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Motivation for the development of a new convection 
scheme 

● Convection is central to vertical transport but unresolved at typical grid scales in 
global climate models. Most atmospheric models use finely tuned schemes to 
represent subgrid-scale convection, yet these schemes remain a major source of 
model uncertainty (e.g. Arakawa 2004; Randall et al., 2003).

● Physically-based parameterizations struggle to capture the complexity of 
convection, due to the wide range of interacting scales and large number of 
physical processes involved (e.g. Slingo and Palmer, 2011; Yano and Plant, 2012; Bony et al., 2015).

● Recent advances in computing power, algorithm performance, and data availability 
makes learning subgrid convection from data directly more feasible and promising 
than ever (e.g. Gentine et al., 2018; Rasp et al.; 2018).



Challenges in the development of convection scheme

● ML approaches typically seek to either create a new scheme using a fully 
empirical learning model (e.g. O'Gorman and Dwyer, 2018; Yuval et al., 2022), or to use an 
existing scheme and tune its parameter (e.g. Kumar et al., 2024); each approach comes 
with distinct advantages and limitations (e.g. Eyring et al., 2024).

● Training and assessing success of any new scheme is complicated due to 
overlapping and interdependent processes from multiple schemes (e.g., 
cloudiness is influenced by deep convection, microphysics, shallow convection, 
boundary layer mixing); this can easily obfuscate efficient learning or performance 
assessment. 



What we want to achieve

(1) produce NN, a data-driven scheme that captures key processes in 
cumulus convection 

(2) port NN to CAM6, 

(3) evaluate sensitivity of CAM6 to various parameter changes in NN, 

(4) show that NN reduces known biases in climatology in CAM6, on a range 
of spatial and temporal scales (seasonal-mean, subseasonal, synoptic).



Architecture of a NN convection scheme    
The NN architecture and training follow broadly in Yuval, O'Gorman, Hill, 2021 (Geophys. 

Res. Lett.) but has been updated to be active over both land and ocean.

A Feedforward Neural Network is trained to predict vertical subgrid fluxes of dry energy and 
moisture, as well as microphysical tendencies, from 4 inputs (2 profiles, 2 scalars): 

temperature (T), non-prec. water mixing ratio (qT), surface pressure (ps), land fraction (Lm)

where, 

HL = cpT + gz − (Lcqc+ Lsqi) is the 
non-precipitating ice/liquid static 
energy

qT = qv + qc+ qi is the 
non-precipitating water mixing 
ratio (water vapor + cloud water 
+ cloud ice)



∂t(HL) = ∂z(HL)adv - Lp(qT)auto  - Lf ∂z(qT)sed  + (HL)phse

∂t(qT) = ∂z(qT)adv +   (qT)auto  +   ∂z(qT)sed 

Inputs (2 vertical profiles, 2 surface scalars): temperature (T), total non-precipitating water mixing 
ratio (qT), surface pressure (ps), land fraction (LM).

Outputs (5 vertical profiles): fluxes and tendencies for budgets of non-precipitating liquid/ice static 
energy (HL), and qT. Lc is the latent heat of condensation; Ls 

is the latent heat of sublimation; Lf is 
the latent heat of fusion; 

Lp = Lc + Lf(1−ωp) is the effective latent 
heat associated with precipitation, 
where ωp is ratio between precipitating 
ice and liquid phases.

Note: vertically integrated HL and qT are conserved conserved during reversible adiabatic 
convection, i.e., non-conservation may only come from diabatic effects (qT)auto and (HL)phse.

Predicting fluxes for conservative subgrid-scale processes ensures basic 
conservation.

Physical properties of the NN scheme



Training of a NN convection scheme    

Training is done from a high-resolution simulation with gSAM, forced by Qobs SSTs and 
prescribed radiative forcing.

gSAM: Global System for Atmospheric Modeling (Khairoutdinov, M.F et al., 2022, 
JAMES) is a state-of-the-art model that is optimized for studying convection at very high 
resolution (~4km effective horizontal resolution). 

