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Compare surface temperature in ESMs and observations
SST trend in 1950-2014
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IHTC has dramatic impacts on tropical circulation and
rainfall
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IHTC: InterHemispheric surface Temperature Contrast (NH-SH)
ITCZ: InterTropical Convergence Zone ,
HC: Hadley Circulation on the equator He et al. 2026 (accepted)



* Observed IHTC has both internal variability and
externally-forced responses.
« CMIP6-EM is forced response

H1: Observation dominated by internal variability, so model data

difference is internal variability.

« AMOC (e.g., Friedman et al. 2020; Thompson et al. (2010); ....)

* Internal variability in CMIP6 PI control simulations cannot
explain the model-data diff.

H2: Observation is dominated by external forcings, so the
model-data difference is due to their sensitivity difference to
forcings.



Real-world IHTC is largely driven by external
forcings?
IHTC = BeucIHT Copg + BagrIHT Cppr + BnarIHT Cyar + €

IHTC is a combined impact from
 Greenhouse gases (IHT Cy¢)
* Anthropogenic aerosols (IHT Cyzr)
* Natural forcings (IHT Cy 47)
* |nternal variability (€)

e [3: Scaling factors / Sensitivity to external forcings
GHG: Greenhouse gases

AER: Anthropogenic aerosols
NAT: natural forcings (volcanism, solar activity)



Real-world IHTC is largely driven by external forcings!

IHTC = BeulHTCorg + BagrIHT Cogr + BnarIHT Cyar + €
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Disentangle collinearity in AER and GHG: Two modes
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d PC2 and residual of IHTC in AER and GHG
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« PC1is normalto
PC2

e PC2 is multidecadal
variability

 PC1is long-term
trend

GHG: Greenhouse gases
AER: Anthropogenic aerosols 6
NAT: natural forcings (volcanism, solar activity



Which forcing is responsible for the model-observation
difference?

IHTC = BeucIHT Coyg + BaprIHT Cppp + PnarlHT Cyar + €

IHTC = Bpc1IHT Cpcy + Bpc2lHT Cpcy + PyarIHT Cyar + €

IHT C is combined by
* Long-term trend due to GHG and AER (IHT Cp4)
* Multidecadal variability due to AER (IHT Cp5)
* Natural forcings (IHT Cy 47)

GHG: Greenhouse gases ° Internal va riability (E)

AER: Anthropogenic aerosols
NAT: natural forcings (volcanism, solar activity)




Model is dominated by GHG, but observation is
dominated by AER
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PC1 (long-term trend) is opposite
Brc1 > 0: Greenhouse gases
Bprc1 < 0: Anthropogenic aerosols

PC1: long-term trend (AER and GHG)
PC2: multidecadal variability (AER)
NAT: natural forcings (volcanism, solar activity)



In addition to CMIP6-EM, model spread in long-term
trend is also due to Greenhouse gases
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« ECS: Equilibrium Climate
Sensitivity, sensitivity to GHG.

« Higher ECS, Higher IHTC Trend

 Real-world ECS is low
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ECS taken from Wang et al. 2020 and Smith et al. 20z



The physics of the model bias and model spread is
because of wind in response to GHG.
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In addition to CMIP-EM, model spread in multidecadal
varlablllty Is due to Aerosols

r=-0.76

ERSST
HadiSST
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« ERFaci: Effective Radiative
Forcing due to aerosol-cloud
Interaction, sensitivity to AER.

« Larger ERFaci, larger amplitude
of multidecadal IHTC variability
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Implication: Real-world ERFaciis —0.60 + 0.30 W /m?

IPCC:—1.0 + 0.7 W /m?
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ERFaci: Effective Radiative Forcing due to aerosol-cloud interaction, sensitivity to AER.
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ECS and ERFaci taken from Wang et al. 2020 and Smith et al.



A Short Summary

» The systematic bias in IHTC is caused by the dominance of GHG in
the model

* Model and OBS are consistent in multidecadal IHTC variability
due to AER

* ERFaci=—0.60 + 0.30 W /m?
* ECS may be at the low end of current models’ prediction
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The model data difference is very unlikely to be
explained by internal variability (+4)
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ITCZ: intertropical convergence zone (aka. tropical rainbelt) 15
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a great paper shows the formation of sst pattern under global warming
Wind forms the warming pattern through latent heating
Ocean heat transport helps in mid latitudes
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ABSTRACT

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM)
of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation
and air—sea heat flux in the global climate response to the forcing of doubling CO,. The partial coupling is
achieved by implementing a so-called overriding technique, which helps quantitatively partition the total
response in the fully coupled model to the feedback component in question and the response to external
forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed
through the bulk formula for evaporation, the experiments help to reveal that (i) the wind—evaporation-SST
(WES) feedback is the main formation mechanism for the tropical SST pattern under the CO, forcing,
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Hypothesize the SST pattern under
global warming is due to WES
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The trigger is wind, WES feedback

Novel experiment isolates WES feedback in climate

models
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