2006: Attribution of the late 20th century rainfall decline in South-West Australia. J. Climate, 19, 2046-2065.
Timmermann, A., et al., 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20/19, 4899-4919.
Timmermann, A., L. Menviel, Y. Okumura, A. Schilla, U. Merkel, A. Hu, B. Otto-Bliesner, and M. Schulz, 2010: Towards a quantitative understanding of millennial-scale Antarctic warming events. Quaternary Science Review, 29, 74-85.
Timmermans, B., D. Stone, M. Wehner, and H. Krishnan, 2017: Impact of tropical cyclones on modeled extreme wind-wave climate. Geophys. Res. Lett., 44, 1393-1401.
Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, O. Seland, and C. Heize, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301-325.
Tjiputra, J. F., A. Olsen, L. Bopp, A. Lenton, B. Pfeil, T. Roy, J. Segschneider, I. Totterdell, and C. Heinze, 2014: Long-term surface pCO2 trends from observations and models. Tellus B, 66, 23-83.
Tjiputra, J. F., N. Goris, S. K. Lauvset, C. Heinze, A. Olsen, J. Schwinger, and R. Steinfeldt, 2018: Mechanisms and early detections of multidecadal oxygen changes in the interior subpolar North Atlantic. Geophys. Res. Lett., 45, doi:10.1029/2018GL077096.
Todd-Brow, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon simulations from CMIP5 Earth System Models and comparisons with observations. Biogeosci., 10(3), 1717-1736, doi:10.5194/bg-10-1717-2013.
Tonelli, M., I. Wainer, and E. Curchitser, 2012: A modelling study of the hydrographic stucture of the Ross Sea. Ocean Science Discussions, 9, 3431-3449.
Torn, M. S., S. C. Biraud, C. J. Still, W. J. Riley, and J. A. Berry, 2011: Seasonal and interannual variability in C-13 composition of ecosystem carbon fluxes in the U. S. Southern Great Plains. Tellus B – Chemical and Physical Meteorology, 63, 181-195. doi:10.1111/J.1600-0889.2010.00519.X.
Tosca, M. G., J. T. Randerson, C. S. Zender, M. G. Flanner, and P. J. Rasch, 2010: Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys., 10, 3515-3528.
Totterdil, A., J. C. Gomez-Martin, T. Kovacs, W. Feng, and J. Plane, 2014: Experimental study of the mesospheric removal of NF3 by neutral meteoric metals and Lyman-a radiation. The Journal of Physical Chemistry Part A, doi:10.1021/jp503003e, 2014.
Totterdill, A., K. Tamas, J. C. Gomez-Martin, W. Feng, and J. M. C. Plane, 2015: Mesospheric removal of very long-lived greenhouse gases SF6 and CFC-115 by metal reactions, Lyman-a photolysis and electron attachment. J. Phys. Chem. (A), 119 (10), 2016-2025, doi:10.1021/jp5123344.
Totterdill, A., T. Kovacs, W. Feng, D. Dhomse, C. J. Smith, J. C. Gomez-Martin, M. P. chipperfield, P. M. Forster, and J. M. C. Plane, 2016: Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2CI(CFC-115). Atmos. Chem. Phys., 16, 11,451-11,463, doi:10.5194/acp-16-11451-2016.
Tourpali, K., et al., 2009: Clear sky UV simulations in the 21st century based on ozone and temperature projections from chemistry climate models. Atmos. Chem. Phys., 9, 1165-1172.
Towler, E., H. Lazrus, and D. Pai Mazumder, 2017: Characterizing drought risks and implications for water management under climate change. NCAR Technical Note NCAR/TN-533+STR, 25 pp., doi:10.5065/D6HD7T3N.
Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dyn., 17, 259-276.
Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205-1217.
Trenberth, K. E., and B. L. Otto-Bliesner, 2003: Toward integrated reconstruction of past climates. Science, 300, 589-591.
Trenberth, K. E., J. T. Fasullo and M. A. Balmaseda, 2014: Earth's energy imbalance. J. Climate, 27, 3129-3144, doi: 10.1175/JCLI-D-13-00294.
Trenberth, K. E., Y. Zhang, J. T. Fasullo, and S. Taguchi, 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res., 120, 3642-3659, doi:10.1002/2014JD022887.
Trenberth, K. E., Y. Zhang, and J. T. Fasullo, 2015: Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM. J. Geophys. Res., 120, 10,074-10,090, doi:10.1002/2015JD023381.
Trenberth, K. E., Y. Zhang, and M. Gehne, 2017: Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. J. Hydrometeor., 18, 1393-1412, doi:10.1175/JHM-D-16-0263.
Tseng, Y. H., and C. Ding, C., 2008: Efficient parallel I/O in Community Atmosphere Model (CAM). International Journal of High Performance Computing Applications, 22, 206, d Tseng*,
Tseng, Y. H., Y. H. Lin, M. H. Lo, and S. C. Yang, 2016: Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble Community Atmospheric Model hindcasts. Clim. Dyn., doi:10.1177/1094342008090914.
Tseng, Y. -H., et al., 2016: North and Equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 104, 143-170, doi:10.1016/j.ocemod.2016.06.003.
Tseng, Y.-H., F. O. Bryan, and M. M. Whitney, 2016: Impacts of the representation of riverine freshwater input in the Community Earth System Model. Ocean Model., 105, 71-86.
Tsigaridis, K., et al., 2014: The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys., 14, 10,845-10,895, doi:10.5194/acp-14-10845-2014.
Tsujino, H., S. Urakawa, H. Nakano, R. J. Small, W. M. Kim, S. G. Yeager, G. Danabasoglu, T. Suzuki, J. L. Bamber, M. Bentsen, C. W. Boning, A. Bozec, E. P. Chassignet, E. Curchitser, F. B. Dias, P. J. Durack, S. M. Griffies, Y. Harada, M. Ilicak, S. A. Josey, C. Kobayashi, S. Kobayashi, Y. Komuro, W. G. Large, J. Le Sommer, S. J. Marsland, S. Masina, M. Scheinert, H. Tomita, M. Valdivieso, and D. Yamazaki, 2018: JRA-55 based surface dataset for driving ocean – sea-ice models (JRA55-do). Ocean Modelling, 130, 79-139, doi: 10.1016/j.ocemod.2018.07.002.
Tsutsui, J., and A. Kasahara, 1996: Simulated tropical cyclones using the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 101 (D10), 15,013-15,032.
Tsutsui, J., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. Journal of the Meteorological Society of Japan, 80, 45-65.
Tsutsui J., K. Nishizawa, and F. Sassi, 2009: Response of the middle atmosphere to the 11-year solar cycle simulated with the Whole Atmosphere Community Climate Model. J. of Geophys. Res., doi:10.1029/2008JD010316.
Tweedy, O. V., et al., 2013: Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM. J. Geophys. Res. Atmos., 118, 8346-8358, doi:10.1002/jgrd.50651.
Udovydchenkov, I. A., T. F. Duda, S. C. Doney, and I. D. Lima, 2010: Modeling deep ocean shipping noise in varying acidity conditions. J. Acoustical Soc. America, 128 (3), EL130-EL136, doi:10.1121/1.3402284.
Ullrich, P. A., P. H. Lauritzen, and C. Jablonowski, 2009: Geometrically Exact Conservative Remapping (GECoRe): Regular latitude-longitude and cubed-sphere grids. Mon. Wea. Rev., 137(6), 1721-1741, doi:10.175/2008MWR2817.1.
Ullrich, P. A., P. H. Lauritzen, and C. Jablonowski, 2012: Some considerations for high-order ‘incremental remap’-based transport schemes: Edges, reconstructions, and area integration. Int. J. Numer. Meth. Fluids, 71, 1131-1151.
Ummenhofer, C. C., and M. H. England, 2007: Interannual extremes in New Zealand precipitation linked to modes of Southern Hemisphere climate variability. J. Climate, 20, 5418-5440.
Ummenhofer, C. C., A. Sen Gupta, M. J. Pook, and M. H. England, 2008: Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Climate, 21, 5113-5134.
Ummenhofer, C. C., A. Sen Gupta, and M. H. England, and C. J. C. Reason, 2009: Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J. Climate, doi:10.1175/2008JCLI2493.1.
Ummenhofer, C. C., A. Sen Gupta, A. S. Taschetto, and M. H. England, 2009: Modulation of Australian precipitation by meridional gradients in East Indian Ocean sea surface temperature. J. Climate, 22, 5597-5610.
Ummenhofer, C. C., P. C. McIntosh, M. J. Pook, and J. S. Risbey, 2013: Impact of surface forcing on Southern Hemisphere atmospheric blocking in the Australia-New Zealand sector. J. Climate, 26, 8476-8494.
Ummenhofer, C. C., A. C., Sen Gupta, M. H. England, A. S. Taschetto, P. R. Briggs, and M. R. Raupach, 2015: How did ocean warming affect Australian rainfall extremes during the 2010/2011 La Niña event? Geophys. Res. Lett., 42, 9942-9951.
Ummenhofer, C. C., H. Xu, T. E. Twine, E. Girvetz, H. R. McCarthy, N. Chhetri, and K. A. Nicholas, 2015: How climate change affects extremes in maize and wheat yield in two cropping regions. J. Climate, 28, 4653-4687.
Ummenhofer, C. C., M. Kuluke, and J. E. Tierney, 2017: Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales. Clim. Dyn., doi:10.1007/s00382-017-3786-7.
Ummenhofer C. C, M. Kulüke, and J. E. Tierney, 2018: Extremes in East African hydroclimate and links to Indo-Pacific variability on interannual to decadal timescales. Clim. Dyn., 50, 2971-2991.
Unterguggenberger, S., S. Noll, W. Feng, J. M. C. Plane, W. Kausch, S. Kimeswenger, A. Jones, and S. Moehler, 2017: Measurig FeO variation using astronomical spectroscopic observations. Atmos. Chem. Phys. 17, 4177-4187, doi:10.5194/acp-17-4177-2017.
Vallis, G., K. P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. QJR Meteorol. Soc., 141, 1479-1501, doi:10.1002/qj.2456.
Val Martin, M., C. L. Heald, and S. R. Arnold, 2014: Coupling dry deposition to vegetation phenology in the Community Earth System Model (CESM): Implications for the simulation of surface O3. Geophys. Res. Lett., 41, doi:10.1002/2014GL059651.
Vanden Broucke, S., S. Lyussaert, E. L. Davin, I. Janssens, and N. van Lipzig, 2015: Temperature decomposition of paired site observations reveals new insights in climae models’ capability to simulate the impact of LUC. J. Geophys. Res., 120, 5417-5436, doi:10.1002/2015JD023095.
Van Kampenhout, L., J. T. M. Lenaerts, W. H. Lipscomb, W. J. Sacks, D. M. Lawrence, A. G. Slater, and M. R. van den Broeke, 2017: Improving the representation of polar snow and firn in the Community Earth System Model. JAMES, 9, 2583-2600, doi:10.1002/2017MS000988.
Van Weverberg, K., and coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 3612–3644.
Varma, V., M. Prange, F. Lamy, U. Merkel, and M. Schulz, 2011: Solar-forced shifts of the Southern Hemisphere westerlies during the Holocene. Climate of the Past, 7, 339-347, doi:10.5194/cp-7-339-2011.
Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, S., and Schulz, M., 2012: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 8, 391-402, doi:10.5194/cp-8-391-2012.
Varma, V., M. Prange, and M. Schulz, 2016: Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: Effects of orbital acceleration. Geoscientific Model Development, 9, 3859-3873, doi:10.5194/gmd-9-3859-2016.
Vavrus, S., 2001: A comparison of feedback processes in the Arctic during past and future warm climates. 6th Conference on Polar Meteorology and Oceanography, San Diego, CA, American Meteorological Society, 5-8.
Vavrus, S., 2006: An alternative method to calculate cloud radiative forcing: Implications for quantifying cloud feedbacks. Geophys. Res. Lett., 33, L01805, doi:10.1029/2005GL024723.
Vavrus, S., J. E. Walsh, W. L. Chapman, and D. Portis, 2006: The behavior of extreme cold-air outbreaks under greenhouse warming. International Journal of Climatology, 26, 1133-1147.
Vavrus, S., 2007: The role of terrestrial snow cover in the climate system. Clim. Dyn., 29, 73-88.
Vavrus, S., W. L. Ruddiman, and J. E. Kutzbach, 2008: Climate model tests of the anthropogenic influence on greenhouse-induced climate change: The role of early human agriculture, industrialization, and vegetation feedbacks. Quaternary Science Reviews, 13-14, 1410-1425.
Vavrus, S., and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J. Climate, 21, 5673-5687.
Vavrus, S., D. Waliser, A. Schweiger, and J. Francis, 2009: Simulations of 20th and 21st century Arctic clouds in the global climate models assessed in the IPCC AR4. Clim. Dyn., 33, 1099-1115.
Vavrus, S., M. Holland, and D. Bailey, 2010: Changes in Arctic clouds during intervals of rapid sea ice loss. Clim. Dyn., doi:10.1007/s00382-010-0816-0.
Vavrus, S., U. S. Bhatt, and V. Alexeev, 2011: Factors influencing simulated changes in future Arctic cloudiness. J. Climate, 24, 4817-4830
Vavrus, S., M. M. Holland, A. Jahn, D. A. Bailey, and B. A. Blazey, 2011: 21st-century Arctic climate change in CCSM4. J. Climate, 25, 2696-2710, doi:10.1175/JCLI-D-11-00220.1.
