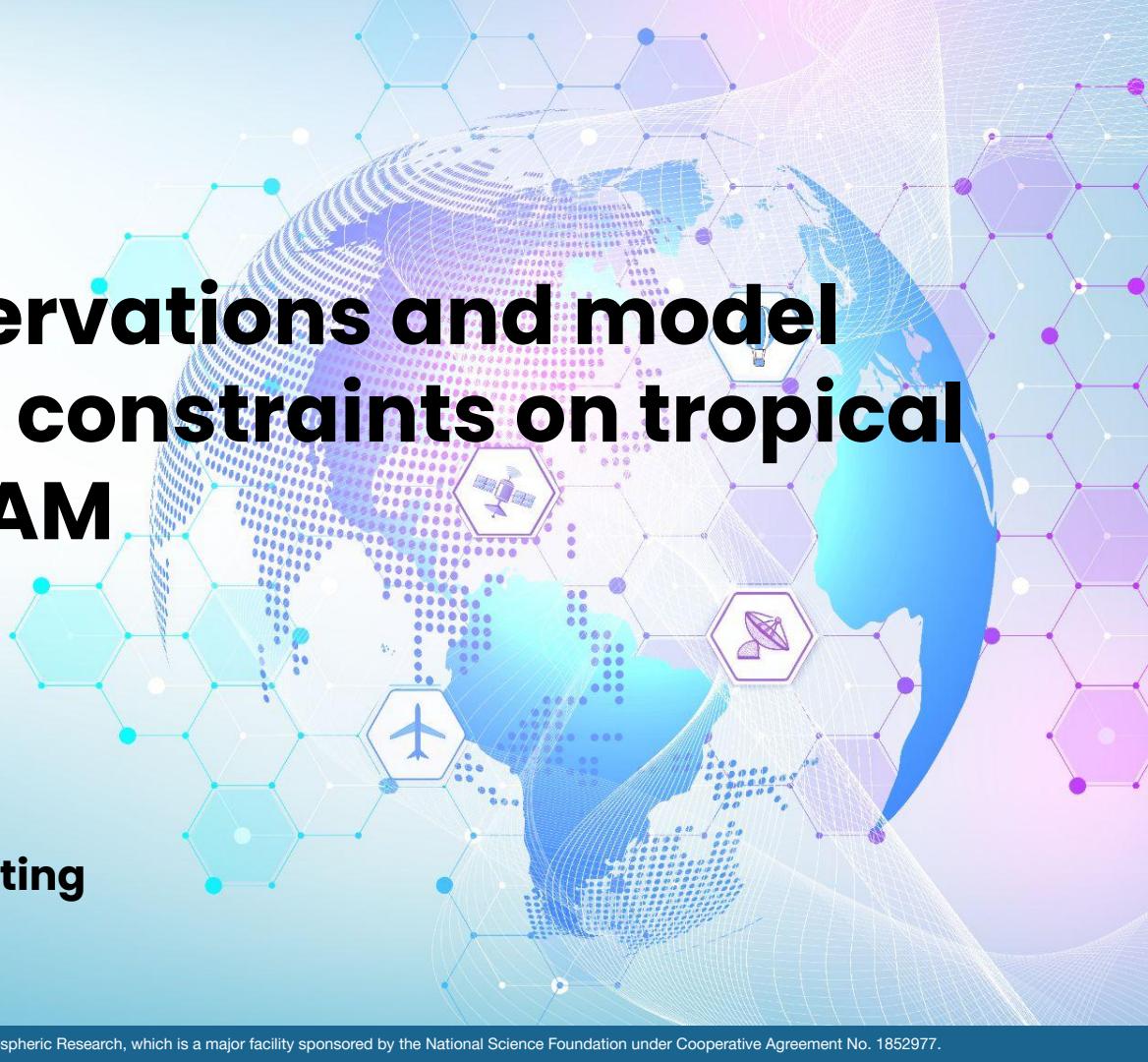


Leveraging observations and model experiments for constraints on tropical convection in CAM

Todd Emmenegger
INFORM Project

February 4th, 2026 AMWG Meeting



Goals

- 1. Develop suite of model diagnostics to improve representation of tropical convection in CAMs**
- 2. Combine simple theory, models, and a variety of observational products to build constraints**

Outline

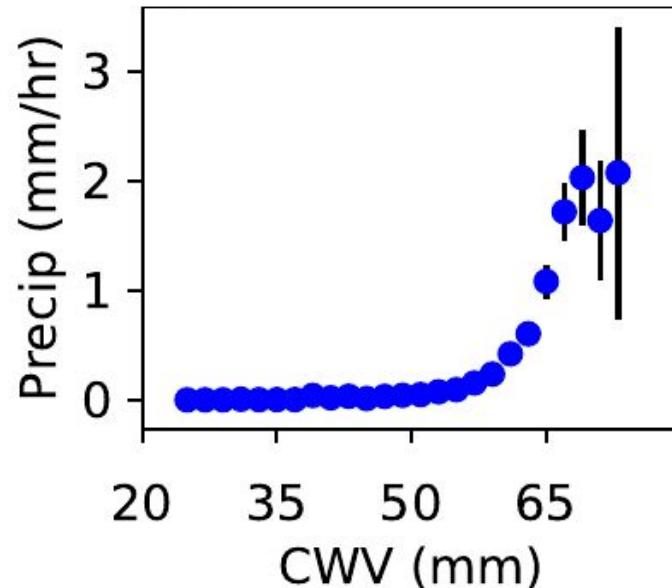
- 1. Transition to deep convection - the precip ‘pickup’ diagnostic**
- 2. Bulk plume framework of buoyancy**
 - a. importance of mixing**
 - b. a new diagnostic for convective sensitivity**
- 3. CAM6 PPE experiments**
 - a. importance of parameters for sensitivity**

The ‘Pickup’

- **Robust relationship between CWV and precip: conditional-average precipitation rate picks up once a critical CWV value has been reached**

- Identified on both short (minutes; Peters and Neelin, 2006) and daily (Bretherton et al., 2004) timescales
- Observed over tropical land and ocean (Kuo et al. 2018, 2020; Schiro et al. 2017; Neelin et al. 2009)

