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Madden-Julian Oscillation (MJO)

= Dominant subseasonal mode in the tropical
troposphere

= Bridging weather and climate

= Downscale impacts on weather patterns =2

PNA, CCEWs,

tropical cyclone
atmospheric river

cold surges/heat waves
extreme rainfalls/droughts

= Upscale impacts on climate modes

IOD, monsoons
ENSO, AO, NAO/AAO, ACC
ITCZ

= Important predictability source for S2S/S2D
predictions
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QBO Impacts on MJO

MJO is stronger and more likely to propagate across the Maritime Continent in the
easterly phase of QBO than the westerly phase of QBO.

Seasonality — only in the boreal winter seasons

Location Preference — centered around the MC

Uniqueness — no impacts on other convectively coupled equatorial waves
Emergence — not detected before the 1980s in reanalyses

Several mechanisms are proposed in the past decade, but the connection is not
thoroughly understood.

wind shear (Collimore et al., 2003), tropopause stability (Hendon & Abhik, 2018),
cloud-radiative feedback (Son et al., 2017), extratropical wave forcing (Hood &
Hoopes, 2023), solar cycle (Hood et al., 2023), sea surface temperature (Randall
et al., 2023) ...

All climate models fails to reproduce the QBO-MJO connection.

even with a prescribed stratosphere same as the observations (e.g., Martin et al., 2021,
Martin et al., 2023).

The QBO-MJO connection is slightly captured by the forecast systems and MJO
case simulations.

Martin et al., (2019) Martin et al., (2020) Back et al., (2020) Huang et al., (2023)
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DJF MJO OLR Variance
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QBO Modulation on MCSs
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Preconditioning from MCSs to MJO

MJO Vertical Profiles over the Indian Ocean Domain

(70E-100E,15S-5N)
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QBO Modulates MJO through MCSs

Hovmoller Diagrams of MJO (lines) and MCSs (shading) Precipitation

(a) 7 QBOE NDJFM b) 8 QBOW NDJFM 1 53.5 ¢) QBOE-QBOW

8 . ¥ 8-:;,! "T‘W 1 L R :
7 7 - ' B
6 6 =

§ S Oy § 5 — §

5 . 5 4 5

= = =

= = =

o o o

30°E  BOE 90°E  120°E  150°E 180  150°W 30°E 60°E 90°E 120°E 150°E 180 150°W 30°E B0°E 90°E  120°E 150°E 180 150"W
[T s [T T S
1 15 2 25 3 35 4 45 5 55 6 65 7 1 15 2 256 3 35 4 45 5 55 6 65 7 25 15 05 0 08: 15 23
mmicay mmicay mmicay

= MCSs leading the MJO convection are found at the both sides of the MC

= Enhanced MCSs MC in the QBOE phase
amplify MJO convection west of the MC, propagating into the MJO convection
promote MJO propagation over the MC, leading the stronger MJO convection
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Incorporation of the MCS Effects in CAM7

Multiscale Coherent Structure

The Multiscale Coherent Structure Parameterization =4 Overturning Ascent I  ~~ = === ===
(MCSP) A

Trailing Stratiform
Region
= Represents the effects of MCSs on convective
heating.
o triggered when the convection depth is
greater than 500hPa

o adding sinusoidal cooling (warming)

Mesoscale
Downdraft
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convection - P | ——
o intensity controlled by the heating coefficient
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J /1 R (T
= |mproves the convective variabilities in the tropics
(Chen et al., 2021, Zhang et al., 2025). -
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Relating the MCSP to Stratospheric Wind

MJO-filtered OLR Stddev in DJF
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Take-away Messages

We propose a new multiscale interaction mechanism for QBO-MJO connection.
How?
= MJO is preconditioned by the MCSs around the MC, favoring its eastward propagation.
= QBO modulates the MCSs around the MC, causing a decoupling between MJO and MCS in the QBOW phase.
= The lack leading MCSs around the MC leads to a weaker and stalled MJO in the QBOW phase.

We see promising results of the QBO-MJO connection by connecting the MCSP intensity to the stratospheric wind
» ensemble simulations are needed to confirm the robustness of the captured QBO-MJO connection
» diagnostics for the effects of MCSP on MJO multi-convection structure

Huang, K., Chen, CCJ., Moncrieff, M., & Richter, J., A Multiscale Interaction Mechanism for the Observed QBO-MJO Connection.
Under Revision at Geophysical Research Letters.
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Event-by-event View of QBO-MJO Connection
MJO Precipitation (15S-15N)

(b) 28 QBOE events i 15S-15N
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SST Differences conditioned by QBO
QBOE-QBOW
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Open Question: How MCS preconditions MJO?