Vavrus, S. J., G. Philippon-Berthier, J. E. Kutzbach, and W. F. Ruddiman, 2011: The role of GCM resolution in simulating glacial inception. The Holocene, 21, 819-830.
Vavrus, S., 2013: Extreme Arctic cyclones in CMIP5 historical simulations. Geophys. Res. Lett., 40, 6208-6212.
Vavrus, S. J., M. Notaro, and D. J. Lorenz: 2015: Interpreting climate model projections of extreme weather events. Weather and Climate Extremes, 10, 10-28.
Vavrus, S. J., F. Wang, J. E. Martin, J. A. Francis, Y. Peings, and J. Cattiaux, 2017: Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. J. Climate, 30, 4317-4333.
Vavrus, S. J., F. He, J. E. Kutzbach, W. F. Ruddiman, and P. C. Tzedakis, 2018: Glacial inception in Marine Isotope Stage 19: An orbital analog for a natural Holocene climate. Scientific Reports, 8, doi:10.1038/s41598-018-28419-5.
Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73-76. doi:10.1038/nature04744.
Vega-Westhoff, B. and R. L. Sriver, 2017: Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM. Nature Scientific Reports, 7, 18047, doi:10.1038/s41598-18459-8.
Veloz, S., J. Williams, F. Hee, B. Otto-Bliesner, and Z. Liu, 2012: No-analog climates and shifting realized niches during the late Quaternary: Implications for 21st-century predictions by pecies distribution models. Global Change Biology, 18, 1698-1713.
Veres, M. C., and Q. Hu, 2015: Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part I: Northern Hemispheric circulation. J. Climate, 28, 6204-6220. doi:10.1175/JCLI-D-14-00413.1.
Verona, L., M. Noro, E. Barbosa, and I. Wainer, 2017: Western Antarctic ocean surface variability during the 20th century in the NCAR-CCSM4. Deep-Sea Research Part II – Topical Studies in Oceanography, 1, 1-1.
Verronen, P. T., M. E. Andersson, D. R. Marsh, T. Kovacs, and J. M. C. Plane, 2016: WACCM-D – Whole Atmosphere Community Climate Model with D-region ion chemistry. J. Adv. Model. Earth Syst., doi:10.1002/2015MS00592.
Vettoretti, G., and W. R. Peltier, 2015: Interhemisphric air temperature phase relationships in the nonlinear Dansgaard-Oeschger oscillation. Geophys. Res. Lett., 1-10, doi:10.1002/2014GL062898.
Vettoretti, G., and W. R. Peltier, 2016: Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard-Oeschger warming events. Geophys. Res. Lett., 43, 5336-5344, doi:10.1002/2016GL068891.
Vettoretti, G., and W. R. Peltier, 2018: Fast physics and slow physics in the nonlinear Dansgaard-Oeschger Relexation Oscillation. J. Climate, 31, 3423-3449.
Viehl, T., J. M. C. Plane, W. Feng and J. Hoffner, 2015: The photolysis of FeOH and its effect on the bottomside of the mesospheric Fe layer. Geophys. Res. Lett., 43, doi:10.1002/2015GL067241.
Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 4622-4641.
Vinoj V., P. J. Rasch, H. Wang, J. -H. Yoon, P. -L. Ma, K. Landu, and B. Singh, 2014: Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nature Geoscience, 7, 308-313, doi:10.1038/NGEO2107.
Vizcaíno, M., S. Rupper, and J. C. H. Chiang, 2010: Permanent El Niño and the onset of Northern Hemisphere glaciations: Mechanism and comparison with other hypotheses. Paleoceanography, 25, PA2205, doi:10.1029/2009PA001733.
Vizcaino, M. W. H. Lipscomb, W. J. Sacks, J. H. van Angelen, B. Wouters, and M. R. van den Broeke, 2013: Greenland surface mass balance as simulated by the Community Earth System Model. Part I: Model evaluation and 1850-2005 results. J. Climate, doi:10.1175/JCLI-D-12-00615.1.
Voigt, A., et al., 2016: The tropical rain belts with an annual cycle and Continent Model Intercomparison Project: TRACMIP. J. Adv. Mod. Earth Syst., 8, doi:10.1002/2016MS000748.
Voigt, I., C. M. Chiessi, M. Prange, S. Mulitza, J. Groeneveld, V. Varma, and R. Henrich, 2015: Holocene shifts of the southern westerlies across the South Atlantic. Paleoceanography, 30, doi:10.1002/2014PA002677.
Wada, Y., M.-H. Lo, P. J.-F. Yeh, J. T. Reager, J. S. Famiglietti, R.-J. Wu, and Y.-H. Tseng, 2016: Fate of water pumped from underground and contributions to sea level rise. Nature Clim. Change, doi:10.1038/nclimate3001.
Wagner, A. J., C. Morrill, B. L. Otto-Bliesner, N. Rosenbloom, and K.R. Watkins, 2013: Model support for forcing of the 8.2 ka event by meltwater from the Hudson Bay ice dome. Clim. Dyn.,, 41, 2855-2873, doi: 10.1007/s00382-013-1706-z.
Wainer, I., P. R. Gent, and G. Goni, 2000: The annual cycle of the Brazil-Malvinas confluence region in the NCAR Climate System Model. J. Geophys. Res., 105, 26,167-26,177.
Wainer, I., and S. A. Venegas, 2002: South Atlantic multidecadal variability in the Climate System Model. J. Climate, 15 (12), 1408-1420.
Wainer, I., A. S. Taschetto, J. Soares, A. P. Oliveira, B. Otto-Bliesner, and E. Brady, 2003: Intercomparison of heat fluxes in the South Atlantic, Part I: The seasonal cycle. J. Climate, 16, 706-714.
Wainer, I., A. S. Taschetto, B. Otto-Bliesner, and E. Brady, 2004: A numerical study of the impact of greenhouse gasses on the South Atlantic Ocean climatology. Climate Change, 66, 163-189.
Wainer, I., G. Clauzet, G. Ledru, M. P., E. Brady, and B. Otto-Bliesner, 2005: The last glacial maximum in South America: Paleoclimate proxies and model results. Geophys. Res. Lett, 32 (8), L08702, doi:10.1029/2004GL021244.
Wainer, I., M. Goes, L. Murphy, and E. Brady, 2012: Changes in the intermediate water mass formation rates in the global ocean for the Last Glacial Maximum, mid-holocene and pre-industrial climates. Paleoceanography, 27, PA3101.
Wainer, I., L. Figueiredo Prado, M. Khodri, and B. Otto-Bliesner, 2014: Reconstruction of the South Atlantic Subtropical Dipole index from the past 12,000 years from surface temperature proxy. Nature Sci. Rep., 3, doi:10.1038/srep05291.
Waliser, D. E., et al., 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim. Dyn., 21, 423-446.
Waliser, D. E., et al., 2012: The “Year” of Tropical Convection (May 2008 to April 2010): Climate variability and weather highlights. Bull. Amer. Meteorol. Soc., 93, 1189-1218, doi:10.1175/2011BAMS3095.1.
Walker, C. C., and G. Magnusdottir, 2013: Nonlinear planetary-wave reflection in an atmospheric GCM. J. Atmos. Sci., 60, 279-286.
Walter, H., 2009: The role of moisture-convection feedbacks in simulating the intraseasonal oscillation. Master’s Thesis: Colorado State University.
Wan, H., P. J. Rasch, K. Zhang, Y. Qian, H. Yan, and C. Zhao, 2014: Short ensembles: An efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models. Geosci. Model. Dev., 7, 1961-1977, doi:10.5194/gmd-7-1961-2014.
Wan, H., P. J. Rasch, M. A. Taylor, and C. Jablonowski, 2015: Short-term step convergence in a climate model. J. Adv. Model. Earth Syst., 07, 215-225, doi:10.1002/2014MS000368.
Wan, H., K. Zhang, P. J. Rasch, B. Singh, X. Chen, and J. Edwards, 2017: A new and inexpensive non-bit-for-bit solution reproducibility test based on time step convergence (TSC1.0). Geosci. Model Dev., 10, 537-552, doi:10.5194/gmd-10-537-2017.
Wang, C. 2007: Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys. Res. Lett., 34, L05709, doi:10.1029/2006GL028416.
Wang, C., S.-K. Lee, and D. B. Enfield, 2008: Climate response to anomalously large and small Atlantic warm pools during the summer. J. Climate, 21, 2437-2450.
Wang, C., 2009: The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions. Ann. Geophys, 27, 3705-3711.
Wang, C., D. Kim, A. M. L. Ekman, M. C. Barth, and P. Rasch, 2009: The impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett., 36, L21704, doi:10.1029/2009GL040114.
Wang, C., G. -R. Jeong, and N. Mahowald, 2009: Particulate absorption of solar radiation: Anthropogenic aerosols vs. dust. Atmos. Chem. Phys., 9, 3935–3945.
Wang, C., S.-K. Lee, and C. R. Mechoso, 2010: Inter-hemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404-418.
Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 2053-2061.
Wang, C., and R. G. Prinn, 2011: Potential climatic impacts and reliability of large-scale offshore wind farms. Environ. Res. Lett., 6, 025101, doi:10.1088/1748-9326/6/2/025101.
Wand, C., W. -L. Lee, Y. -L Chen, and H. -H. Hsu, 2015: Processes leading to double intertropical convergence zone bias in CESM1/CAM5. J. Climate, 28, 2900-2915, doi:10.1175/JCLI-D-14-00622.1.
Wang, D., W. Jia, S. C. Olsen, D. J. Wuebbles, M. K. Dubey, and A. A. Rocket, 2013: The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere. Part I: Tropospheric composition and air quality. Atmospheric Chem Phys., 13, 6117-6137, doi:10.5194/acp-13-6117-2013.
Wang, D. W. Jia, S. C. Olsen, D. J. Wuebbles, M. K. Dubey, and A. A. Rockett, 2013: The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere. Part 2: Stratospheric ozone. Atmospheric Chem Phys., 13, 6139-6150, doi:10.5194/acp-13-6139-2013.
Wang, D. G., G. L. Wang, and E. N. Anagnostou, 2005: Use of satellite-based precipitation observation in improving the parameterization of canopy hydrological processes in land surface models. Journal of Hydrometeorology, 6, 745-763.
Wang, D. G., G. L.Wang, and E. N. Anagnostou, 2007: Validation of canopy hydrological schemes in land surface models. Journal of Hydrology, 347, 308-318.
Wang, D. G., and G. L.Wang, 2007: Towards a robust canopy hydrology scheme with precipitation sub-grid variability. Journal of Hydrometeorology, 8, 3, 439-446.
Wang, D. G., E. N. Anagnostou, and G. L.Wang, 2008: Effects of sub-grid variability of precipitation and canopy water storage on climate model simulations of water cycle in Europe. Advances in Geosciences, 17, 49-53.
Wang, D. G., G. L. Wang, and E. N. Anagnostou, 2009: Impact of sub-grid variability of precipitation and canopy water storage on hydrological processes in a coupled land-atmosphere model. Clim. Dyn., 32, 5, 649-662, doi:10.1007/s00382-008-0435-1.
Wang, F., Y. Yu, M. Notaro, J. Mao, X. Shi, Y. Wei, 2017: Advancing a model-validated statistical method for decomposing the key oceanic drivers of regional climate: Focus on northern and tropical African climate variability in the Community Earth System Model (CESM). J. Climate, 30, 8517-8537, doi:10.1175/JCLI-D-17-0219.1.
Wang, F., M. Notaro, Z. Liu, G. Chen, 2014: Observed local and remote influences of vegetation on the atmosphere across north America using a model-validated statistical technique that first excludes oceanic forcings. J. Climate, 27, 362-382, doi:10.1175/JCLI-D-13-00080.1.
Wang, F., Z. Liu, M. Notaro, 2013: Extracting the dominant SST modes impacting North America’s observed climate. J. Climate, 26, 5434-5452, doi:10.1175/JCLI-D-12-00583.1.
Wang, G. L., Y. J. Kim, and D. G. Wang, 2007: Quantifying the strength of soil moisture-precipitation coupling and its sensitivity to changes in surface water budget. Journal of Hydrometeorology, 8, 3, 551-570.
Wang, G. L., 2011: Assessing the potential hydrological impacts of hydraulic redistribution in Amazonia using a numerical modeling approach. Water Resources Research, 47, W02528, doi:10.1029/2010WR009601.
Wang, G. L., C. A. Alo, R. Mei, and S. S. Sun, 2011: Droughts, hydraulic redistribution, and their impact on plant composition in the Amazon forests. Plant Ecology, 212, 663-673, doi:10.1007/s11258-010-9860-4.
Wang G. L., S. S. Sun, and R. Mei, 2011: Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys. Res. Lett., 38, L19703, doi:10.1029/2011GL049017.
Wang, G. L., and C. C. Alo, 2012: Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. International Journal of Geophysics, Special Issue on “Advances in Climate Processes, Feedbacks, Variability, and Change for the West Africa Climate System”, doi:10.1155/2012/597205
Wang, H., J. J. Tribbia, F. Baer, A. Fournier, and M. A. Taylor, 2007: A Spectral Element Version of CAM2. Mon. Wea. Rev., 135, 3825-3840.