Nauru In-Situ averaged annual over 3 hours

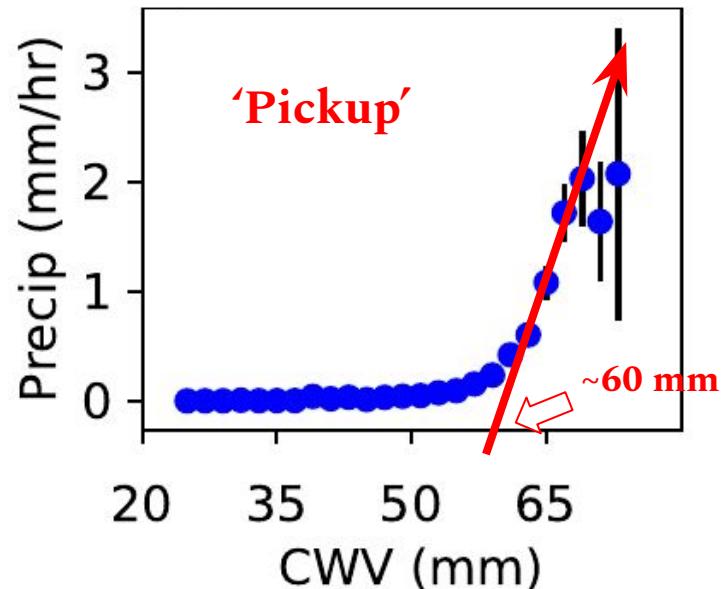


Conditional-average precipitation rate from measurements taken at Nauru Island from Atmospheric Radiation Measurement field campaign (ARM)

The 'Pickup'

- **Pickup** represents the transition to deep convection
- Linear fit provides estimation of critical value

Nauru In-Situ averaged annual over 3 hours

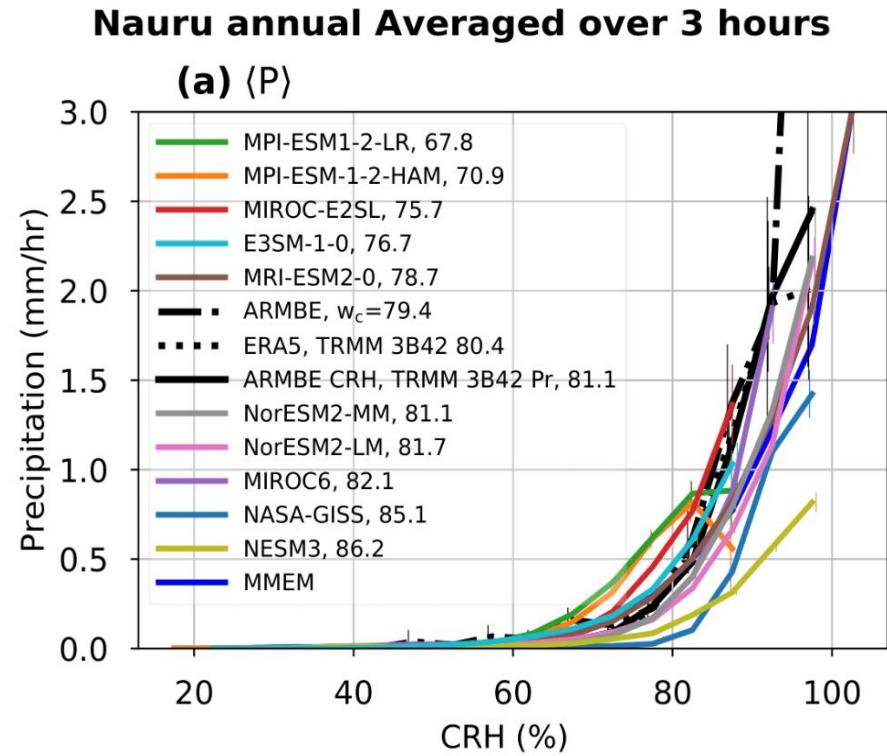


Conditional-average precipitation rate from measurements taken at Nauru Island from Atmospheric Radiation Measurement field campaign (ARM)

Pickup is a measure of model sensitivity

Higher crit values \Rightarrow insufficient sensitivity to moisture via entrainment (too much mixing)

- Observations: black
- Models: colored
- ERA5 reanalysis provides an additional baseline

