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Outlines
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1.  Parameter uncertainty: What it is, why it 
exists, and why it limits model skill

2.  Motivation: The role of parametric 
uncertainty, alongside structural 
uncertainty, in climate models

3.  Unique Part of Our Effort: SCAM-based 
perfect-model framework for systematic, 
probabilistic calibration

4.  Key results: Identifiability, equifinality, and 
robustness of Bayesian calibration

5.  Summary: Implications for efficient and 
reliable GCM tuning
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GCM Parametrization

Figure: Microphysics
Morrison, H., van Lier‐Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., Hoose, C., ... & Xue, L. (2020). Confronting the challenge of modeling cloud and precipitation microphysics. Journal 
of advances in modeling earth systems, 12(8), e2019MS001689. 

• Computational Constraints

Represent through parameterizations:
1. Microphysics
2. Turbulence
3. Convection 
4. Aerosols
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Parameterization Uncertainty

Type 1: Structural

Different parameterization 
schemes yield different 
representations of sub-scale 
processes 

Type 2: Parametric

Uncertainty in the values 
assigned to the model 
parameters 

Cloud Feedbacks

*M. L. Duffy, B. Medeiros, A. Gettelman, and T. Eidhammer, “Perturbing Parameters to Understand Cloud Contributions to Climtae Change,” J. Clim., vol. 37, no. 1, pp. 213–227, Dec. 2023, doi: 
10.1175/JCLI-D-23-0250.1 4
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Recent Calibration Efforts
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1. Use of Single Column Atmospheric Model 
(SCAM)
• Column of CAM6 

2. Perfect model framework 
• SCAM generated Intensive Observation 

Period (IOP) - 'synthetic' (e.g., cloud 
profile)

3. Traditional Calibration vs Probabilistic 
Calibration
• RMSE based observation fitting
• Gaussian Process (GP) enabled 

Hamiltonian Monte Carlo (HMC) 
parameter calibration.
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Unique Part of Our Effort

*Watson-Parris, D., Williams, A., Deaconu, L., & Stier, P. (2021). Model calibration using ESEm v1. 1.0–an open, scalable Earth system emulator. Geoscientific Model Development, 14(12), 
7659-7672.
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Traditional Calibration: Vertical Cloud Fraction
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(synthetic observation)

1. The best Case and 
synthetic observation 
Closely align (RMSE: 
0.01)

2. Therefore, the parameter 
values involved in these 
best cases should be 
close to the parameter 
value of synthetic 
observation?
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Traditional Calibration: Normalized Parameter Error
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1. The parameter set 
values associated 
with these 
best-match profiles 
differ substantially

Parameter Name
(Micro., Aero., 

Conv.)

True
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Traditional Calibration: Normalized Parameter Error

1. The parameter set values 
associated with these 
best-match profiles differ 
substantially

2. In each case Random 
parameters are retrieved 
(equifinality).

3. This result highlights the 
ill-posed nature of the 
inverse problem and 
suggests that additional 
constraints, process-aware 
metrics, or probabilistic 
approach may be required 
to improve parameter 
identifiability.

True True

True True
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HMC Probabilistic Calibration: Normalized Posterior Distribution

1. HMC constrains key parameters: Posterior distributions identify a small subset of 
parameters.

Cloud 
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HMC Probabilistic Calibration: Normalized Posterior Distribution

1. HMC constrains key parameters: 
Posterior distributions identify a small 
subset of parameters.

2. Consistency across variables: 
Same parameters are constrained for 
LWP (TGCLDLWP), relative humidity 
(RELHUM), and residual energy 
balance (RESTOM).

3. Reason: sensitivity matters: 
Constrained parameters are the 
most sensitive; insensitive 
parameters remain unconstrained, 
as expected.

4. Robust across ensembles (100 & 
500 PPE) unlike typical 
RMSE-based calibration which often 
selects random parameters.

500PPE
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Summary

1. Traditional observation matching fails to retrieve 'true' parameters: Even in a 
perfect-model (synthetic observation) setup, best-match or RMSE-based tuning cannot 
reliably recover true parameter values due to equifinality and compensating errors.

2. Probabilistic calibration is robust and informative: A Bayesian GP–HMC framework 
successfully identifies sensitive parameters and quantifies uncertainty through posterior 
distributions, providing physically meaningful constraints rather than arbitrary point estimates.

3. Consistency across variables and ensemble sizes: GP–HMC consistently recovers the 
same subset of identifiable parameters for all variables using both 500-member and 
100-member PPEs, in contrast to observation matching, which selects different parameters in 
each realization.

12

SCAM as an efficient training tool for GCMs
SCAM enables computationally efficient parameter identification and uncertainty quantification, 

serving as a powerful pre-conditioning step for full 3D climate model tuning and reducing 
expensive trial-and-error simulations.
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Thank 
You
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Interested in collaboration?
Please feel free to reach out: pappup2@illinois.edu

mailto:pappup2@illinois.edu
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Motivation: Recent Calibration Efforts
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Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 128-139.

Structure of a GCM 

Single Column 
Model
(SCM)

Structure of a SCM 

15



/13

CAM-- 10 hours using 3 j48 nodes

Why SCAM?

SCAM-- 57 sec using 2 j48 nodes

16
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LHS
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Variables Name (Unit) ARM IOPs Observation Sources

Temperature (K) SGP, TWP, NSA, etc MODIS, MERRA-2

Relative Humidity (-) SGP, TWP, NSA, etc MERRA-2

Cloud Fraction (-) SGP, TWP, NSA, etc MODIS, CALIPSO, CERES

Cloud Liquid (g/kg) SGP, TWP, NSA, etc MODIS, CALIPSO, CloudSat, GPM

Cloud Ice (g/kg) - MODIS, CALIPSO, CloudSat

Liquid Water Path (g/kg) SGP, TWP, NSA, etc MODIS, CloudSat

Precipitable Water (mm) SGP, TWP, NSA, etc MODIS, CERES, CloudSat, GPM

Short Wave Cloud Radiative Effect (W/m2) SGP, TWP, NSA, etc MODIS, CERES

Long Wave Cloud Radiative Effect (W/m2) SGP, TWP, NSA, etc MODIS, CERES

Surface Latent Heat Flux (W/m2) SGP, TWP, NSA, etc CERES, MERRA-2

Deep Convection Mass Flux (kg/kg/s) - CERES, GPM, MERRA-2

SCM Variables & Observation 
Sources
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Gaussian Process Emulator
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Prediction,
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Results: Validation of GP

CLOUD FractionTemperature
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Results: Observation Requirement
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100PPE
Probabilistic Calibration: Normalized Posterior Distribution

1. HMC constrains key parameters: 
Posterior distributions consistently 
identify a small subset of parameters.

2. Consistency across variables: 
Same parameters are constrained for 
LWP (TGCLDLWP), relative humidity 
(RELHUM), and residual energy 
balance (RESTOM).

3. Reason: sensitivity matters: 
Constrained parameters are the 
most sensitive; insensitive 
parameters remain unconstrained, 
as expected.

4. Robust across ensembles (100 & 
500 PPE) unlike typical 
RMSE-based calibration which often 
selects random parameters.