Wang, H., R. C. Easter, P. J. Rasch, M. Wang, X. Liu, S. J. Ghan, Y. Qian, J.-H. Yoon, P.-L. Ma, and V. Vinoj, 2013: Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model. Geosci. Model Dev., 6, 765-782, doi:10.5194/gmd-6-765-2013.
Wang, H., P. J. Rasch, R. C. Easter, B. Singh, R. Zhang, P.-L. Ma, Y. Qian, S. J. Ghan, and N. Beagley, 2014: Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources and transport pathways. J. Geophys. Res., 119(12), 12,888-12,909, doi:10.1002/2014JD022297.
Wang, H., C. C. Burleyson, P.-L. Ma, J. D. Fast, and P. J. Rasch, 2018: Using the Atmospheric Radiation Measurement (ARM) datasets to evaluate climate model sin simulating diurnal and seasonal variations of tropical clouds. J. Climate, doi:10/1175/JCLI-D-17-0362.1.
Wang, K., Q. Ma, Z. Li, and J. Wang, 2015: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos., 120, 6500-6514, doi:10.1002/2015JD023420.
Wang, L., and D. W. Waugh, 2015: Seasonality in future tropical lower stratospheric temperature trends. J. Geophys. Res. Atmos., 120, doi:10.1002/2014JD022090.
Wang, M., et al., 2012: Strong constraints on cloud lifetime effects of aerosol using satellite observations. Geophys. Res. Lett., doi:10.1029/2012GL052204.
Wang, M., B. Xu, S. D. Kaspari, G. Gleixner, V. F. Schwab, H. Zhao, H. Wang, and P. Yao, 2015: Century-long record of black carbon in an ice core from the eastern Pamirs: Estimated contributions from biomass burning. Atmospheric Environment, 115, 79-88.
Wang, M., et al., 2015: Carbonaceous aerosols recorded in a southeastern Tibetan glacier: Analysis of temporall variations and model estimates of sources and radiative forcing. Atmos. Chem. Phys., 15, 1191-1204, doi:10.5194/acp-15-1191-2015.
Wang, M., V. Larson, S. Ghan, M. Ovchinnikov, D. P. Schanen, H. Xiao, X. Liu, P. Rasch, and Z. Guo, 2015: A multi-scale modelling frameword model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low cloud simulations. J. Adv. Model. Earth Sys., 7, doi:10.1002/2014MS000375.
Wang, M., and G. J. Zhang, 2018: Improving the simulation of deep convective cloud top heights in CAM5 with CloudSat observations. J. Climate, 31, 5189-5204, doi:10.1175/JCLI-D-18-0027.1.
Wang, Q., et al., 2016: An assessment of the Arctic Ocean in asuite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 99, 110-132, doi:10.1016/j.ocemod.2015.12.008.
Wang, Q., et al., 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 99, 86-109, doi:10.1016/j.ocemod.2015.12.009.
Wang, S., D. Bailey, K. Lindsay, K. Moore, and M. Holland, 2014: Impacts of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences, 11, 4713-4731, doi:10.5194/bg-11-4713-2014.
Wang, S. –Y. L. Hipps, R. Gillies, and J. -H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013-14 drought in California: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, doi:10.1002/2014GL059748.
Wang, S., et al., 2013: Midlatitude atmospheric OH response to the most recent 11-y solar cycle. P. Natl. Acad. Sci. USA., 110, 2023-2028, doi:10.1073/pnas.1117790110.
Wang, S. -Y., J. -H. Yoon, R. R. Gillies, and C. Cho, 2013: What caused the winter drought in western Nepal during recent years? J. Climate, 26, 8241-8256, doi:10.1175/JCLI-D-12-00800.1
Wang, S. -Y., B. M. Buckley, J. -H. Yoon, and B. Fosu, 2013: Intensification of pre-monsoon tropical cyclones in the Bay of Bengal and its impacts on Myanmar. J. Geophys. Res., 118, 4373-4384, doi:10.1002/jgrd.50396.
Wang, S. -Y., M. L'Heureux, and J. -H. Yoon, 2013: Are greenhouse gases changing ENSO precursors in the Western North Pacific? J. Climate, 26, 6309-6322, doi: 10.1175/JCLI-D-00360.1.
Wang, S., D. Bailey, K. Lindsay, J. K. Moore, and M. Holland, 2014: Impact of wea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences, 11, 4713-4731, doi:10.5194/by-11-4713-2014.
Wang, T. W., A. Randel, M. Dessier, M. Schoerberl, and D. Kinnison, 2014: Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere. Atmos. Chem. Phys., 14, 7135-7147, doi:10.5194/acp-14-7135-2014.
Wang, W., and X. Liu, 2009: Evaluating deep updraft formulation in NCAR CAM3 with high-resolution WRF simulations during ARM TWP-ICE. Geophysical Research Letter, 36, L04701, doi:10.1029/2008GL036692.
Wang, W., X. Liu, S. Xie, J. Boyle, and S. A. McFarlane, 2009: Testing a new ice microphysics parameterization in NCAR CAM3 using TWP-ICE data. J. Geophys. Res., 114, D14107, doi:10.1029/2008JD011220.
Wang, W., K. Matthes, T. Schmidt, and L. Neef, 2013: Recent variability of the tropical tropopause inversion layer. Geophys Res Lett, 40(23), 6308–6313, doi:10.1002/2013GL058350.
Wang, W., K. Matthes, and T. Schmidt, 2015: Quantifying contributions to the recent temperature variability in the tropical tropopause layer. Atmos. Chem. Phys., 15(10), 5815-5826, doi:10.5194/acp-15-5815-2015.
Wang, W., et al., 2016: Diagnostic and model dependent uncertainty of simulated Tibetal permafrost area. The Cryosphere, 10, 287-306, doi:10.5194/tc-10-287-2016.
Wang, X., and M. Zhang, 2013: An analysis of parameterization interactions and sensitivity of single-column model simulations to convection schemes in CAM4 and CAM5. J. Geophys. Res., doi:10.1002/jgrd.50690.
Wang, Y., M. Notaro, Z. Liu, R. Gallimore, S. Levis, and J. E. Kutzbach, 2008: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models. Clim. Past, 4, 59-67.
Wang, Y., and X. Liu, 2014: Immersion freezing by natural dust based on a soccer ball model with the Community Atmospheric Model version 5: Climate effects. Environmental Research Letters, 9, 124020, doi:10.1088/1748-9326/9/12/124020.
Wang, Y., X. Liu, C. Hoose, and B. Wang, 2014: Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmospheric Chemistry and Physics, 14, 10,411-10,430, doi:10.5194/acpd-14-10411-2014.
Wang, Y., M. Wang, R. Zhang, S. J. Ghan, Y. Lin, J. Hu, B. Pan, M. Levy, J. Jiang, and M. J. Molina, 2014: Assessing the effects of anthropogenic aerosols on Pacific storm track using a multi-scale global climate model. Proc. Natl. Acad. Sci., 111(19), 6894-6899.
Wang, Y., R. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nature Comm., 5, 3098.
Wang, Y., J. Jiang, and H. Su, 2015: Atmospheric responses to the redistribution of anthropogenic aerosols. J. Geophys. Res. Atmos., 120(18), 9625-9641.
Wang, Y., P.-L. Ma, J. Jiang, H. Su, and P. Rasch, 2016: Towards reconciling the influence of atmospheric aerosols and greenhouse gases on light precipitation changes in eastern China. J. Geophys. Res. Atmos, 121(10), 5878-5887.
Wang, Y., and G. J. Zhang, 2016: Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5. J. Adv. Model. Earth Syst., 8, doi:10.1002/2016MS000756.
Wang, Y., G. J. Zhang, and G. Craig, 2016: Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophys. Res. Lett., 43, doi:10.1002/2016GL069818.
Wang, Y., H. Su, J. Jiang, N. Livesey, M. Santee, L. Froidevaux, W. Read, and J. Anderson, 2017: The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled GCM. Clim. Dyn., 48(7), 2671-2683.
Wang, Y. G. J. Zhang, and Y. J. He, 2017: Simulation of precipitation extremes using a stochastic convective parameterization in the NCAR CAM5 under different resolutions. J. Geophys. Res.-Atmospheres, 122, doi:10.1002/2017JD026901.
Wang, Y., J. Jiang, H. Su, S. Choi, L. Huang, J. Guo and Y. Yung, 2018: Elucidating the Role of Anthropogenic Aerosols in Arctic Sea Ice Variations. J. Climate, 31, 99-114.
Wang, Y., G. J. Zhang, and Y. Jiang, 2018: Linking stochasticity of convection to large-scale vertical velocity to improve Indian summer monsoon simulation in the NCAR CAM5. J. Climate, 31, 6985-7002, doi:10.1175/JCLI-D-17-0785.1.
Wang, Z., L. Lin, M. Yang, and Y. Xu, 2016: The effect of future reduction in aerosol emissions on climate extremes in China. Clim. Dyn., 1–15, doi:10.1007/s00382-016-3003-0.
Wania, R., et al., 2013: Present state of global wetland extent and wetland methane modelling: Methodology of a model intercomparison project (WETCHIMP). Geoscientific Model Development, 6, 617-641, doi:10.5194/gmd-6-617-2013.
Wanninkof, R., G. -H. Park, T. Takahashi, R. A. Feely, J. L. Bullister, and S. C. Doney, 2013: Changes in deep-water CO2 concentrations over the last several decades determined from discrete CO2 measurements. Deep-Sea Res. I, 74, 48-63, doi:10.1016/j.dsr.2012.12.005.
Wanninkhof, R., G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. LeQuere, C. Heinze, J. Schwinger, H. Graven,and S. Khatiwala, 2013: Global ocean carbon uptake: Magnitude, variability, and trends. Biogeosciences, 10, 1983-2000.
Ward, D. S., S. Kloster, N. Mahowald, P. Hess, B. Rogers, and J. Randerson, 2012: The changing radiative forcing of fires: Global model estimates for past, present, and future. Atmospheric Physics and Chemistry, 12, 10857-10886.
Ward, D. S., and N. M. Mahowald, 2014: Contributions of developed and developing countries to global climate forcing and surface temperature change. Environ. Res. Lett., 9, 074008, doi:10.1088/1748-8326/9/7/074008.
Ward, D. S., N. M. Mahowald, and S. Kloster, 2014: Potential climate forcing of land use and land cover change. Atmos. Chem. Phys., 14, 12, 701-12,724.
Ward, D. S., E. Shevliakova, S. Malyshev, J.-F. Lamarque, and A. T. Wittenberg, 2016: Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models. Environ. Res. Lett., 11, 125008, doi:10.1088/1748-9326/11/12/125008.
Ward, J. L., M. G. Flanner, M. Bergin, J. E. Dibb, C. M. Polashenski, A. J. Soja, and J. L. Thomas, 2018: Modeled response of Greenland snowmelt to the presence of biomass burning‐based absorbing aerosols in the atmosphere and snow. J. Geophys. Res.: Atmospheres, 123, 6122–6141, doi:10.1029/2017JD027878.
Wartenburger, R., et al., 2018: Evapotranspiration simulations in ISIMIP2a - Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 13(7), 075001, doi:10.1088/1748-9326/aac4bb.
Washington, W. M., 2006: Modeling future climate change. In Proceedings of Bridging the Gap Between Science and Society: The Relationship between Policy and Research in National Laboratories, Universities, Government and Industry. November 1-2, 2003, James A. Baker, III Institute for Public Policy and Rice University, pp 60-64.
Washington, W. M., 2006: Computer Modeling the Twentieth- and Twenty-First-Century Century Climate. American Philosophical Society, 150:3, 414-427.
Washington, W. M., A. Dai, and G. A. Meehl, 2006: Climate Change Modeling: A Brief History of the Theory and Recent 21st Century Ensemble Simulations. In: Frontiers in the Science of Climate Modeling, J. T. Kiehl and V. Ramanathan (Eds.), Cambridge University Press, pp. 26-51.
Washington, W. M., R. Knutti, G. A. Meehl, H. Teng, C. Tebaldi, D. Lawrence, L. Buja, and W. G. Strand, 2009: How much climate change can be avoided by mitigation? Geophys. Res. Lett., 36, L08703, doi:10.1029/2008GL037074.
Watanabe, M. J-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, doi:10.1029/2012GL053305.
Weatherly, J. W., B. P. Briegleb, W. G. Large, and J. A. Maslanik, 1998: Sea ice and polar climate in the NCAR CSM. J. Climate, 11, 1472-1486.
Webb, M. J., et al., 2015. The impact of parametrized convection on cloud feedback. Phil. Trans. R. Soc. A, 373, doi:10.1098/rsta.2014.0414.
Weber, S. L., S. S. Drijfhout, A. Abe-Ouchi, M. Crucifix, M. Eby, A. Ganapolski, S. Murakami, B. Otto-Bliesner, and W. R. Peltier, 2007: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate of the Past, 3, 51-64.
Wegner, T., D. E. Kinnison, R. R. Garcia, S. Solomon, 2013: Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. J. Geophys. Res., doi:10.1002/jgrd.50415.