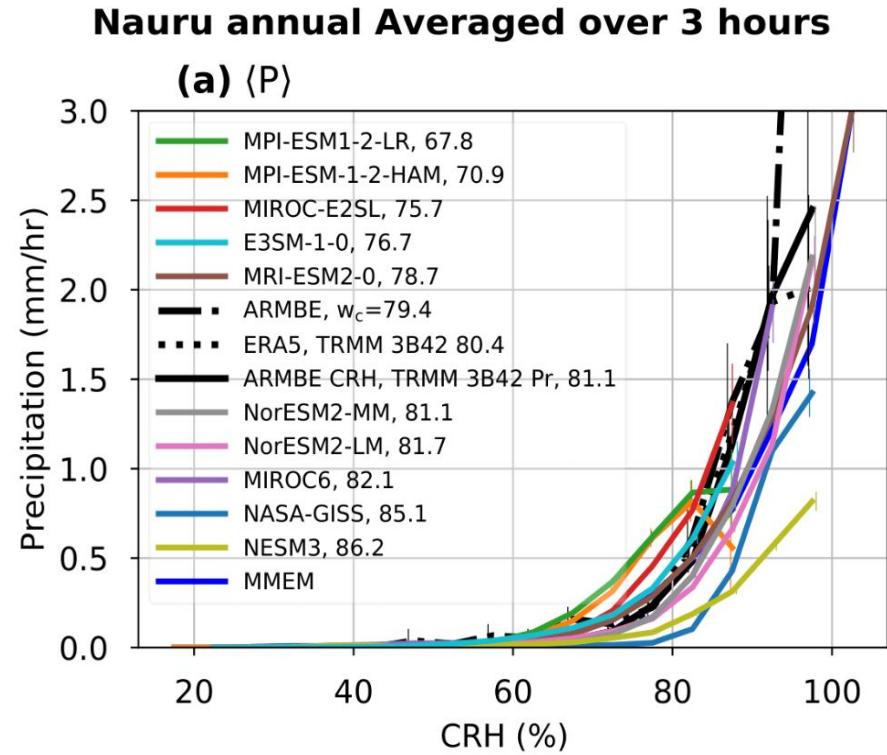


Convective transition statistics for CMIP6 model cohort.
Emmenegger et al. 2022

Models are doing ok

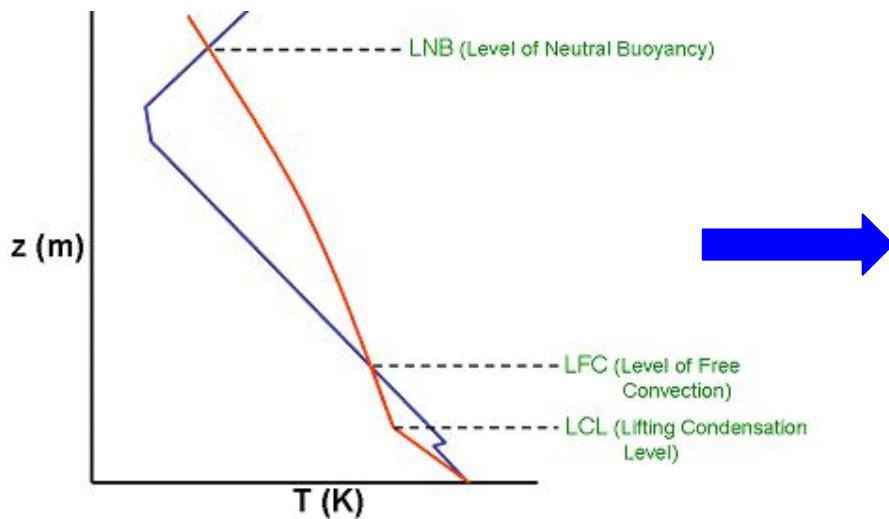
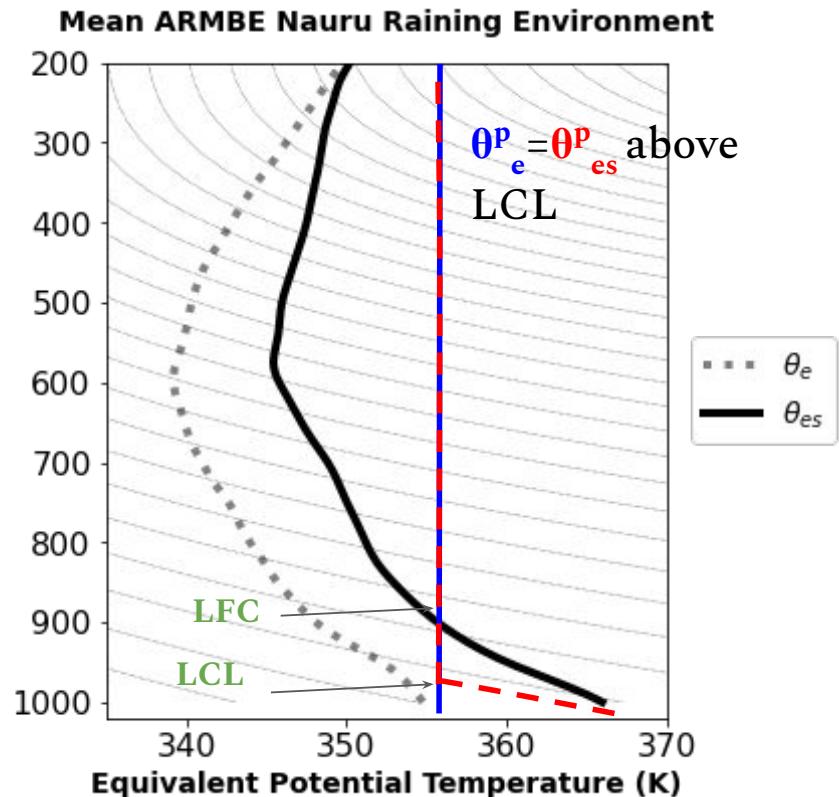
Higher crit values \Rightarrow insufficient sensitivity to moisture via entrainment (too much mixing)

- Observations: black
- Models: colored
- ERA5 reanalysis provides an additional baseline
- **Models perform better than CMIP5 generation (most models pickup early; Rushley et al. 2018)**



*Convective transition statistics for CMIP6 model cohort.
Emmenegger et al. 2022*

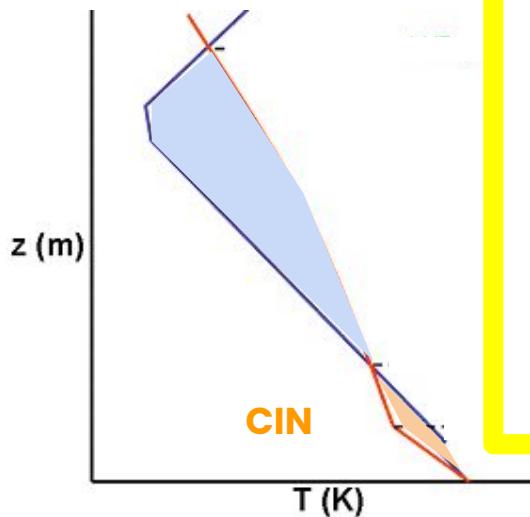
Bulk plume framework



Example of conditional instability from COPS
Summer School 2007

Average profiles during raining times

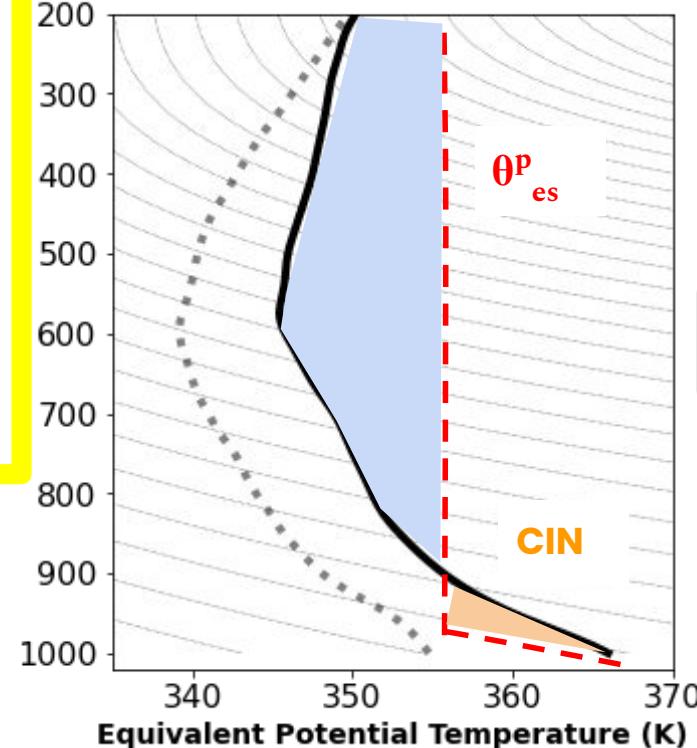
Bulk plume framework



BUOYANCY (B)