Schematic of a Tropical Moist Convection
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H ' 4>
44 Radiator fin expansion [ IRIS shrinkage “ Radiator fin expansion  pp

Dry & clear Moist & cloudy Dry & clear

Strengthened
ascent

\m/

Jil

from Su, H., Jiang, J., Neelin, J. et al. (2017). https://doi.org/10.1038/ncomms15771

= For large-scale convection, the net effect would dry out the
excessive moisture towards climatological states.

= For small-scale convection?
* net effect of drying? Or wetting?
+ if wetting, how is the net gain in moisture distributed?
o moisture pumped through PBL, redistributed by the
divergence wind and downdrafts?
o shallow clouds, moisture accumulation

EN ERGY Science

horizontal advection

vertical advection

aq dq  dq| 0q .

i —ua—x—va —w£+Evap—Preap

aq aq . .

5t =—-w 57 + Evap — Precip 1-D column without lateral transports
Oq %4 Preci f ti I

FTi w 7 recip or convective column

What is the net effect from the competition between these two terms?

Quasi-Equilibrium Dynamics of the Tropical Atmosphere

first proposed by Arakawa and

Kerry Emanuel Schubert (1974)

Massachusetts Institute of Technology
1) Moist convection always acts to maintain a moist adiabatic (virtual) temperature
profile, and
2) Convection always acts to maintain the neutral buoyancy of air lifted from the

subcloud layer to levels above cloud base.

Taken together, these findings suggest that convective equilibrium fails on time
scales shorter than around 2 days and space scales less than around 100 km, but a

more precise determination of these limiting scales awaits further research.
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More Evidence for MCS preconditioning MJO?

nature

Explore content ¥ About the journal ¥ Publish with us v

nature > articles > article

Article = Open access = Published: 30 November 2022
Strong cloud-circulation coupling explains weak trade
cumulus feedback

Raphaela Vogel &3, Anna Lea Albright, Jessica Vial, Geet George, Bjorn Stevens & Sandrine Bon

Nature 612, 696-700 (2022) ‘ Cite this article

17k Accesses ‘ 60 Citations ‘ 403 Altmetric ‘ Metrics

Mesoscale motions are equally important as
entrainment for shallow trade-wind cumulus clouds
formation.

JGR Atmospheres

Research Article

Development of Shallow Convection and the Slow Eastward
Propagation of Super Cloud Clusters in the Madden-Julian
Oscillation

Yan Liu, Zhe-Min Tan B«

First published: 26 May 2025 | https://doi.org/10.1029/2025JD043516 |  ~* VIEW METRICS

Convection west of the MC intersects with the MJO,

favoring the MJO timescale selection and eastward
propagatlon
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Madden-Julian Oscillation (MJO)
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Example cycle: Week 1

solar radiation

Equator

art 100 e oy
Dane Lre

» exaggerated barrier effect of MC on MJO propagation in GCMs?

= MCS as seeds for MJO initiation?
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Seasonality of the QBO Modulation on MCSs

(a) DJF QBOE-QBOW (hour/day) (b) MAM QBOE-QBOW (hour/day)
20N L 20N N \
10N ~ 10N 4
EQ o) EQ 4
108 o= 10S -
20S 20S

60E 60E
e | [ .
0.2 0.16 -0.12-0.08 0.04 0 0.04 0.08 0.12 0.16 0.2 -0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2

(c) JUA QBOE-QBOW (hour/day) (d) SON QBOE-QBOW (hour/day)
20N . L 20N — b -
10N 10N =
e 4. EQ 4
10S - 10S -
20S : ¥ ; —+ 20S

60E 90E 120E 150E 180  60E 90E 120E 150E 180
EEEEEEEEEY 00 | [ T T T .

-0.2 -0.16-0.12-0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2

U.S. DEPARTMENT OF ’ Office of

j ENERGY Science

-0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2

catalyst



Open Question: How QBO modulates MCS?

Geophysical Research Letters’ » QBOE wind shear reflects the GW downward at the east side

20} of MCS, hindering CAPE build-up and promoting its westward
Research Letter (3 Free Access t
. ropagation.
Does Lower-Stratospheric Shear Influence the Mesoscale propag
Organization of Convection? 15l
Todd P. Lane =
First published: 12 January 2021 | https://doi.org/10.1029/2020GL091025 | Citations: 6 P (@) EX-CTRL _Power(w) z=5 km (b) EX—SH _Power(w) z=5 km
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Open Question: How QBO modulates MCS?

Wavenumber-Frequency Power Spectrum of Precip over Western MC (5S-5N, 90E-120E)

(a) anti-symmetric 5N, 90E- (b) symmetric 55-5N,90E-120E
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= Some supports from the high-res satellite observations (GPM IMERG precipitation).

= More observational and modeling studies are needed.
* In-situ observations from field campaigns (e.g., DYNAMO, YMC...)
. High-resolution model simulations (e.g., SCREAM, MPAS, WREF...)
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