Wehner, M., R. Smith, G. Bala, and P. Duffy, 2009: The effect of horizontal resolution on simulation of very extreme U.S. precipitation events in a global atmosphere model. Clim. Dyn., doi:10.1007/s00382-009-0656-y.
Wehner, M. F., et al., 2014: The effect of horizontal resolution on simulation quality in the Community Atmosphere Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980-997, doi:10.1002/2013MS000276.
Wehner, M. F., Prabhat, K. A. Reed, D. Stone, W. D. Collins, and J. T. Bacmeister, 2015: Resolution dependence of future tropical cyclone projections of CAM5.1 in the US CLIVAR hurricane working group idealized configurations. J. Climate, 28, 3905-3925, doi:10.1175/JCLI-D-14-00311.1.
Wehner, M., D. Stone, H. Krishnan, K. AchutaRao, and F. Castillo, 2016: The deadly combination of heat and humidity in India and Pakistan in summer 2015. Bull. Amer. Meteor. Soc., 97 (12), S81-S86, doi:10.1175/BAMS-D-16-0145.1.
Wehner, M., G. Bala, P. B. Duffy, B. Santer, A. Mirin, R. Romano, J. Sirutis, and M. Fiorino, 2010: Towards direct simulation of future tropical cyclone statistics in a high resolution global atmospheric model. Advances in Meteorology, doi:10.1155/2010/915303.
Wehner, M. F., K. A. Reed, and C. M. Zarzycki, 2017: High-resolution multi-decadal simulation of tropical cyclones. Chapter 8 in Hurricanes and Climate Change. Jennifer Collins and Kevin Walsh, Eds., Springer, pp. 187-207.
Wehner, M. F., K. A. Reed, B. Loring, D., and H. Krishnan, 2018: Changes in tropical cyclones under stabilized 1.5oC and 2.0oC global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth System Dynamics, 9, 187-195, doi:10.5194/esd-9-187-2018.
Wehner, M. D. Stone, D. Mitchell, H. Shiogama, E. Fischer, L. S. Graff, V. V. Kharin, B. Sanderson, and H. Krishnan, 2018: Changes in extremely hot days under stabilized 1.5oC and 2.0oC global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth System Dynamics, 9, 299-311.
Wehner, M., D. Stone, H. Shiogama, P. Wolski, A. Ciavarella, N. Christidis, and H. Krishnan, 2018: Early 21st century anthropogenic changes in extremely hot days as simulated by the C20C+ Detection and Attribution multi-model ensemble. Special C20C+ issue of Weather and Climate Extremes, 20, 18, doi:10.1016/j.wace.2018.03.001.
Wei, J., and P. A. Dirmeyer, 2010: Toward understanding the large-scale land-atmosphere coupling in the models: Roles of different processes. Geophys. Res. Lett., 37, L19707, doi:10.1029/2010GL044769.
Wei, J., P. A. Dirmeyer, and Z. Guo, 2010: How much do different land models matter for climate simulation? Part II: A decomposed view of land-atmosphere coupling strength. J. Climate, 23, 3135-3145.
Wei, J., P. A. Dirmeyer, and J. Zhang, 2010: Land-caused uncertainties in climate change simulations. Quart. J. Roy. Meteor. Soc., 136, 819-824. doi:10.1002/qj.598.
Wei, X., A. N. Hahmann, R. E. Dickinson, Z. -L. Yang, X. Zeng, K. J. Schaudt, C. B. Schaaf, and N. Strugnell, 2001: Comparison of the albedo computed by land surface models and their evaluation against remotely sensed data. J. Geophys. Res., 106 (D18), 20,687-20,702.
Weijer, W., B. M. Sloyan, M. E. Maltrud, N. Jeffery, M. W. Hecht, C. A. Hartin, E. van Sebille, I. Wainer, and L. Landrum, 2012: The Southern Ocean and its climate in CCSM4. J. Climate, 25, 2652-2675.
Weijer, W., E. Munoz, N. Schneider, and F. Primeau, 2013: Pacific decadal variability: Paced by Rossby basin modes? J. Climate, 26, 1445-1456.
Weijer, W., M. Veneziani, A. Stössel, M. W. Hecht, N. Jeffery, A. Jonko, T. Hodos, and H. Wang, 2017: Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J. Climate, 30, 1629-1641, doi: 10.1175/JCLI-D-16-0120.1.
Weijer, W., M. Veneziani, A. Stossel, M. W. Hecht, N. Jeffery, A. Jonko, and H. Wang, 2017: Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J. Climate, 30, 1629-1641.
Wey, H. -W., M. -H. Lo, S. -Y. Lee, J. -Y. Yu, H. -H. Hsu, 2015: Potential impacts of wintertime soil-moisture anomalies from agricultural irrigation at low latitudes on regional and global climates. Geophys. Res. Lett., doi: 10.1002/2015GL065883.
Wheeler, L. B., J. Galewsky, N. Herold, N., and M. Huber, 2016: Late Cenozoic surface uplift of the southern Sierra Nevada (California, USA): A paleoclimate perspective on lee-side stable isotope paleoaltimetry. Geology, doi:10.1130/G37718.1.
Whitehead, J., C. Jablonowski, R. B. Rood, and P. H. Lauritzen, 2011: A stability analysis of divergence damping on a latitude-longitude grid. Mon. Wea. Rev.,139 (9) pp. 2976–2993. doi:10.1175/2011MWR3607.1
Whitehead, J. P., C. Jablonowski, J. Kent, and R. B. Rood, 2015: Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes. Quart. J. Roy. Meteorol. Soc., 141, 739-751.
Wieder, W. R., G. B. Bonan, and S. D. Allison, 2013: Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3, 909-912, doi:10.1038/nclimate1951.
Wieder, W. R., J. Boehnert, and G. B. Bonan, 2014: Evaluating soil biogeochemistry parameterizations in Earth system models with observations. Global Biogeochemical Cycles, 28, 211-222, doi:10.1002/2013GB004665.
Wieder, W. R., Butterfield, Z., Lindsay, K., Lombardozzi, D. L., & Keppel-Aleks, G. (2021). Interannual and seasonal drivers of carbon cycle variability represented by the Community Earth System Model (CESM2). Global Biogeochemical Cycles, 35, e2021GB007034. https://doi.org/10.1029/2021GB007034
Wieder, W. R., C. C. Cleveland, W. K. Smith, and K. Todd-Brown, 2015: Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-444, doi:10.1038/ngeo2413.
Wieder, W. R., C. C. Cleveland, D. M. Lawrence, and G. B. Bonan, 2015: Effects of model structural uncertainty on carbon cycle projections: Biological nitrogen fixation as a case study. Environmental Research Letters, doi:10.1088/1748-9326/10/4/044016.
Wieder, W. R., A. S. Grandy, C. M. Kallenbach, P. G. Taylor, and G. B. Bonan, 2015: Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geoscientific Model Development, 8, 1789-1808, doi:10.5194/gmd-8-1789-2015.
Wilby, R. L., and T. M. L. Wigley, 2002: Future changes to the distribution of daily precipitation totals across North America. Geophys. Res. Lett., 29, doi:10.10292001GL013048.
Wilhelm, M., E. L. Davin, and S. I. Seneviratne, 2015: Climate engineering of vegetated land for hot extremes mitigation: An Earth System Model sensitivity study. J. Geophys. Res., 120, 2612-2623, doi:10.1002/2014JD022293.
Willett, M. R., P. Bechtold, D. L. Williamson, J. C. Petch, S. F. Milton, and S. J. Woolnough, 2008: Modeling suppressed and active convection. Comparisons between three global atmosphere models. Quart. J. Roy. Meteor. Soc., 134, 1881-1896.
Williams, I., R. T. Pierrehumbert, and M. Huber, 2009: Global warming, convective threshold and false thermostats. Geophys. Res. Lett., 36, L21805, doi:10.1029/2009GL039849.
Williams, K. D., A. Bodas-Salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, 2013: The Transpose-AMIP Ii experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Climate, 26, 3258-3278, doi:10.1175/JCLI-D-12-00429.1.
Williams, R. H., D. McGee, D. A. Ridley, C. W. Kinsley, S. Hu, A. V. Fedorov, I. Tal, R. Murray, P. B. deMenocal, 2016: Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks. Sci. Adv., 2(11), e1600445.
Williamson, D. L., and J. G. Olson, 2007: A comparison of forecast errors in CAM2 and CAM3 at the ARM Southern Great Plains Site. J. Climate, 20, 4572-4585.
Williamson, D. L., 2008a: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus, 60, 848-862, doi:10.1111/j.1600-0870.2008.00339.x.
Williamson, D. L., 2008b: Equivalent finite volume and spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60, 839-847, doi:10.1111/j.1600-0870.2008.00340.x.
Williamson, D. L., J. G. Olson, and C. Jablonowski, 2008: Two dynamical core formulation flaws exposed by a baroclinic instability test case. Mon. Wea. Rev., 137, 790-796.
Williamson, D. L., 2013: Effect of time steps and time scales on parameterization suites. QJRMS, 139, 548-560, doi:10.1002/qj.1992.
Williamson, D. L., 2013: Dependence of APE simulations on vertical resolution with the Community Atmosphere Model, Version 3. J. Meteor. Soc. Japan, 914, 231-242, doi:10.2151/jmsj.2013-A08.
Williamson, D. L., et al., 2013: The Aqua Planet Experiment (APE): Response to changed SST fields. J. Meteor. Soc. Japan, 91A, 57-89, doi:10:2151/jmsj.2013-A03.
Williamson, D. L., J. G. Olson, C. Hannay, T. Toniazzo, M. Taylor, and V. Yudin, 2015: Energy considerations in the Community Atmosphere Model (CAM). J. Adv. Model. Earth Syst., 07, 1178-1188, doi:10.1002/2015MS000448.
Williams, J. B., H. Kharouba, S. Veloz, M. Vallend, J. McLachlan, Z. Liu, B. Otto-Bliesner, and F. He, 2013: The Ice Age Ecologist: Testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography, 22, 289-301.
Wilmes, S. B., C. C. Raible, and T. F. Stocker, 2012: Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD. Climate of the Past, 8, 373-390.
Winckler, G., R. Anderson, M. Fleischer, D. McGee, and N. Mahowald, 2008: Covariant Glacial-Interglacial dust fluxes in the Equatorial Pacific. Science-express, 10.1126/science.1150595.
Woelfle, M. D., S. Yu, C. S. Bretherton, and M. S. Pritchard, 2018: Sensitivity of coupled tropical Pacific model biases to convective parameterization in CESM1. Journal of Advances in Modeling Earth Systems, doi:10.1002/2017MS001176.
Wolf, E. T., and O. B. Toon, 2010: Fractal organic hazes provided an ultraviolet shield for early Earth. Science, 328, 1266, doi:10.1126/science.1183260.
Wolf, E. T., and O. B. Toon, 2013: Hospitable Archean climates simulated by a general circulation model. Astrobiology, 13(7), 1-18.
Wolf, E.T., and O. B. Toon, 2013: Delayed onset of runaway and moist greenhouse climates for Earth. Geophys. Res. Lett., doi:10.1002/2013GL058376.
Wolf, E.T., and O. B. Toon, 2014: Controls on the Archean climate system investigated with a global climate model. Astrobiology, 14(3), 241-253.
Wolf, E. T., and O. B. Toon, 2015: The evolution of habitable climates under the brightening sun. J. Geophys. Res. Atmos., 120, 5775-5794, doi:10.1002/2015JD023302.
Wolf, E. T., A. L. Shields, R. K. Kopparapu, J. Haaq-Misra, and O. B. Toon, 2017: Constraints on climate and habitability for Earth-like exoplanets determined from a GCM. Astrophysical Journal, 837, 2, doi:10.3847/1538-4357/aa5ffc.
Wolski, P., D. Stone, M. Tadross, M. Wehner, and B. Hewitson, 2014: Attribution of floods in the Okavango basin, Southern Africa. Journal of Hydrology, 511, 350-358, doi:10.1016/j.jhydrol.2014.01.055.
Wong, C. I., G. L. Potter, I. P. Montanez, B. L. Otto-Bliesner, P. Behling, and J. L. Oster, 2016: Evolution of moisture transport to the western U.S. during the last deglaciation. Geophys. Res. Lett., 43, 3468-3477.
Wong, M., W. C. Skamarock, P. H. Lauritzen, and R. B. Stull, 2013: A cell-integrated semi-Langragian semi-implicit shallow-water (CSLAM-SW) with conservative and consistent transport. Mon. Wea. Rev., 141, 2545-2560.
Wong, S., A. E. Dessler, N. M. Mahowald, P. Yang, and Q. Feng, 2009: Maintenance of lower tropospheric temperatureiInversion in the Saharan air layer by dust and dry anomaly. J. Climate, 22 (19), 5149-5162, doi:10.1175/2009JCL2847.1.
Wong, T. E. J. Nusbaumer, and D. C. Noone, 2017: Evaluation of modeled land-atmosphere exchanges with a comprehensive water isotope fractionation scheme in CLM4. J. Adv. Model. Earth Syst., 9, doi:10.1002/2016MS000842
Wong, T. E., W. Kleiber, and D. C. Noone, 2017: The impact of error accounting in a Bayesian approach to calibrating modeled turbulent fluxes in an open-canopy forest. J. Hydrometeorol., 18(7), 2029-2042, doi:10.1175/JHM-D-17-0030.1.