$$\frac{\delta T}{T} = \frac{\delta \theta_{es}}{\kappa \theta_{es}}$$

Mean ARMBE Nauru Raining Environment

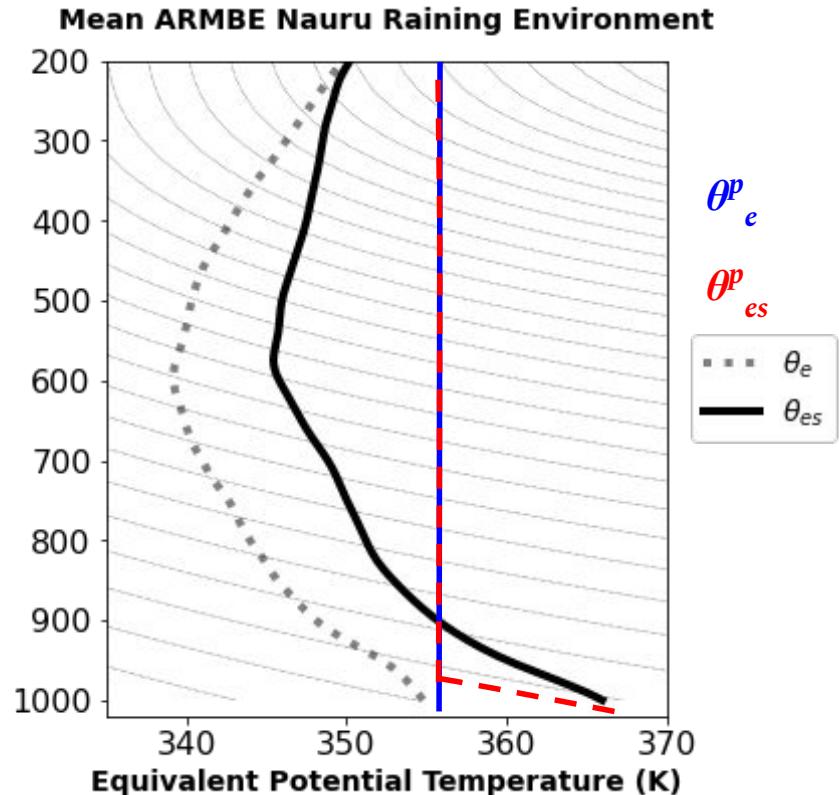


Example of conditional instability from COPS
Summer School 2007

Average profiles during raining times

Bulk plume framework

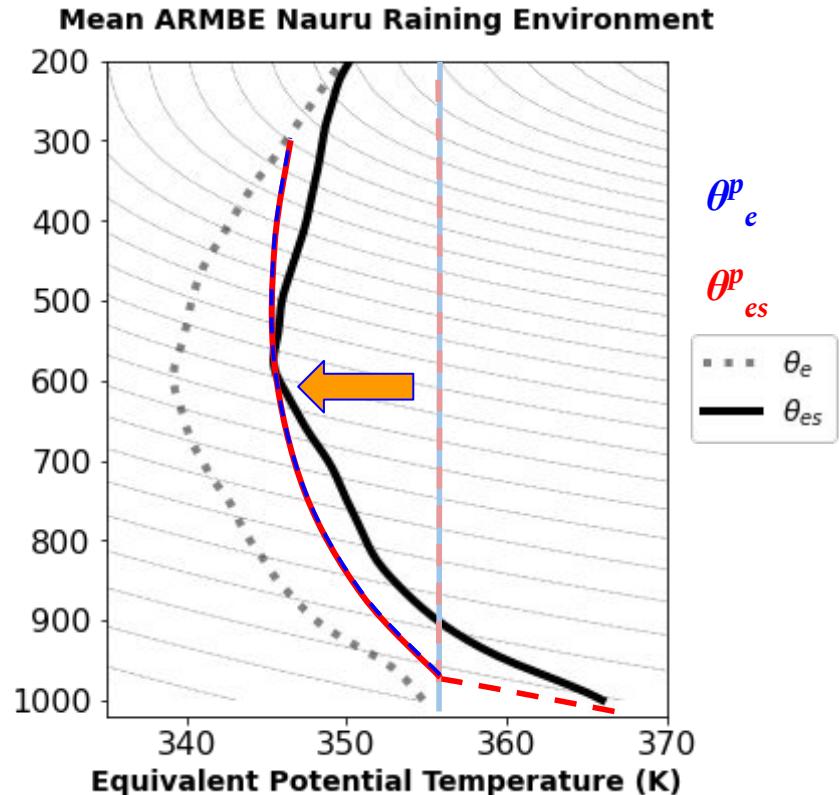
- Plume equivalent pot temp, θ_e^p , conserved



