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Motivation for the development of a new convection
scheme

e Convection is central to vertical transport but unresolved at typical grid scales in
global climate models. Most atmospheric models use finely tuned schemes to
represent subgrid-scale convection, yet these schemes remain a major source of
model uncertainty (e.g. Arakawa 2004; Randall et al., 2003).

e Physically-based parameterizations struggle to capture the complexity of
convection, due to the wide range of interacting scales and large number of
physical processes involved (e.g. Slingo and Palmer, 2011; Yano and Plant, 2012; Bony et al., 2015).

e Recent advances in computing power, algorithm performance, and data availability
makes learning subgrid convection from data directly more feasible and promising
than ever (e.g. Gentine et al., 2018; Rasp et al.; 2018).



Challenges in the development of convection scheme

ML approaches typically seek to either create a new scheme using a fully
empirical learning model (e.g. 0'Gorman and Dwyer, 2018; Yuval et al., 2022), Or tO use an
existing scheme and tune its parameter (e.g. Kumar et al., 2024); each approach comes
with distinct advantages and limitations (e.g. Eyring et al., 2024).

Training and assessing success of any new scheme is complicated due to
overlapping and interdependent processes from multiple schemes (e.qg.,
cloudiness is influenced by deep convection, microphysics, shallow convection,
boundary layer mixing); this can easily obfuscate efficient learning or performance
assessment.



What we want to achieve

(1) produce NN, a data-driven scheme that captures key processes in
cumulus convection

(2) port NN to CAMG,
(3) evaluate sensitivity of CAM6 to various parameter changes in NN,

(4) show that NN reduces known biases in climatology in CAM6, on a range
of spatial and temporal scales (seasonal-mean, subseasonal, synoptic).



Architecture of a NN convection scheme

The NN architecture and training follow broadly in Yuval, O'Gorman, Hill, 2021 (Geophys.
Res. Lett.) but has been updated to be active over both land and ocean.

A Feedforward Neural Network is trained to predict vertical subgrid fluxes of dry energy and
moisture, as well as microphysical tendencies, from 4 inputs (2 profiles, 2 scalars):

temperature (T), non-prec. water mixing ratio (q;), surface pressure (p,), land fraction (L )
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Physical properties of the NN scheme

Inputs (2 vertical profiles, 2 surface scalars): temperature (T), total non-precipitating water mixing
ratio (q,), surface pressure (p,), land fraction (L,,).

Outputs (5 vertical profiles): fluxes and tendencies for budgets of non-precipitating liquid/ice static

energy (H,), and q;. L_is the latent heat of condensation; L _

- adv _ auto _ sed phse is the latent heat of sublimation; L, is
at(HL) az(HL) I‘p(qT) I‘f 3Z(C|T) + (HL) the latent heat of fusion; f

at(qT) = az(qT)adV + (qT)a“t° + az(q_r)sed L, =L, +L(1-w) is the effective latent
heat associated with precipitation,
where w _is ratio between precipitating
ice and If')quid phases.

Note: vertically integrated H and q; are conserved conserved during reversible adiabatic
convection, i.e., non-conservation may only come from diabatic effects (qT)a”t° and (HL)phse.

Predicting fluxes for conservative subgrid-scale processes ensures basic
conservation.



Training of a NN convection scheme

Training on gSAM (with selection of new set of NN inputs) was done by G.
Mooers.

Training is done from a high-resolution simulation with gSAM, forced by Qobs SSTs and
prescribed radiative forcing.

gSAM: Global System for Atmospheric Modeling (Khairoutdinov, M.F et al., 2022,
JAMES) is a state-of-the-art model that is optimized for studying convection at very high
resolution (~4km effective horizontal resolution).

Training data is made of 30 days of hourly data.

Training is done by
(a) coarse-graining high-resolution ( 2~km) convective output onto a 100 km grid,
(b) defining grid and subgrid convective output on the 100 km grid,
(c) optimizing NN to predict subgrid convective output from grid-scale input profiles.



Schematic of NN implementation in CAM6
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Changing moist physics scheme to be a deep
convection scheme

NN is added to CAMG source code and replaces the ZM deep convection scheme (Zhang &
McFarlane 1995 - Atmos. Ocean). Other CAM6 schemes are active (e.g. CLUBB for
boundary layer turbulence and shallow convection, MG for cloud microphysics, etc.).

Compared to Yuval et al., 2021, weights were trained to output subgrid-scale
microphysical conversion of condensate while grid-scale conversion is handled by the
MG (cloud microphysics) scheme.

NN is activated only during deep convective events. It is turned off wherever no net
precipitation is diagnosed, and above highest level reached by the subgrid scale vertical
energy flux.



Which metrics to evaluate NN scheme performance?

Some key metrics biased by traditional convection schemes, which we seek to improve
with NN:

e Climatological bias (e.g. relative humidity, cloud fraction).
e Precipitation intensity distribution (e.g. drizzle vs. extremes) and diurnal cycle

e Dynamical variability on synoptic to subseasonal timescales (e.g. tropical waves).

Ideally, NN should represent above features better than ZM, when compared to
observations, and at a similar computational cost or less.




Experimental setup

CAM6 (Community Atmosphere Model, version 6), with prescribed daily SST and SIC for period
01/01/2010-12/31/2014 (FHIST compset).

We compare 3 set-ups:

e CAMG6 with Zhang-MacFarlane convection (ZM)
e CAMBG with convection turned off (OFF)
e CAMG with NN convection (NN)

We compare to observation or reanalysis:
RELHUM: fifth generation ECMWF atmospheric reanalysis ERA-5 (0.25° x 0.25°)
CLR: 3S-GEOPROF-COMB CloudSat Radar & CALIPSO Lidar (2.5° x 2.5°)
PREC: GPM IMERG Final Precipitation L3 Half Hourly V07 (0.1° x 0.1°)

GPCP Precipitation Monthly Analysis Product (2.5° x 2.5°)
OLR: Outgoing Longwave Radiation (OLR) Climate Data Record (CDR) (1° x 1°)



Precipitation Climatology and Probability Distribution

Probability Distribution
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NN provides a reasonable annual-mean precipitation climatology

NN outperforms ZM in the frequency-intensity distribution of 3 hrly precipitation



Annual zonal-mean climatology
Relative Humidity Cloud Cover
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Diurnal cycle: Precipitation

Trop. Land diurnal cycle
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Tropical waves Spectrum (OLR)
CDR
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Summary

We build a Feed Forward Neural Network to represent deep moist convection, and train
this scheme on a high-resolution (2km) gSAM simulation.

Replacing the current deep convection scheme in CAMG6 by this new NN scheme, we
obtain stable simulations that respect basic conservation of energy and moisture.

We find that a NN scheme can simulate deep convection reasonably well in a realistic
CAMBG6 configuration with fixed SST/SIC for a range of statistics.

We’re aiming to improve some of the more difficult of convection to ‘get right’, such as:
cloud-radiative feedback, diurnal cycles, or tropical waves.

We’re working to complete implementation of NN in CAMG6 with tunable parameters, to
ease calibration.



Thank you!

This project was supported by Schmidt Sciences, LLC. All simulations were
carried out on the Derecho high-performance computing system. We gratefully
acknowledge the NCAR staff for helping us run our CAM6 experiments.

Addisu Semie is implementing of our scheme in FTorch, to be released soon with
CESM3.