Wood, R., et al., 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull Amer. Meteor. Soc., 96, 419-439, doi:10.1175/BAMS-D-13-00180.1.
Woods, C., R. Caballero, and G. Svensson, 2017: Representation of Arctic Moist Intrusions in CMIP5 Models and Implications for Winter Climate Biases. J. Climate, 30, 4083–4102, doi:10.1175/JCLI-D-16-0710.1.
Woodward, C. S., D. Gardner, and K. J. Evans, 2015: On the use of finite difference matrix-vector products in Newton-Krylov solvers for implicit climate dynamics. Procedia Computer Science, 51, 2036-2045.
Worley, P. H., and J. B. Drake, 2005: Performance portability in the physical parameterizations of the Community Atmospheric Model. International Journal of High Performance Computing Applications, 19 (3), 187-201.
Worley, P., A. Mirin, J. Drake, and W. Sawyer, 2006: Performance Engineering in the Community Atmosphere Model. Journal of Physics, 46, pp. 356-362.
Worley, P. H., 2010: The Community Climate System Model. In Performance Tuning of Scientific Applications, Eds. D. Bailey, R. Lucas, and S. Williams, Taylor and Francis Group, LLC, pp. 315-338.
Worley, P. H., A. P. Craig, J. M. Dennis, A. A. Mirin, M. A. Taylor, and M. Vertenstein, 2011: Performance of the Community Earth System Model. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC11), Seattle, WA, November 14-18, p. 1-54.
Worley, P. H., M. Vertenstein, and A. Craig, 2011: Community Climate System Model. In Encyclopedia of Parallel Computing, Ed. D. Padua, Springer, September 2011, p. 342-351.
Wu, B., and T. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett, 35, L13701, doi:10.1029/2008GL0
Wu, B. and T. Zhou, 2016: Relationships between ENSO and the East Asian-western North Pacific monsoon: Observations versus 18 CMIP5 models. Clim. Dyn., 46, 729-743.
Wu, C. H., H. H. Hsu, and M. D. Chou, 2014: Effect of the Arakan Mountains in the northwestern Indochina peninsula on the late May Asian monsoon transition. J. Geophys. Res. Atmos., 119, 10,769-10,7709, doi:10.1002/2014JD022024.
Wu, C. H., J. C. H. Chiang, H. H. Hsu, and S. Y. Lee, 2015: Orbital control of the western North Pacific summer monsoon. Clim. Dyn.,, doi:10.1007/s00382-01502620-3.
Wu, C., Z. Lin, J. He., M. Zhang, X. Liu, R. Zhang, and H. Brown, 2016: A process-oriented evaluation of dust emission parameterizations in CESM: Simulation of a typical severe dust storm in East Asia. J. Adv. Model. Earth Syst., 08, 1432-1452, doi: 10.1002/2016MS000723.
Wu, C., X. Liu, Z. Lin, A. M. Rhoades, P. A. Ullrich, C. M. Zarzycki, Z. Lu, and S. R. Rahimi-Esfarjani, 2017: Exploring a variable-resolution approach for simulating regional climate in the Rocky Mountain region using the VR-CESM. J. Geophys. Res.: Atmospheres, 122, 10,939-10,965, doi:10.1002/2017JD027008.
Wu, C., X. Liu, M. Diao, K. Zhang, A. Gettelman, Z. Lu, J. E. Penner, and Z. Lin, 2017: Direct comparisons of ice cloud macro-and microphysical properties simulated by CAM5 with HIPPO aircraft observations. Atmos. Chem. Phys., 17, 4731-4749, doi:10.5194/acp-17-4731-2017.
Wu, C., X. Liu, Z. Lin, S. R. Rahimi-Esfarjani, and Z. Lu, 2018: Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations. Atmos. Chem. Phys., 18, 511-533, doi:10.5194/acp-18-511-2018.
Wu, J. B., M. H. Zhang, and W. Y. Lin, 2007: A case study of a frontal system simulated by a climate model: Clouds and radiation. J. Geophys. Res., 112, D12201, doi:10.1029/2006JD008238.
Wu, M., X. Liu, L. Zhang, C. Wu, Z. Lu, P.-L. Ma, H. Wang, S. Tilmes, N. Mahowald, H Matsui, and R. C. Easter, 2018: Impacts of aerosol dry deposition on black carbon spatial distributions and radiative effects in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 10, 1150-1171, doi:10.1029/2017MS001219.
Wu, Q., and Q. Hu, 2015: Atmospheric circulation processes contributing to a multidecadal variation in reconstructed and modeled Indian monsoon precipitation. J. Geophys. Res. Atmos., 120, 532-55, doi:10.1002/2014JD022499.
Wu, Q., S. Mahajan, K. P. Bowman, and P. Chang, 2008: Atmospheric response to Atlantic tropical instability waves in CAM3. J. Geophys. Res., 113, D15125.
Wu, Q., and Q. Hu, 2015: Atmospheric circulation processes contributing to a multidecadal variation in reconstructed and modeled Indian monsoon precipitation. J. Geophys. Res. Atmos., 120, 532–551, doi:10.1002/2014JD022499.
Wu, W., G. Danabasoglu, and W. G. Large, 2007: On the effects of parameterized Mediterranean overflow on North Atlantic ocean circulation and climate. Ocean Modelling, 19, 31-52, doi:10.1016/j.ocemod.2007.06.003.
Wu, W., R. E. Dickinson, H. Wang, Y. Liu and M. Shaikh, 2007: Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. J. Climate, 27 (4), 429-438, doi:10.1002/joc.1419.
Wu, X., X.-Z. Liang, and G. -J. Zhang, 2003: Seasonal migration of ITCZ precipitation across the equator: Why can’t GCMs simulate it? Geophys. Res. Lett., 30 (15), 1824, doi:10.10292003GL017198.
Wu, Y., L. M. Polvani, and R. Seager, 2013: The importance of the Montreal Protocol in protecting the earth’s hydroclimate. J. Climate, 26, 4049-4068, doi:10.1175/JCLI-D-12-00675.1.
Wu, Y., and L. M. Polvani, 2015: Contrasting short and long term projections of the hydrological cycle in the Southern extratropics. J. Climate, 28, 5845-5856.
Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and responses in AGCMs sorted into regimes using mid-tropospheric vertical velocity. Clim. Dyn., 27, 261-279, doi:10.1007/s00382-006-0138-4.
Wyant, M. C., et al., 2007: A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer. J. Geophys. Res., 112, D24204, doi:10.1029/2007JD008536.
Wyant, M. C., et al., 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem.Phys., 10, 4757-4774, doi:10.5194/acp-10-4757-2010.
Xie, J., and M. Zhang, 2017: Role of internal atmospheric variability in the 2015 extreme winter climate over the North American continent. Geophys. Res. Lett., doi:1002/2017GL72772.
Xia, L., et al., 2014: Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res., 119, 8695-8711, doi:10.1002/2013JD020630.
Xia, L., A. Robock, M. J. Mills, A. Stenke, and I. Helfand, 2015: Decadal reduction of Chinese agriculture after a regional nuclear war. Earth's Future, doi:10.1002/2014EF000283.
Xia, L., A. Robock, S. Tilmes, and R. R. Neely III, 2016: Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos. Chem. Phys., 16, 1479-1489, doi:10.5194/acp-16-1479-2016.
Xiao, H., R. Mechoso, R. Sun, J. Han, H.-L. Pan, S. Park, C. Hannay, C. Bretherton, and J. Teixeira, 2014: Diagnosis of the marine low cloud simulation in the NCAR Community Earth System Model and the NCEP Global Forecast System. Clim. Dyn.,, 43, 737-752.
Xie, S. C., and M. H. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105, 14,983-14,996.
Xie, S. C., and M. H. Zhang, et al. 2004: Impact of revised convective triggering mechanism on CAM2 simulations: Results from short-range weather forecasts. J. Geophys. Res., 109, D14102, doi:10292004JD004692.
Xie, S., J. Boyle, S. A. Klein, X. Liu, and S. Ghan, 2008: Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE. J. Geophys. Res., 113, D04211, doi:10.1029/2007JD009225.
Xie, S. -P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966-986. doi:10.1175/2009JCLI3329.1.
Xie, S., H.-Y. Ma, J. S. Boyle, S. A. Klein, and Y. Zhang, 2012: On the correspondence between short- and long- timescale systematic errors in CAM4/CAM5 for the Years of Tropical Convection. J. Climate, 25, 7937-7955.
Xie, S., X. Liu, C. Zhao, and Y. Zhang, 2013: Sensitivity of CAM5 simulated Arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5981–5999, doi:10.1175/JCLI-D-12-00517.1.
Xie, Y., Y. Liu, and J. Huang, 2016: Overestimated Arctic warming and underestimated Eurasia mid-latitude warming in CMIP5 simulations. Int. J. Climatol., doi:10.1002/joc.4644.
Xongkang X., et al., 2010: Incomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation Project (WAMME) first model intercomparison experiment. Clim. Dyn., 35 (1), 3-27, doi:10.1007/s00382-010-0778-2.
Xu, L., and P. Dirmeyer, 2013: Snow-atmosphere coupling strength. Part I: Effect of model biases. J. Hydrometeor., 14, 389-403, doi:10.1175/JHM-D-11-0102.1.
Xu, L., and P. Dirmeyer, 2013: Snow-atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404-418, doi:10.1175/JHM-D-11-0103.1.
Xu, L., D. W. Pierce, L. M. Russell, A. J. Miller, R. C. J. Somerville, C. Twohy, S. J. Ghan, B. Singh, J.-H. Yoon, and P. J. Rasch, 2015: Interannual to decadal climate variability of sea salt aerosols in the coupled model CESM1.0. J. Geophys. Res., 120, doi:10.1002/2014JD022888.
Xu, L., P. Cameron-Smith, L. M.Russell, S. J. Ghan, Y. Liu, S. Elliott, Y. Yang, S. Lou, M. A. Lamjiri, and M. Manizza, 2016: DMS role in the ENSO cycle in the tropics. J. Geophys. Res., 121, doi:10.1002/2016JD025333.
Xu, T. F., D. L. Yuan, Y. Q. Yu, and X. Zhao, 2013: An assessment of Indo-Pacific oceanic channel dynamics in th eFGOALS-g2 coupled climate system model. Advances in Atmospheric Sciences, 30, 997-1016.
Xu, T. F., and D. Yuan, 2015: Why does the IOD-ENSO teleconnection disappear in some decades? Chinese Journal of Oceanology and Limnology, 33, 534-544.
Xu, Y., J. -F. Lamarque, and B. M. Sanderson, 2015: The importance of aerosol scenarios in projections of future heat extremes. Climatic Change, 1–14, doi:10.1007/s10584-015-1565-1.
Xu, Y., and S.-P. Xie, 2015: Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos. Chem. Phus, 15(10), 5827-5833, doi:10.5194/acp-15-5827-2015.
Xu, Y., J. -F. Lamarque, and B. M. Sanderson, 2015: The importance of aerosol scenarios in projections of future heat extremes. Climatic Change, 1-14, doi:10.1007/s10584-015-1565-1.
Xu, Y., V. Ramanathan, and W. M. Washington, 2016: Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmospheric Chemistry and Physics, 16, 1303–1315, doi:10.5194/acp-16-1303-2016.
Xu, Y. and A. Hu, 2018: How would the 21st-century warming influence Pacific decadal variability and its connection to North American rainfall: assessment based on a revised procedure for IPO/PDO. J. Climate, 31, 1547-1563, doi:10.1175/JCLI-D-17-0319.1.
Xue, F., D. Sun, and T.-J. Zhou, 2014: Interdecadal and interannual variabilities of the Antarctic Oscillation simulated by CAM3. Atmos. Oceanic Sci. Lett., 7, 515-520, doi:10.3878/AOSL20140036.
Yamazaki, Y., A. D. Richmond, A. Maute, H.-L. Liu, N. Pedatella, and F. Sassi, 2014: On the day-to-day variation of the equatorial electrojet during quiet periods. J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020243.
Yan, H., Y. Qian, C. Zhao, H. Wang, M. Wang, B. Yang, X. Liu, and Q. Fu, 2015: A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions. J. Geophys. Res. Atmos., 120, 8905-8924, doi:10.1002/2015JD023442.
Yang, B., et al., 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res. Atmos., 118, 395-413, doi:10.1029/2012JD018213.
Yang, C., T. Li, A. K Smith, X. Dou, 2017: The response of the southern hemisphere middle atmosphere to the Madden-Julian oscillation during Austral winter using the Specified-Dynamics Whole Atmosphere Community Climate Model. J. Climate, 30, 8317-8333, doi: 10.1175/JCLI-D-17-0063.1.
Yang, C., A. K. Smith, T. Li, and X. Dou, 2018: The effect of the Madden-Julian oscillation on the mesospheric migrating diurnal tide: A study using SD-WACCM. Geophys. Res. Lett., doi:10.1029/2018GL077956.
Yang, H., G. Chen, Q. Tang, and P. Hess, 2016: Quantifying isentropic stratosphere-troposphere exchange of ozone. J. Geophys. Res. Atmos., 121, 3372-3387, doi:10.1002/2015JD024180.
