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Goals

. Develop suite of model diagnostics to improve
representation of tropical convection in CAMs

. Combine simple theory, models, and a variety of
observational products to build constraints



Outline

1. Transition to deep convection - the precip ‘pickup’
diagnostic
2. Bulk plume framework of buoyancy
a. importance of mixing
b. a new diagnostic for convective sensitivity
3. CAMG6 PPE experiments
a. importance of parameters for sensitivity



The ‘Pickup’

Robust relationship between CWV
and precip: conditional-average
precipitation rate picks up once a
critical CWYV value has been
reached
- ldentified on both short (minutes; Peters and
Neelin, 2006) and daily (Bretherton et al.,
2004) timescales
- Observed over tropical land and ocean (Kuo et

al. 2018, 2020; Schiro et al. 2017; Neelin et al.
2009)

Nauru In-Situ averaged annual over 3 hours

-

E = +++'
.%1_ D
o o

0 0. esssssstessssess®®

20 35 50 65
CWV (mm)

Conditional-average precipitation rate from
measurements taken at Nauru Island from Atmospheric
Radiation Measurement field campaign (ARM)



The ‘Pickup’

Nauru In-Situ averaged annual over 3 hours

- Pickup represents the
transition to deep
convection

- Linear fit provides
estimation of critical value
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Conditional-average precipitation rate from
measurements taken at Nauru Island from Atmospheric
Radiation Measurement field campaign (ARM)



Pickup is a measure of model sensitivity

Nauru annual Averaged over 3 hours
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Models are doing ok

Nauru annual Averaged over 3 hours

(a) (P)

Higher crit values = insufficient
sensitivity to moisture via
entrainment (too much mixing)

- Observations: black

- Models: colored

- ERADS reanalysis provides an
additional baseline

- Models perform better than
CMIPS5 generation (most
models pickup early; Rushley
et al. 2018)
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Bulk plume framework

Mean ARMBE Nauru Raining Environment
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Bulk plume fra
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Mean ARMBE Nauru Raining Environment
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Bulk plume framework

Mean ARMBE Nauru Raining Environment
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Bulk plume framework

Mean ARMBE Nauru Raining Environment
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Bulk plume framework

Mean ARMBE Nauru Raining Environment
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Simple two-layer approach

Mean ARMBE Nauru Raining Environment
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Simple two-layer approach

Mean ARMBE Nauru Raining Environment
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Simple two-layer approach

Mean ARMBE Nauru Raining Environment

0° (LFT) ~ ¢ (BL) + D xSUBSAT(LFT)
= B ~ 00 _~ 0" (BL) - 0_(LFT) + DxSUBSAT(LFT)

Instability

Recast B as some weighting, w, between subsat
and instability
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Find weighting

B ~ wxINSTABILITY + (1-w)xSUBSAT(LFT)

use precipitation as proxy for B

2D conditional-avg precipitation shows
sensitivity of B to instability or subsat
Weight the gradient field (arrows) by
probability of precip (red contours)

This is a 2D pickup!
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Sensitivity Metric (supplemental)

S is a scoring function which assigns
>_i 2. Da(P); x Prob(trans),, a probability-weighted value between

B >i 22 |IV(P);;]| x Prob(trans),; 0 and 1 to correlation of single
direction in <P>

S

How well can the gradient of <P> be described by one direction?

T= Z Z Prob(trans);;
i g

Weighting is a PDF that sums to 1
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CAMG6 PPE (Eidhammer et al. 2024)

- 262 CAMG6 runs with perturbed parameters

- Params are all randomly perturbed for each run

- Monthly output for three years (climatological
analysis)

- Analysis over west trop pac ocean (120E - 180,
-10 S - 10 N)



Instability (65L — OLT; K)

CAMG6 PPE <P> sample
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Each run gives a measure (angle) that measures sensitivity. Now we

find leading params
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CAM®6 PPE correlations

zmconv look to dominate
variance of sensitivity

Parameter corr(param, conv_sens)
zmconv_capelmt 0.518689
zmconv_dmpdz 0.386634
zmconv_ke 0.279404
zmconv_c0_ocn 0.177609
clubb_C2rt 0.175519
cldfrc_dp2 0.166473
clubb_Cothl 0.156406
clubb_Co6rt 0.156406
zmconv_c0_Ind 0.127115
clubb_c_K10 0.114778
microp_aero_wsub_scale 0.105156
clubb_wpxp L thresh 0.094238
micro_mg_autocon_nd_exp 0.093259
micro_mg_autocon_fact 0.088624
micro_mg_iaccr_factor 0.082808




zmconv_capelmt , m =-7.550 R? =0.269 zmconv_dmpdz , m =5.628 R? = 0.149 zmconv_ke , m =-4.067 R? =0.078
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Sensitivity by parameter class
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The climatological PPE response is dominated by convective parameters, with secondary
contributions from shallow convection/turbulence (CLUBB) and weak marginal sensitivity to
microphysics params



Future Work

e SCAM runs to zoom in on parameter classes
o what params matter more for extremes?
o develop time dependent measures such as convective onset
e What variability do we wish to capture and how do we build
constraints for these params?
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