Average profiles during raining times

Bulk plume framework

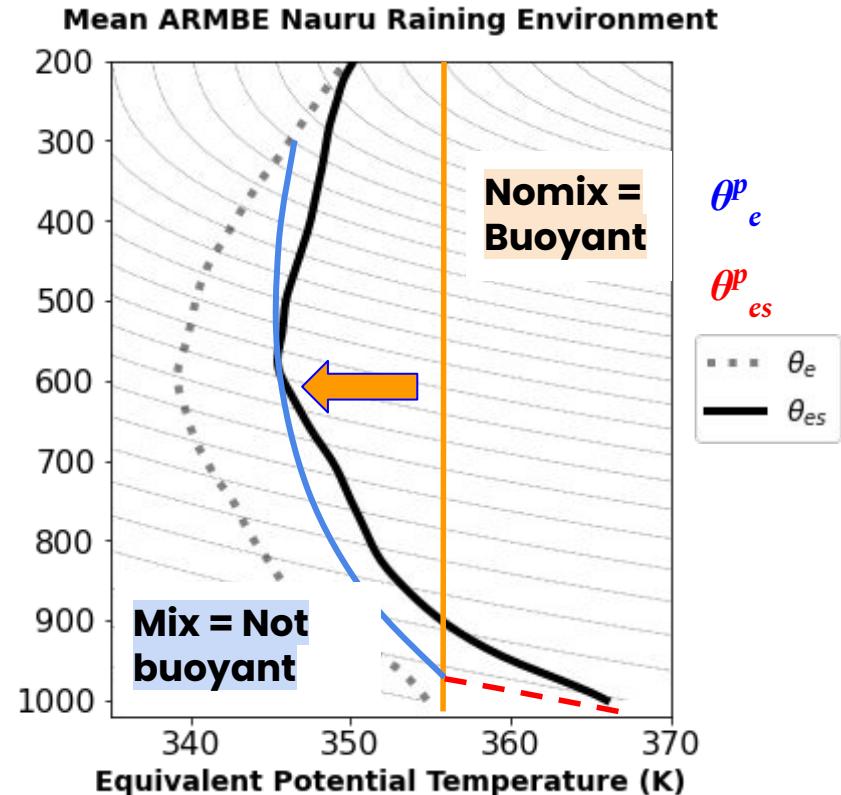
- Plume equivalent pot temp, θ_e^p , conserved
- Mixes with env θ_e (dilutes)



Average profiles during raining times

Bulk plume framework

- Plume equivalent pot temp, θ_e^p , conserved
- Mixes with env θ_e (dilutes)
- **Mixing has large impact on buoyancy of plumes**