Yang, Q., Q. Fu, J. Austin, A. Gettelman, F. Li, and H. Vomel, 2008: Observationally derived and GCM simulated tropical stratospheric upward mass fluxes. J. Geophys. Res., 113, D00B07, doi:10.1029/2008JD009945.
Yang, Q., C. M. Bitz, and S. J. Doherty, 2014: Offsetting effects of aerosols on Arctic and global climate in the late 20th Century. Atmospheric Chemistry and Physics, 14, 3969-3979, doi:10.5194/acp-14-3969-2014.
Yang, Q., L. R. Leung, S. Rauscher, T. Ringler, and M. Taylor, 2014: Spatial resolution dependence of precipitation extremes from atmospheric moisture budgets in aqua-planet simulations. J. Climate, 27(10), 3565-3581, doi:10.1175/jcli-d-13-00468.1.
Yang, S., N. Gruber, M. C. Long, and M. Vogt, 2017: ENSO-driven variability of denitrification and suboxia in the eastern tropical Pacific Ocean. Global Biogeochem. Cycles, 31(10), 1470-1487, doi:10.1002/2016gb005596.
Yang, Y., et al., 2016: Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. J. Geophys. Res. Atmos., 121, 6321–6335, doi:10.1002/2015JD024503.
Yang, Y., L. M. Russell, S. Lou, Y. Liu, B. Singh, and S. J. Ghan, 2016: Rain-aerosol relationships influenced by wind speed. Geophys. Res. Lett., 43, 2267–2274, doi:10.1002/2016GL067770.
Yang, Y., L. M. Russell, S. Lou, M. A. Lamjiri, Y. Liu, B. Singh, and S. J. Ghan, 2016: Changes in sea salt emissions enhance ENSO variability. J. Climate, 29, 8575-8588, doi:10.1175/JCLI-D-16.0237.1.
Yang, Y., L. M. Russell, S. Lou, H. Liao, J. Guo, Y. Liu, B. Singh, and S. J. Ghan, 2017: Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Comm., 8, 15333, doi:10.1038/ncomms15333.
Yang, Y., H. Wang, S. J. Smith, P.-L. Ma, and P. J. Rasch, 2017: Source attribution of black carbon and its direct radiative forcing in China. Atmospheric Chemistry and Physics, 17, 4319-4336.
Yang, Y., H. Wang, S. J. Smith, R. Easter, P.-L. Ma, Y. Qian, et al., 2017: Global source attribution of sulfate concentration and direct and indirect radiative forcing. Atmospheric Chemistry and Physics, 17, 8903-8922.
Yang, Y., H. Wang, S. J. Smith, R. C. Easter, and P. J. Rasch, 2018: Sulfate aerosol in the Arctic: Source attribution and radiative forcing. J. Geophys. Res. Atmos., 123, 1899-1918, doi:10.1002/2017JD027298.
Yang, Y., H. Wang, S. J. Smith, R. Zhang, S. Lou, Y. Qian, P. L. Ma, and P. J. Rasch, 2018: Recent intensification of winter haze in China linked to foreign emissions and meteorology. Scientific reports, 8, p. 2107.
Yang, Y., H. Wang, S. J. Smith, R. Zhang, S. Lou, H. Yu, et al., 2018: Source apportionments of aerosols and their direct radiative forcing and long-term trends over continental United States. Earth’s Future, 6, 793-808, doi:10.1029/2018EF000859.
Yang, Z. -L., R. E. Dickinson, W. J. Shuttleworth, and M. Shaikh, 1998: Treatment of soil, vegetation and snow in land-surface models: A test of the Biosphere-Atmosphere Transfer Scheme with the HAPEX-MOBILHY, ABRACOS, and Russian Data. J. Hydrology, 212-213, 109-127.
Yang, Z. -L., R. E. Dickinson, and A. N. Hahmann, et al., 1999: Simulation of snow mass and extent in general circulation models. Hydrol. Process, 13, 2097-2113.
Yang, Z. -L., D. Gochis, and W. J. Shuttleworth, 2001: Evaluation of the simulations of the North American monsoon in the NCAR CCM3. Geophys. Res. Lett., 28, 1211-1214.
Yang, Z .-L., D. Gochis, W. J. Shuttleworth, and G. -Y. Niu, 2003: The impact of sea surface temperature on the North American monsoon: A GCM study. Geophys. Res. Lett., 30 (2), 1033, doi:10.10292002GL015628.
Yang, Z. -L., and G. -Y. Niu, 2003: The Versatile Integrator of Surface and Atmosphere processes (VISA). Part 1: Model description. Global and Planetary Change, 38, 175-189.
Yano, J.-I., C. Liu, and M. W. Moncrieff, 2012: Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci., 69, 3449-3462, doi:10.1175/JAS-D-12-069.1.
Yano, J.-I., and M. W. Moncrieff, 2016: Numerical archetypal parameterization for mesoscale convective systems. J. Atmos. Sci., 73, 2585-2602, doi:10.1175/JAS-D-0207.1.
Yano, J.-I., and M. W. Moncrieff, 2018: Convective organization in evolving large-scale forcing represented by a highly-truncated numerical archetype. J. Atmos. Sci., 75, doi:10.1175/JAS-D-17-0372.1.
Yao, W., and C. Jablonowski, 2013: Spontaneous QBO-like oscillations in an atmospheric model dynamical core. Geophys. Res. Lett., 40, 3772-3776, doi:10.1002/glr.50723.
Yao, W., and C. Jablonowski, 2015: Idealized quasi-biennial oscillations in an ensemble of dry GCM dynamical cores. J. Atmos. Sci., 72, 2201-2226.
Yao, W., and C. Jablonowski, 2016: The impact of GCM dynamical cores on idealized sudden stratospheric warmings and their QBO interactions. J. Atmos. Sci., doi:10.1175/JAS-D-15-0242.1.
Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34, 1528-1547, doi:10.1175/1520-0485.
Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The Low-Resolution CCSM3. J. Climate, 19 (11), 2545-2566.
Yeager, S. G., and W. G. Large, 2007: Observational evidence of winter spice injection. J. Phys. Oceanogr., 37, 2895-2919, doi:10.1175/2007JPO3629.1.
Yeager, S. G., and M. Jochum, 2009: The connection between Labrador Sea buoyancy loss, deep western boundary current strength and gulf stream path in an ocean circulation model. Ocean Modelling, 30, 207-224.
Yeager, S. G., and G. Danabasoglu, 2012: Sensitivity of Atlantic Meridional Overturning Circulation variability to parameterized Nordic Sea overflows in CCSM4. J. Climate, 25, 2077-2103, doi:10.1175/JCLI-D-11-00149.1.
Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late 20th Century North Atlantic Ocean heat content. J. Climate, 25, 5173-5189, doi:10.1175/JCLI-D-11-00595.1
Yeager, S., and G. Danabasoglu, 2014: The origins of late 20th century variations in the large-scale North Atlantic circulation. J. Climate, 27, 3222-3247, doi:10.1175/JCLI-D-13-00125.1.
Yeager, S. G., A. R. Karspeck, and G. Danabasoglu, 2015: Predicted slow-down in the rate of Atlantic sea-ice loss. Geophys. Res. Lett., 42, doi:10.1002/2015GL065364.
Yeager, S. G., G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski, 2018: Predicting near-term changes in the Earth System: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Amer. Meteor. Soc., 99, 1867-1886, doi: 10.1175/BAMS-D-17-0098.1.
Yettella, V., and J. E. Kay, 2016: How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Clim. Dyn., doi:10.1007/s00382-016-3410-2.
Yettella, V., Weiss, J., Kay, J. E., and A. G. Pendergrass, 2018: An ensemble covariance framework for quantifying forced climate variability and its time of emergence. J. Climate, doi:10.1175/JCLI-D-17-0719.1.
Yin, J. H., and D. S. Battisti, 2001: The importance of tropical sea surface temperature patterns in simulations of last glacial maximum climate. J. Climate, 14, 565-581.
Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, doi:10.1029/2005GL023684.
Yin, J. H., and G. W. Branstator, 2008: Geographical variations of the influence of low-frequency variability on lower-tropospheric extreme westerly wind events. J. Climate, 21, 4779-4798, doi:10.1175/2008JCLI2149.1.
Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2012: How well can CMIP5 simulate predipitation and its controlling processes over tropical South America? doi:10.1007/s00382-012-1582-y.
Yoder, J. A., M. A. Kennelly, S. C. Doney, and I. D. Lima, 2010: Are trends in SeaWiFS chlorophyll time-series unusual relative to historic variability? Acta Oceanologica Sinica, 29 (2), 1-4.
Yoon, J.-H., P. J. Rasch, H Wang, V. Vinou, and D. Ganguly, 2016: The role of carbonaceous aerosols on short-term variations of precipitation over North Africa. Atmosph. Sci. Lett., 17, 407-414, doi:10.1002/asl.672.
Yorgun, M. S., and R. B. Rood, 2014: An object-based approach for quantification of GCM biases of the simulation of orographic precipitation. Part I: Idealized simulations. J. Climate, doi:10.1175/JCLI-D-14-00730.1.
Yorgun, M. S., and R. B. Rood, 2014: An object-based approach for quantification of GCM biases of the simulation of orographic precipitation. Part II: Quantitative analysis. J. Climate, doi:10.1175/JCLI-D-14-00730.1.
Yoshimori, M., C. C. Raible, T. F. Stocker, and M. Renold, 2006: On the interpretation of low-latitude hydrological proxy records based on Maunder Minimum AOGCM simulation. Clim. Dyn., 27, 493-513.
Yoshimori, M., C. C. Raible, M. Renold, and T. F. Stocker, 2010: Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim. Dyn., 34, 101-121.
You, Y., M. Huber, D. Müller, C.J. Poulsen, and J. Ribbe, 2009: Simulation of the middle miocene climate optimum. Geophys. Res. Lett., L04702, doi:10.1029/2008GL036571.
Yu, F., G. Luo, X. Liu, R. C. Easter, X. Ma, and S. J. Ghan, 2012: Indirect radiative forcing by ion-mediated nucleation of aerosol. Atmos. Chem. Phys., 12, 1145111463, doi:10.5194/acp-12-11451-2012.
Yu, J. -Y., F. Sun, and H. -Y. Kao, 2009: Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J. Climate, 22, 1850-1858.
Yu., J. -Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., doi:10.1029/2012GL052483.
Yu, P., O. B. Toon, C. G. Bardeen, M. J. Mills, T. Fan, J. M English, and R. R. Neely, 2015: Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme. J. Adv. Model. Earth Syst., 07, doi:10.1002/2014MS000421.
Yu, P., O. B. Toon, R. R. Neely, B. G. Martinsson, and C. A. M. Brenninkmeijer, 2015: Composition and physical properties of the Asian tropopause aerosol layer and the North American tropospheric aerosol layer. Geophys. Res. Lett., 42, 2540-2546, doi:10.1002/2015GL063181.
Yu, R., W. Li, X. Zhang, Y. Liu, Y. Yu, H. Liu, and T. Zhou, 2000: Climate features related to eastern China summer rainfalls in the NCAR CCM3. Advances in Atmospheric Sciences, 17, 503-518.
Yu, T., P. Guo, J. Cheng, A. Hu, P. Lin, Y. Yu, 2018: Reduced connection between the East Asian summer monsoon and Southern Hemisphere circulation on interannual timescales under intense global warming. Clim. Dyn., doi: 10.1007/s00382-018-4121-7.
Yu, Y., M. Notaro, F. Wang, J. Mao, X. Shi, and Y. Wei, 2018: Validation of a statistical methodology for extracting vegetation feedbacks: focus on North African ecosystems in the Community Earth System Model. J. Climate, 31(4), 1565-1586.
Yuan, T., C. -Y. She, D .A. Krueger, F. Sassi, R. R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, 2008: Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41°N, 105°W), and comparison with model simulations. J. Geophys. Res., 113, D03105, doi:10.1029/2007JD008697.
Yuan, W., R. Yu, M. Zhang, W. Lin, J. Li, and Y. Fu, 2012: Diurnal cycle of summer precipitation over the subtropical East Asia in CAM5. J.Climate, doi: 10.1175/JCLI-D-12-00119.1.
Yun, K. -S., S. -W. Yeh, and K. -J. Ha, 2016: Inter-El Nino variability in CMIP5 models: Model deficiencies and future changes. J. Geophys. Res. Atmos., 121, 3894-3906, doi:10.1002/2016JD024964.
Yun, Y. and J. E. Penner, 2012: Global model comparison of heterogeneous ice nucleation parameterizations in mixed-phase clouds. J. Geophys. Res., 117, D07203, oi:10.1029/2011JD016506.
Žagar, N., J. Tribbia, J. Anderson, and K. Raeder, 2009: Uncertainties of estimates of inertio-gravity energy in the atmosphere. Part I: Intercomparison of four analysis systems. Mon. Wea. Rev., 137, 3837-3857.
Žagar, N., J. Tribbia, J. Anderson, and K. Raeder, 2009: Uncertainties of estimates of inertio-gravity energy in the atmosphere. Part II: Large-scale equatorial waves. Mon. Wea. Rev., 137, 3858-3873.
Žagar, N., J. Tribbia, J. Anderson, K. Raeder, and D. T. Kleist, 2010: Diagnosis of systematic analysis increments by using normal modes. Q. J. R. Meteorol. Soc., 136, 61-76.