Training data is made of 30 days of hourly data. 

Training is done by 
(a) coarse-graining high-resolution ( 2~km) convective output onto a 100 km grid, 
(b) defining grid and subgrid convective output on the 100 km grid,
(c) optimizing NN to predict subgrid convective output from grid-scale input profiles.

Training on gSAM (with selection of new set of NN inputs) was done by G. 
Mooers.



Schematic of NN implementation in CAM6
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Changing moist physics scheme to be a deep 
convection scheme
● NN is added to CAM6 source code and replaces the ZM deep convection scheme (Zhang & 

McFarlane 1995 -  Atmos. Ocean). Other CAM6 schemes are active (e.g. CLUBB for 
boundary layer turbulence and shallow convection, MG for cloud microphysics, etc.).

● Compared to Yuval et al., 2021, weights were trained to output subgrid-scale 
microphysical conversion of condensate while grid-scale conversion is handled by the 
MG (cloud microphysics) scheme.

● NN is activated only during deep convective events. It is turned off wherever no net 
precipitation is diagnosed, and above highest level reached by the subgrid scale vertical 
energy flux.



Which metrics to evaluate NN scheme performance?

Some key metrics biased by traditional convection schemes, which we seek to improve 
with NN:

● Climatological bias (e.g. relative humidity, cloud fraction). 

● Precipitation intensity distribution (e.g. drizzle vs. extremes) and diurnal cycle

● Dynamical variability on synoptic to subseasonal timescales (e.g. tropical waves).

Ideally, NN should represent above features better than ZM, when compared to 
observations, and at a similar computational cost or less.



Experimental setup
CAM6 (Community Atmosphere Model, version 6), with prescribed daily SST and SIC for period 
01/01/2010-12/31/2014 (FHIST compset). 

We compare 3 set-ups: 

● CAM6 with Zhang-MacFarlane convection (ZM) 
● CAM6 with convection turned off (OFF)
● CAM6 with NN convection (NN)

We compare to observation or reanalysis:

RELHUM: fifth generation ECMWF atmospheric reanalysis ERA-5 (0.25° x 0.25°)

CLR: 3S-GEOPROF-COMB CloudSat Radar & CALIPSO Lidar (2.5° x 2.5°)

PREC: GPM IMERG Final Precipitation L3 Half Hourly V07 (0.1° x 0.1°)

            GPCP Precipitation Monthly Analysis Product (2.5° x 2.5°)

OLR: Outgoing Longwave Radiation (OLR) Climate Data Record (CDR) (1° x 1°)



Precipitation Climatology and Probability Distribution

Annual-mean, zonal-mean
Probability Distribution 

(Trop. Pac)

NN provides a reasonable annual-mean precipitation climatology

NN outperforms ZM in the frequency-intensity distribution of 3 hrly precipitation



Annual zonal-mean climatology
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Diurnal cycle: Precipitation

IMERG ZM

OFF NN

Trop. Land diurnal cycle



Tropical waves Spectrum (OLR) 
CDR NN ZM

And MJO propagation (Precipitation) 
IMERG NN ZM



Summary

We build a Feed Forward Neural Network to represent deep moist convection, and train 
this scheme on a high-resolution (2km) gSAM simulation. 

Replacing the current deep convection scheme in CAM6 by this new NN scheme, we 
obtain stable simulations that respect basic conservation of energy and moisture.

We find that a NN scheme can simulate deep convection reasonably well in a realistic 
CAM6 configuration with fixed SST/SIC for a range of statistics.

We’re aiming to improve some of the more difficult of convection to ‘get right’, such as: 
cloud-radiative feedback, diurnal cycles, or tropical waves.

We’re working to complete implementation of NN in CAM6 with tunable parameters, to 
ease calibration.



Thank you!

This project was supported by Schmidt Sciences, LLC. All simulations were 
carried out on the Derecho high-performance computing system. We gratefully 
acknowledge the NCAR staff for helping us run our CAM6 experiments.

Addisu Semie is implementing of our scheme in FTorch, to be released soon with 
CESM3.