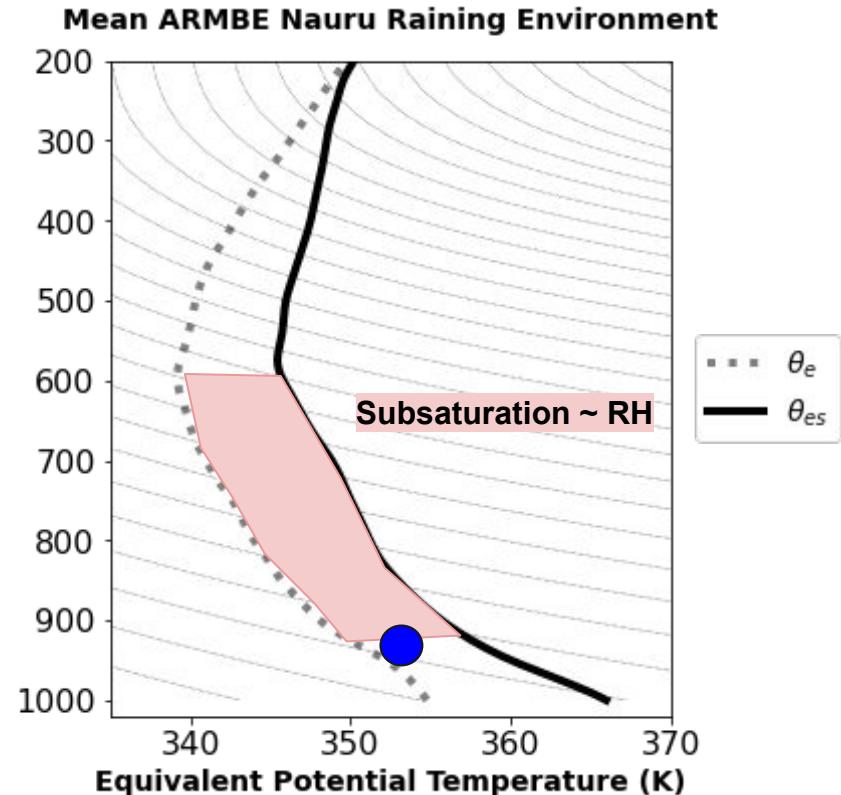
Average profiles during raining times

Simple two-layer approach

Plume eqn

$$\frac{d\theta_e^p}{dp} = \epsilon [\theta_e - \theta_e^p]$$

mixing rate



Average profiles during raining times

Simple two-layer approach

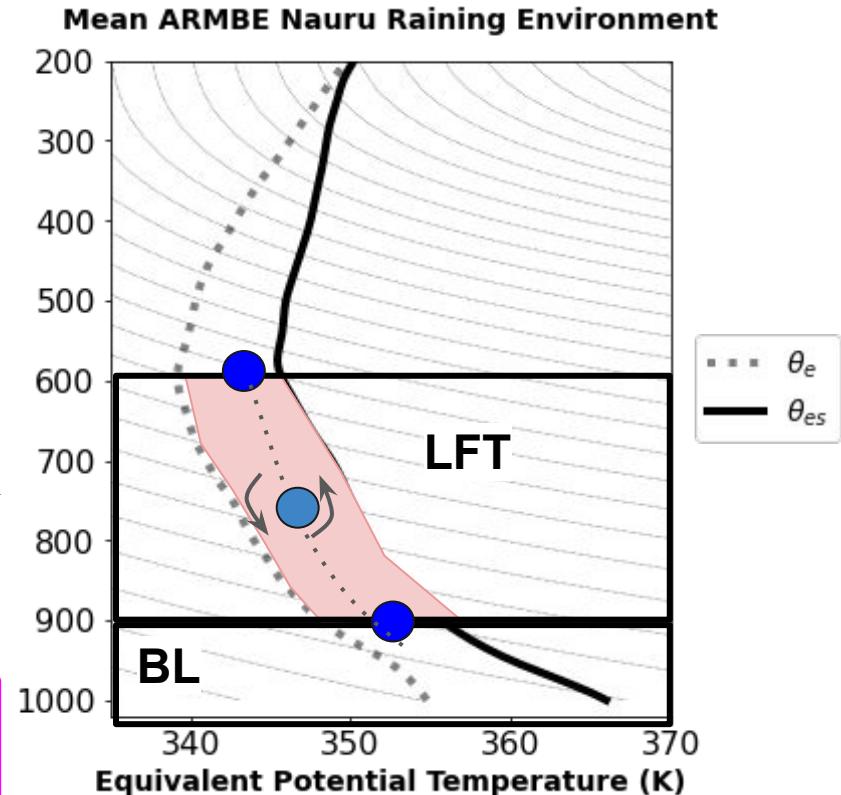
Plume eqn with linear mass flux

$$\frac{d\theta_e^p}{dp} = \epsilon [\theta_e - \theta_e^p]$$

↑
mixing rate

Casts plume as combination between BL and dilution (D) from LFT

$$\theta_e^p(LFT) \approx \theta_e^p(BL) + D \times \text{SUBSAT}(LFT)$$



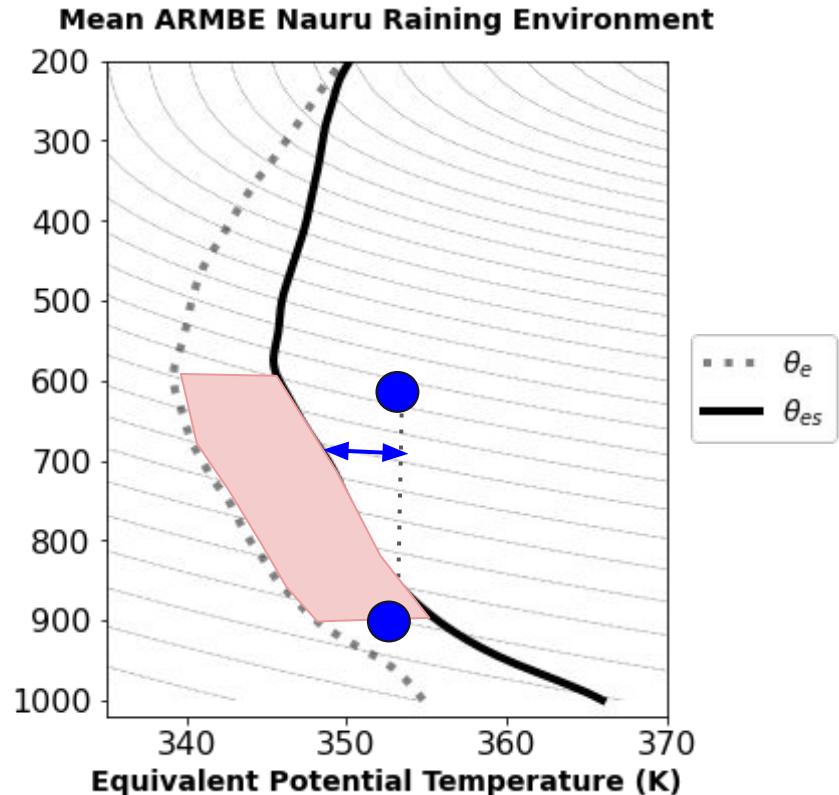
Average profiles during raining times

Simple two-layer approach

$$\begin{aligned}\theta_e^p(LFT) &\approx \theta_e^p(BL) + D \times \text{SUBSAT}(LFT) \\ \Rightarrow B \sim \delta\theta_{es} &\approx \theta_e^p(BL) - \theta_{es}(LFT) + D \times \text{SUBSAT}(LFT)\end{aligned}$$

Instability

Recast B as some weighting, w , between subsat and instability



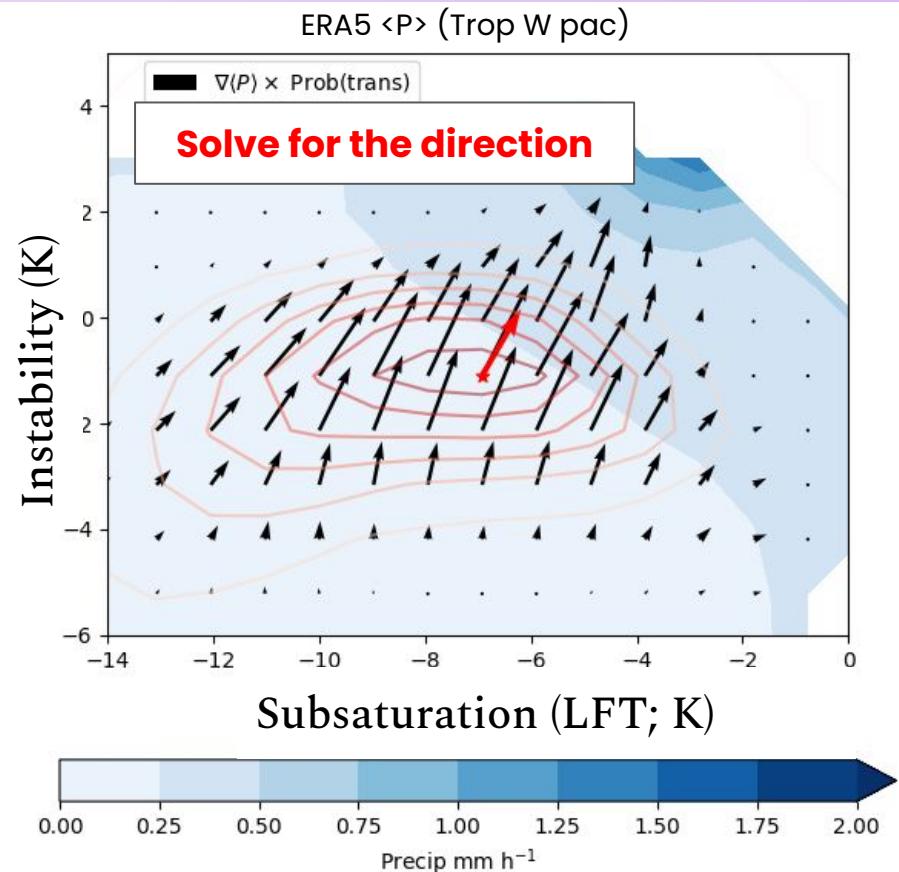
Average profiles during raining times

Find weighting

$$B \sim w \times \text{INSTABILITY} + (1-w) \times \text{SUBSAT(LFT)}$$

- use precipitation as proxy for B
- 2D conditional-avg precipitation shows sensitivity of B to instability or subsat
- Weight the gradient field (arrows) by probability of precip (red contours)

This is a 2D pickup!