Zamora, R., R. Korty, and M. Huber, 2016: Thermal stratification in simulations of warm climates: A climatology using saturation potential vorticity. J. Climate, 29, 5083-5102, doi:10.1175/JCLI-D-15-0785.12016.
Zarriess, M., H. Johnstone, M. Prange, S. Steph, J. Groeneveld, S. Mulitza, and A. Mackensen, 2011: Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials. Geophys. Res. Lett., 38, L04706, doi:10.1029/2010GL046070.
Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6(3), 805-828, doi:10.1002/2014MS000352.
Zarzycki, C. M., M. N. Levy, C. Jablonowski, M. A. Taylor, J. Overfelt, and P. A. Ullrich, 2014: Aquaplanet experiments using CAM's variable-resolution dynamical core. J. Climate, 27(14), 5481-5503, doi:10.1175/JCLI-D-14-00004.1.
Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221–1239, doi:10.1175/MWR-D-13-00179.1.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 2777-2803.
Zarzycki, C. M., and C. Jablonowski, 2015: Experimental tropical cyclone forecasts using a variable-resolution global model. Mon. Wea. Rev., 143, 4012-4037, doi:10.1175/MWR-D-15-0159.1.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 2777-2803.
Zarzycki, C. M., K. A. Reed, J. Bacmeister, A. P. Craig, S. C. Bates, and N. A. Rosenbloom, 2016: Impact of ocean coupling strategy on extremes in high-resolution atmospheric simulations. Geosci. Model Dev., 9, 779-788, doi:10.5194/gmd-9-779-2016.
Zarzycki, C. M., K. A. Reed, J. T. Bacmeister, A. P. Craig, S. C. Bates and N. A. Rosenbloom, 2016: Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations. Geosci. Mod. Dev., 9, 779-788, doi:10.5194/gmd-9-779-2016.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernals. J. Climate, 25, 3715-3735, doi:10.1175/JCLI-D-11-00248.
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to the nature of cloud changes. J. Climate, 25, 3736-3754, doi:10.1175/JCLI-D-11-00249.
Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28(7), 2777-2803, doi:10.1175/JCLI-D-14-00599.1.
Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 5007–5027, doi:10.1175/JCLI-D-12-00555.1.
Zender, C. S., 1999: Global climatology of abundance and solar absorption of oxygen collision complexes. J. Geophys. Res., 104, 24,471-24,484.
Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, J. Robinson, D. Smale, C. Paton-Walsh, and D. W. T. Griffith, 2015: Multi-model simulation of CO and HCHO in the Southern Hemisphere: comparison with observations and impact of biogenic emissions. Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.
Zeng, N., J. Yoon, J. Marengo, A. Subramaniam, C. Nobre, A. Mariotti, and J. D. Neelin, 2008: Causes and Impacts of the 2005 Amazon drought. Environ. Res. Lett., 3, 014002, doi:10.1088/1748-9326/3/1/014002.
Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using the TOGA COARE and TAO data. J. Climate, 11, 2628-2644.
Zeng, X., Y. -J. Dai, R. E. Dickinson, and M. Shaikh, 1998: The role of root distribution for land climate simulation. Geophys. Res. Lett., 25, 4533-4536.
Zeng, X., and Y. He, 2001: Observational and modeling study on the relationship between sea surface temperature and evaporation over the tropical Pacific. Dynamics of Atmospheric and Oceanic Circulation and Climate, China Meteorological Press, 508-520.
Zeng, X., M. Shaikh, Y. Dai, R. E. Dickinson, and R. Myneni, 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 14, 1832-1854.
Zeng, X. D., X. Zeng, and M. Barlage, 2008: Growing temperature shrubs over arid and semiarid regions in the NCAR Dynamic global Vegetation Model (CLM-DGVM). Global Biogeochemical Cycles, 22, GB3003, doi:10.1029/2007GB003014.
Zeng, X., and M. Decker, 2009: Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table. J. Hydrometeor., 10, 308-319, doi:10.1175/2008JHM1011.1.
Zeng, X., M. Barlage, C. Castro, and K. Fling, 2010: Comparison of land-precipitation coupling strength using observations and models. J. Hydrometeor., 11, 980-995, doi:10.1175/2010JHM1226.1.
Zeng, X., Z. Wang, and A. Wang, 2012: Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions. J. Hydrometeor., 13, 1359-1370, doi:10.1175/JHM-D-11-0117.1.
Zeng, Y., Z. Xie, Y. Yu, S. Liu, L. Wang, J. Zou, P. Qin, and B. Jia, 2016: Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J. Adv. Model. Earth Syst., 8, doi:10.1002/2016MS000646.
Zeng, Y., Z. Xie, Y. Yu, S. Liu, L. Wang, B. Jia, P. Qin, and Y. Chen, 2016: Ecohydrological effects of stream–aquifer water interaction: A case study of the Heihe River basin, northwestern China. Hydrol. Earth Syst. Sci., 20, 2333-2352, doi:10.5194/hess-20-2333-2016.
Zhang, C., M. Dong, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Wang, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Clim. Dyn., 27, 573-592.
Zhang, C., J. Gottschalck, E. Maloney, M. Moncrieff, f. Vitart, D. Waliser, B. Wang, and M. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Let., 40, 1223-1230, doi:10.1002/grl.50244.
Zhang, C., and coauthors, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains Sites. J. Geophys. Res. Atmos., 123, 2968–2992.
Zhang, G. J., and M. Mu, 2005: Simulation of the Madden-Julian Oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J. Climate, 18, 4049-4067.
Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110, D09109, doi:10.1029/2004JD005617.
Zhang, G. J., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33, L06709, doi:10.1029/2005GL025229.
Zhang, G. J., and X. Song, 2009: Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation. Geophys. Res. Lett., 36, L09708, doi:10.1029/2009GL037340.
Zhang, G. J., and X. Song, 2010: Convection parameterization, tropical Pacific double ITCZ, and upper ocean biases in the NCAR CCSM3. Part II: Coupled feedback and the role of ocean heat transport. J. Climate, 23, 800-812.
Zhang, G. J. M. Cai, and A. Hu, 2013: Energy consumption and the unexplained winter warming over northern Asia and North America. Nature Climate Change, 3, 466-470, doi:10.1038/NCLIMATE1803.
Zhang, H., M. Zhang, Q. –C. Zeng, 2013: Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models. Mon. Wea. Rev., doi:10.1175/MWR-D-11-00367.1.
Zhang, H., C. Deser, A. Clement, and R. Tomas, 2014: Equatorial signatures of the Pacific meridional modes: Dependence on the mean climate state. Geophys. Res. Lett., 41, 568-574, doi:10.1002/2013GL058842.
Zhang, H., A. Clement, and B. Medeiros, 2015: The meridional mode in an idealized aquaplanet model: Dependence on the mean state. J. Climate, 29, 2889-2905, doi:10.1175/JCLI-D-15-0399.1.
Zhang, J., U. S. Bhatt, W. V. Tangbom, and C. S. Lingle, 2007: Response of glaciers in northwestern North America to future climate change: An atmospheric/glacier hierarchical modeling approach. Annals of Glaciology, 46, 283-290.
Zhang, J., L. Li, T. Zhou, and X. Xin, 2013: Evaluation of the spring persistent rainfall over East Asia in CMIP3 / CMIP5 atmospheric GCM simulations. Advances in Atmospheric Sciences, 30, 1587-1600.
Zhang, J., Z. Liu, E. C. Brady, A. Jahn, K. Lindsay, D. W. Oppo, P. U. Clark, S. A. Marcott, 2017: Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation. PNAS, doi:10.1073/pnas.1704512114.
Zhang, K., H. Wan, B. Wang, M. Zhang, J. Feichter, and X. Liu, 2010: Tropospheric aerosol size distributions simulated by three online global aerosol models using the M7 microphysics module. Atmos. Chem. Phys., 10, 6409-6434, doi:10.5194/acp-10-6409-2010.
Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmospheric Chemistry and Physics, 13, 4963-4982, doi:10.5194/acp-13-4963-2013.
Zhang, K., H. Wan, X. Liu, S. J. Ghan, G. J. Kooperman, P.-L. Ma, and P. J. Rasch, 2014: Technical Note: On the use of nudging for aerosol-climate model intercomparison studies. Atmos. Chem. Phys., 14, 8631-8645, doi:10.5194/acp-14-8631-2014.
Zhang, K., C. Zhau, H. Wan, Y. Qian, R. C. Easter, S. J. Ghan, K. Sakaguchi, and X. Liu, 2016: Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5. Geosci. Model Dev., 9, 607-632, doi:10.5194/gmd-9-607-2016.
Zhang, L., C. Wang, and S.-K. Lee, 2014: Potential role of Atlantic warm pool-induced freshwater forcing in the Atlantic meridional overturning circulation: Ocean-sea ice coupled model simulations. Clim. Dyn., 43, 553-574, doi:10.1007/s00382-013-2034-z.
Zhang M., and Bretherton C, 2008: Mechanisms of low cloud climate feedback in idealized single-column simulations with the Community Atmospheric Model (CAM3). J. Climate, DOI:10.1175/2008JCLI2237.1.
Zhang, M. H., W. Y. Lin, C. Bretherton, J. J. Hack, and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model CAM2. J. Geophys. Res., 108 (D1) 4035, doi:10.10292002JD002523.
Zhang, M.,et al., 2012: The CGILS experimental design to study low cloud feedbacks in general circulation models by using single-column and large eddy simulation models. J. Adv. Model. Earth Syst., 4, doi:10.1029/2012MS000182.
Zhang, M., et al., 2013: CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in general circulation models. Journal of Advances in Modeling Earth Systems, 5, doi:10.1002/2013MS000246.
Zhang, P., Y. Wu, I. R. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, P., 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 4, doi:10.1126/sciadv.aat6025.
Zhang, R., et al., 2013: East Asian monsoon climate simulated in the PlioMIP. Clim. Past, 9, 2085-2099.
Zhang, R., H. Wang, Y. Qian, P. J. Rasch, R. C. Easter, P. -L. Ma, B. Singh, J. Huang, and Q. Fu, 2015: Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau. Atmos. Chem. Phys., 15, 6205-6223, doi:10.5194/acp-15-6205-2015.
Zhang, R., H. Wang, D. A. Hegg, Y. Qian, S. J. Doherty, C. Dang, et al., 2015: Quantifying sources of black carbon in western North America using observationally based analysis and an emission tagging technique in the CAM. Atmospheric Chemistry and Physics, 15, 12,805-12,822.
Zhang, R., H. Wang, Q. Fu, A. G. Pendergrass, M. Wang, Y. Yang, P.-L. Ma., and P. J. Rasch, 2018: Local radiative feedbacks over the Arctic based on observed short-term climate variations. Geophys. Res. Lett., 45, doi:10.1029/2018GL077852.
Zhang, S., et al., 2016: On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos. Chem. Phys., 16, 2765-2783, doi:10.5194/acp-16-2765-2016.
Zhang, T., and D.-Z. Sun, 2006: Response of water vapor and clouds to El Nino warming in three NCAR models. J. Geophys. Res., 111, D17103, doi:10.1029/2005JD006700.
Zhang, T., and D. -Z. Sun, 2008: What causes the excessive response of clear-sky greenhouse effect to El Nino warming in Community Atmosphere Models? J. Geophys. Res., 113, D02108, doi:10.1029/2007JD009247.
Zhang, T., D. -Z. Sun, R. Neale, and P. J. Rasch, 2009: An evaluation of ENSO asymmetry in the Community Climate System Models: A view from the subsurface. J. Climate, 22, 5933–5961. doi:10.1175/2009JCLI2933.1.
Zhang, T., and D. –Z. Sun, 2014: ENSO asymmetry in CMIP5 Models. J. Climate, 27, 4070–4093. doi:10.1175/JCLI-D-13-00454.1
Zhang, T., M. P. Hoerling, J. Perlwitz, and T. Xu, 2016: Forced atmospheric teleconnections during 1979-2014. J. Climate, 29, 2333-2357, doi:10.1175/JCLI-D-15-0226.1.
Zhang, T., X. Shao, and S. Li, 2017: Impacts of Atmospheric Processes on ENSO Asymmetry: A Comparison between CESM1 and CCSM4. J. Climate, 30, 9743–9762, doi:10.1175/JCLI-D-17-0360.1.
Zhang, X. H., W. Y. Lin, and M. H. Zhang, 2007: Toward understanding the double ITCZ pathology in coupled ocean-atmosphere General Circulation Models. J. Geophys. Res.,112, D12102, doi:10.1029/2006JD007878.
Zhang, X., et al., 2012: Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 317-318, 76-84.
Zhang, X., M. Prange, U. Merkel, and M. Schulz, 2014: Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett., 41, doi:10.1002/2014GL060321.
Zhang, X., M. Prange, U. Merkel, and M. Schulz, 2015: Spatial fngerprint of changes in the Atlantic meridional overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett., 42, doi:10.1002/2014GL063003.
Zhang, Y., S. A. Klein, J. Boyle, and G. G. Mace, 2010: Evaluation of tropical cloud and precipitation simulations of CAM3 using CloudSat and CALIPSO data. J. Geophys. Res., 115, D12205, doi:10.1029/2009JD012006.