Sensitivity Metric (supplemental)

$$S = \frac{\sum_i \sum_j D_{\vec{u}} \langle P \rangle_{ij} \times \text{Prob(trans)}_{ij}}{\sum_i \sum_j \|\nabla \langle P \rangle_{ij}\| \times \text{Prob(trans)}_{ij}}$$

S is a scoring function which assigns a probability-weighted value between 0 and 1 to correlation of single direction in $\langle P \rangle$

How well can the gradient of $\langle P \rangle$ be described by one direction?

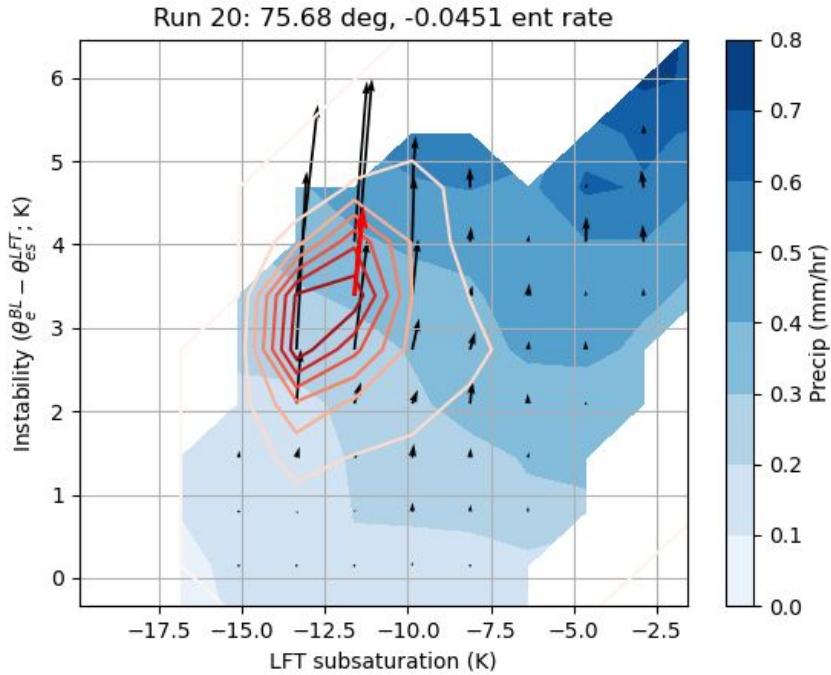
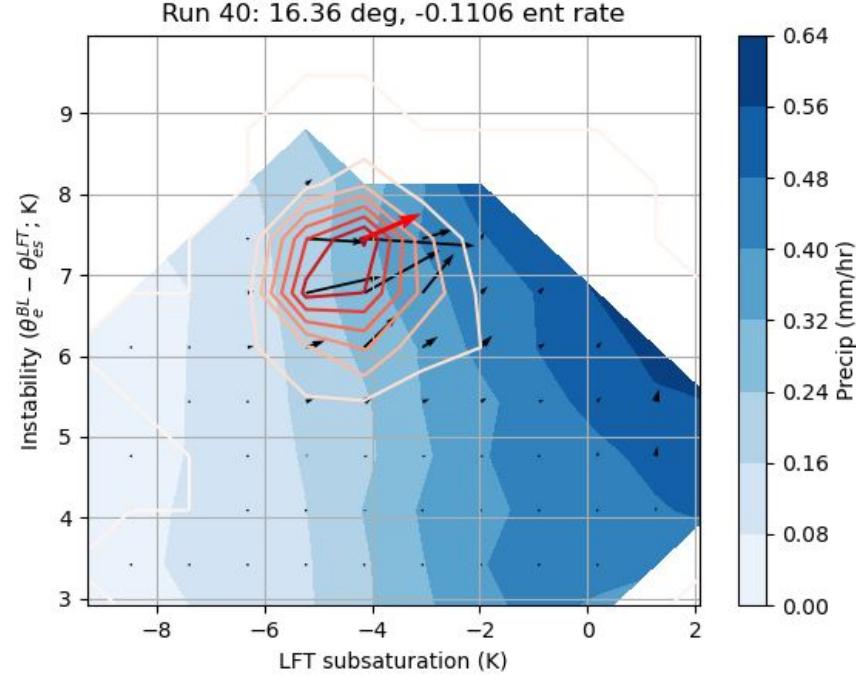
$$1 = \sum_i \sum_j \text{Prob(trans)}_{ij}$$

Weighting is a PDF that sums to 1

CAM6 PPE (Eidhammer et al. 2024)

- 262 CAM6 runs with perturbed parameters
- Params are **all** randomly perturbed for each run
- Monthly output for three years (climatological analysis)
- Analysis over west trop pac ocean (120E - 180 , -10 S - 10 N)

CAM6 PPE $\langle P \rangle$ sample



Each run gives a measure (angle) that measures sensitivity. Now we find leading params

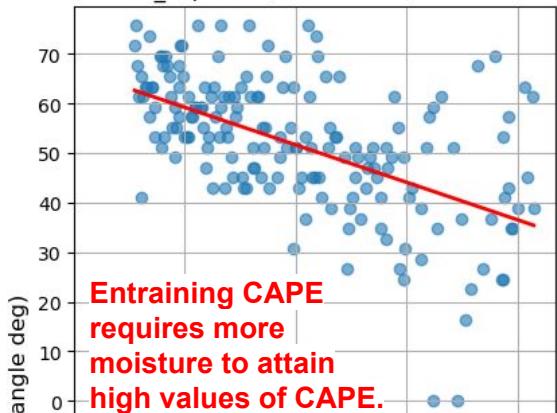
CAM6 PPE correlations

Parameter	corr(param, conv_sens)
zmconv_capelmt	0.518689
zmconv_dmpdz	0.386634
zmconv_ke	0.279404
zmconv_c0_ocn	0.177609
clubb_C2rt	0.175519
cldfrc_dp2	0.166473
clubb_C6thl	0.156406
clubb_C6rt	0.156406
zmconv_c0_Ind	0.127115
clubb_c_K10	0.114778
microp_aero_wsub_scale	0.105156
clubb_wpxp_L_thresh	0.094238
micro_mg_autocon_nd_exp	0.093259
micro_mg_autocon_fact	0.088624
micro_mg_iaccr_factor	0.082808