Zhang, Y., S. Xie, C. Covey, D. D. Lucas, P. Gleckler, S. A. Klein, J. Tannahil, C. Doutrizux, and R. Klein, 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052184.
Zhang, Y., G. Fu, B. Sun, S. Zhang, and B. Men, 2015: Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China. J. Geophys. Res. Atmos., 120, 7429-7453, doi:10.1002/2015JD023294.
Zhang, Y., O. Cooper, A. Gaudel, A. M. Thompson, P. Nedelec, S. Y. Ogino, J. J. West, 2016: Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nature Geoscience, doi:10.1038/ngeo2827.
Zhang, Z. -S., et al., 2013: Mid-pliocene Atlantic meridional overturning circulation not unlike modern? Clim. Past, 9, 1495-1504.
Zhao, C., S. A. Klein, S. Xie, X. Liu, J. Boyle, and Y. Zhang, 2012: Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, doi:10.1029/2012GL051213.
Zhao, C., et al., 2013: Sensitivity study of radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol parameters in the Community Atmosphere Model CAM5. Atmos. Chem. Phys., 13, 10969-10987, doi:10.5194/acp-13-10969-2013.
Zhao, C., L. R. Leung, S.-H. Park, S. Hagos, J. Lu, K. Sakaguchi, J.-H. Yoon, B. E. Harrop, W. Skamarock, and M. Duda, 2016: Exploring impacts of physics and resolution in aqua-planet simulations from a non-hydrostatic global variable-resolutin modeling framework. J. Adv. Mod. Earth Syst., 8, doi:10.1002/2016MS000727.
Zhao, W., Y. Peng, B. Wang, B. Yi, Y. Lin, J. Li, 2018: Comparison of three ice cloud optical schemes in climate simulations with Community Atmospheric Model Version 5. Atmospheric Research, 204, doi:10.1016/j.atmosres.2018.01.004.
Zhao, X., Y. Lin, Y. Peng, B. Wang, H. Morrison, and A. Gettelman, 2017: A single ice approach using varying ice particle properties in global climate model microphysics. J. Adv. Model. Earth Syst., 9, 2138–2157, doi:10.1002/2017MS000952.
Zheng, X.-T., C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Clim. Dyn., 50, 4019-4035, doi:10.1007/s00382-017-3859-7.
Zhou, J., C. J. Poulsen, N. Rosenbloom, C. Shields, and B. Briegleb, 2012: Vegetation-climate interactions in the warm mid-Cretaceous. Clim. Past, 8, 565-576.
Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong contributions of local background climate to urban heat islands. Nature, 511, 216-219, doi:10.1038/nature13462.
Zhao, M., A. J. Pitman, and T. Chase, 2001: The impact of land cover change on the atmospheric circulation. Clim. Dyn., 17, 467-477.
Zhao, M., and A. J. Pitman, 2002: The regional scale impact of land cover change simulated with a climate model. International J. Climatology, 22, 271-290.
Zhao, M., and A. J. Pitman, 2002: The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophys. Res. Lett., 29, 21-24.
Zhao, Y., P. Braconnot, O. Marti, S. P. Harrison, C. Hewitt, A. Kitoh, Z. Liu, U. Mikolajewicz, B. Otto-Bliesner, and S. L. Weber, 2005: A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Clim. Dyn.,, 25, 777-800, doi:10.1007/s00382-005-0075-7.
Zhao, M., et al., 2013: Robust direct effect of increasing atmospheric CO2 concentration on global tropical cyclone frequency: A multi-model intercomparison. U. S. CLIVAR Variations Fall 2013, Vol. 11, No. 3, 17-23.
Zheng, X., S. A. Klein, H. Y. Ma, P. Bogenschutz, A. Gettelman, and V. E. Larson, 2016: Assessment of Marine Boundary Layer Cloud Simulations in the CAM with CLUBB and Updated Microphysics Scheme Based on ARM Observations from the Azores. J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025274.
Zheng, Y., Unger, N., Hodzic, A., Emmons, L., Knote, C., Tilmes, S., Lamarque, J.-F., and Yu, P.: Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation. Atmos. Chem. Phys., 15, 13487-13506, doi:10.5194/acp-15-13487-2015, 2015.
Zheng Z., and G. L. Wang, 2007: Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. J. Geophys. Res. - Biogeosciences, 112, G04012, doi:10.1029/2007JG000413.
Zheng, Z., Z.-Z. Hu, and M. L’Heureux, 2016: Predictable components of ENSO evolution in real-time multi-model predictions. Sci. Rep., 6, 35909, doi:10.1038/srep35909.
Zhong, Y, G. H. Miller, B. L. Otto-Bliesner, M. M. Holland, D. A. Bailey, D. P. Schneider, and A. Geirsdottir, 2010: Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Clim. Dyn, doi:10.1007/s00382-010-0967-z.
Zhong, Y., G. Miller, B. Otto-Bliesner, M. Holland, D. Bailey, D.P. Schneider, and A. Geirsdottir, 2010: Explosive volcanism as a trigger for abrupt multi-centennial climate change: A coupled sea ice-ocean mechanism. Clim. Dyn., 37, 2373-2387, doi:10.1007/s00382-010-0967-z.
Zhou, C. and J. E. Penner, 2017: Why do GCMs overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM. Atmos. Chem. Phys., 17, 21–29, doi:10.5194/acp-17-21-2017.
Zhou, L., R. E. Dickinson, Y. Tian, R. Vose, and Y. -J. Dai, 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. PNAS, 104, 17,937-17,942.
Zhou, L., R. E. Dickinson, Y. Tian, H. Chen, and Y. Dai, 2008: Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM. Geophy. Res. Lett., 35, L05402, doi:10.1029/2007GL032953.
Zhou, L., R. E. Dickinson, A. Dai, and P. Dirmeyer, 2009: Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Clim. Dyn., doi:10.1007/s00382-009-0644-2.
Zhou, L., R. E. Dickinson, P. Dirmeyer, A. Dai, and S. -K. Min, 2009: Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophy. Res. Lett., 36, L02702, doi:10.1029/2008GL036141.
Zhou, L. A., Y. Dai, R. S. Vose, C. -Z. Zou, Y. Tian, and H. Chen, 2009: Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dyn., 32, 429-440.
Zhou, L., R. E. Dickinson, A. Dai, and P. Dirmeyer, 2010: Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Clim. Dyn., 35, 1289-1307, doi:10.1007/s00382-009-0644-2.
Zhou, L., M. Zhang, Q. Bao, and Y. Liu, 2015: On the incident solar radiation in CMIP5 models. Geophys. Res. Lett., 42, 1930-1935.
Zhou, L., R. Murtugudde, R. B. Neale and M. Jochum, 2018: Simulation of the Central Indian ocean mode in CESM: Implications for the Indian Summer Monsoon System. J. Geophys. Res., 123, 58-72, doi:10.1002/2017jd027171.
Zhou, T., R. Yu, J. Zhang, J. Li, X. Xin, H. Drange, C. Cassou, E. Sanchez-Gomez, C. Deser, Y. M. Okumura, D. L. Hodson, and N. Keenlyside, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199-2215, doi: 10.1175/2008JCLI2527.1.
Zhou, T., and L. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation. J. Climate, 23 (22), 6009-6026, doi:10.1175/2010JCLI3546.1.
Zhou, T., and J. Zhang, 2011: The vertical structures of atmospheric temperature anomalies associated with two flavors of El Nino simulated by AMIP II models. J. Climate, 24, 1053-1070.
Zhou, T., L. Zou, B. Wu, C. Jin, F. Song, X. Chen, and L. Zhang, 2014: Development of Earth/Climate system models in China: A review from the Coupled Model Intercomparison Project Perspective. Journal of Meteorology Research, 28, 762-779.
Zhu, J., Poulsen, C. J., Tierney, J. E., Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Sci. Adv. 5, eaax1874 (2019). doi:10.1126/sciadv.aax1874
Zhou, Z.-Q., S.-P. Xie, G. J. Zhang, and W. Zhou, 2018: Evaluating AMIP skill in simulating interannual variability of summer rainfall over the Indo-Western Pacific. J. Climate, 31, 2253-2265.
Zhu, J., Z. Liu, X. Zhang, I. Eisenman, and W. Liu, 2014: Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3. Geophys. Res. Lett., 41, 6252–6258, doi:10.1002/2014GL060891.
Zhu, J., J. E. Penner, G. Lin, C. Zhou, L. Xu, B. Zhuang, 2017: Mechanism of SOA formation determines magnitude of radiative effects. Proc. Nat. Acad. Sci.,114, 12685-12690.
Zhou, S., J. Liang, X. Lu, Q. Li, L. Jiang, Y. Zhang, C.R. Schwalm, J.B. Fisher, J. Tjiputra, S. Sitch, A. Ahlström, D.N. Huntzinger, Y. Huang, G. Wang, and Y. Luo, 2018: Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques. J. Climate, 31, 2833–2851, doi:10.1175/JCLI-D-17-0357.1.
Zhu, J., Z. Liu, J. Zhang, and W. Liu, 2015: AMOC response to global warming: dependence on the background climate and response timescale. Clim. Dyn., 44, 3449–3468, doi:10.1007/s00382-014-2165-x.
Zhu, J., Z. Liu, E. Brady, B. Otto-Bliesner, S. Marcott, J. Zhang, X. Wang, J. Nusbaumer, T. Wong, A. Jahn, D. Noone, 2017: Investigating the direct meltwater effect in terrestrial oxygen-isotope paleo-climate records using an isotope-enabled Earth system model. Geophys. Res. Lett., 44, doi:10.1002/2017GL076253.
Zhu, J., Z. Liu, E. Brady, B. Otto-Bliesner, J. Zhang, D. Noone, R. Tomas, J. Nusbaumer, T. Wong, A. Jahn, C. Tabor, 2017: Reduced ENSO Variability at the LGM Revealed by an Isotope-enabled Earth System Model. Geophys. Res. Lett., 44, doi:10.1002/2017GL073406.
Zhu, Q., and W. J. Riley, 2015a: Improved modeling of soil nitrogen losses. Nature Climate Change, 5, 705-706, doi:10.1038/nclimate2696.
Zhu, Y., O. B. Toon, A. Lambert, D. E. Kinnison, M. Brakebusch, C. G. Bardeen, M. J. Mills, and J. M. English, 2015: Development of a polar stratospheric cloud model within the Community Earth System Model using constraints on Type I PSCs from the 2010-2011 Arctic winter. J. Adv. Model. Earth Syst., 07, 551-585, doi:10.1002/2015MS000427.
Zhu, Y., O. B. Toon, M. C. Pitts, A. Lambert, C. Bardeen, and D. E. Kinnison, 2017: Comparing simulated PSC optical properties with CALIPSO observations during the 2010 Antarctic winter. J. Geophys. Res. Atmos., doi:10.1002/2016JD025191.
Zhu, Z., et al., 2016: Greening of the Earth and its drivers. Nature Climate Change, doi:10.1038/nclimate3004.
Zhun, G., 2014: A sensitivity analysis of cloud properties to CLUBB parameters in the Single Column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 6, 829-858, doi:10.1002/2014MS000315.
Zhun, G., M. Wang, Y. Qian,V. E. Larson, S. Ghan, M. Ovchinnikov, P. A. Bogenschutz, A. Gettelman, and T. Zhou, 2015: Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, 7, 1005–1025.
Zhun, G., T. Zhou, M. Wang, and Y. Qian, 2015: Impact of Cloud Radiative Heating on East Asian Summer Monsoon Circulation. Environmental Research Letters, 10, 074014.
Zika, J., F. Laliberte, L. R. Mudryk, W. Sijp, and G. Nurser, 2015: Changes in ocean vertical heat transport with global warming. Geophys. Res. Lett., doi:10.1002/2015GL064156.
Zou, Y. F., Y. H. Wang, Y. Z. Zhang, and J. H. Koo, 2017: Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv., 3, e1602751, doi:10.1126/sciadv.1602751.
Zubler, E. M., A. M. Fischer, F. Frob, and M. A. Liniger, 2015: Climate change signals of CMIP5 general circulation models of the Alps – impact of model selection. Int. J. Climatol., doi:10.1002/joc.4538.
Zuidema, P., et al., 2016: Challenges an dprospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: The US CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-15-00274.1.

Acknowledgements in CESM Papers

When you use CESM simulations in your publications, it is very important to acknowledge our primary sponsor, the National Science Foundation (NSF).

Appropriate acknowledgment of the NSF sponsorship:

The CESM project is supported primarily by the National Science Foundation.

The NCAR authors must additionally use the following sentence in their publications:

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Regarding computing, for CESM simulations performed at NCAR or for papers analyzing CMIP6 simulations performed at NCAR:

Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. NCAR is sponsored by the National Science Foundation.

To acknowledge contributions of CESM developers:

We thank all the scientists, software engineers, and administrators who contributed to the development of CESM2.

Full acknowledgment example for a manuscript using CESM simulations with an NCAR co-author:

The CESM project is supported primarily by the National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. Computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. We thank all the scientists, software engineers, and administrators who contributed to the development of CESM2.

Please refer to the following web site for additional guidelines on how to acknowledge NSF on web sites, media interviews, etc.

https://news.ucar.edu/comms-office/nsf-acknowledgment

More Publication Information