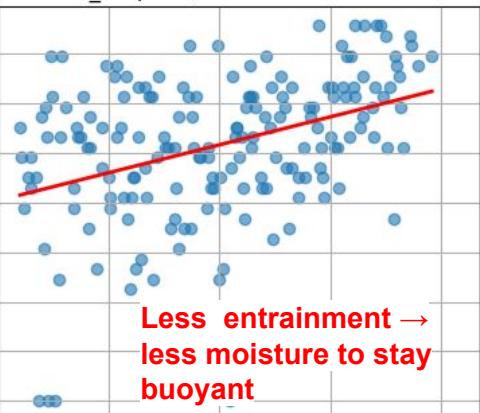
zmconv look to dominate variance of sensitivity

Instability
↑
↓
Subsat

zmconv_capelmt , m = -7.550 R² = 0.269



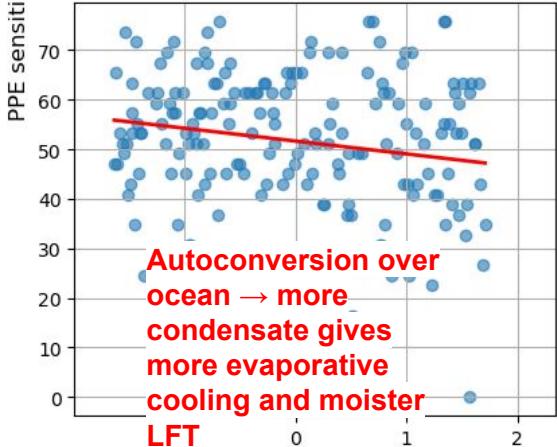
zmconv_dmpdz , m = 5.628 R² = 0.149



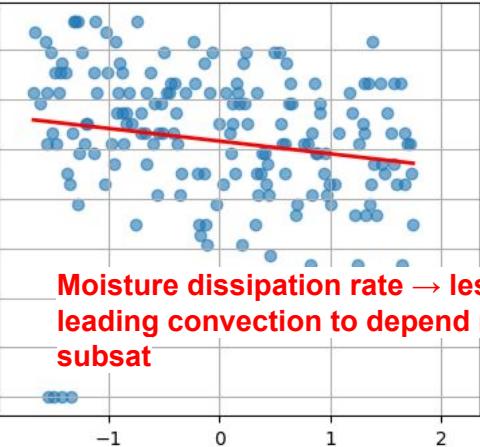
zmconv_ke , m = -4.067 R² = 0.078



zmconv_c0_ocn , m = -2.585 R² = 0.032

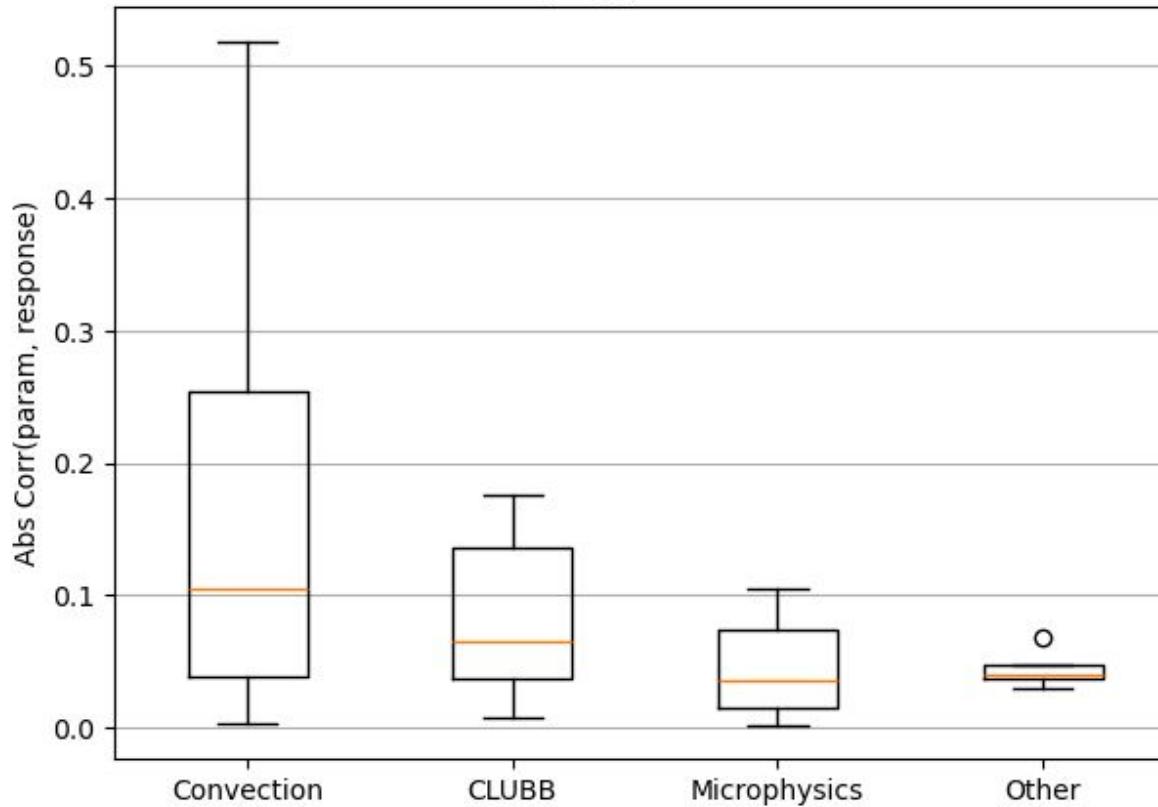


clubb_C2rt , m = -2.555 R² = 0.031



Parameter (std dev)

Sensitivity by parameter class



The climatological PPE response is dominated by convective parameters, with secondary contributions from shallow convection/turbulence (CLUBB) and weak marginal sensitivity to microphysics params

Future Work

- SCAM runs to zoom in on parameter classes
 - what params matter more for extremes?
 - develop time dependent measures such as convective onset
- What variability do we wish to capture and how do we build constraints for these params?

Thank You

temmen@ucar.edu