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reliable GCM tuning

2/13



GCM Parametrization ILLINOIS

o sezion & 50 Represent through parameterizations:
# Aggregation

o*o®| 1. Microphysics
o

« Secondary ice

A QZ %o CYRIBESHonal Constraints

\~~~ec 3. Convection

Melting

®_/
® Shedding 4 . Ae rOSO I S

Entrainmentv e

CCN/INP .

Figure: Microphysics

3/13



Parameterization Uncertainty LiLled

Cloud Feedbacks

Type 1: StrUCturaI High-Cloud Altitude - \(/:szip
Different parameterization T
SChemeS yleld dlﬁerent Tropical Marine Low-Cloud - . m:.:; «+  CESM2 (CMIP)
. s CESM2 (AMIP)
representations of sub-scale Topical vl Coud Area| s oy i—
Processes
Land Cloud Amount- ot
Middle Latitude Marine Low-Cloud Amount 0 600 oBA
Type 2: Parametric
U nCertal n-ty In -the Val ues High Latitude Low-Cloud Optical Depth - mew
aSSIQned tO the mOdel Implied Unassessed Cloud Feedbacks - o .;....
parameters ,
Total Cloud Feedback ° °©0 00 -

-0.5 0.0 0.5 1.0 1.5

*M. L. Duffy, B. Medeiros, A. Gettelman, and T. Eidhammer, “Perturbing Parameters to Understand Cloud Contributions to Climtae Change,” J. Clim., vol. 37, no. 1, pp. 213-227, Dec. 2023, doi:
10.1175/JCLI-D-23-0250.1 4/13



1 ILLINOIS

URBANA-CHAMPAIGN

Recent Calibration Efforts
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Unique Part of Our Effort

1. Use of Single Column Atmospheric Model

(SCAM) Microphysics Aerosol Convection

e Column of CAM6 (11) 9) (11)

LHS
2. Perfect model framework ~ 5 —

e SCAM generated Intensive Observation 11?‘{ PP;{% ?;’On}’PE
Period (|OP) _ 'synthetic' (e_g_, cloud (Prior Distribution)
profile) TET

(SGP)
3. Traditional Calibration vs Probabillistic
Calibration Gaussian Process Emulation
e RMSE based observation fitting

. Posterior/Updated Parameter Distribution
® GaUSS|an PrOCeSS (G P) enabled (Hamﬂtonian Monte Carlo)

Hamiltonian Monte Carlo (HMC)
parameter calibration.

*Watson-Parris, D., Williams, A., Deaconu, L., & Stier, P. (2021). Model calibration using ESEm v1. 1.0—an open, scalable Earth system emulator. Geoscientific Model Development, 14(12),
7659-7672.

6/13



Pressure (hPa)

Traditional Calibration: Vertical Cloud Fraction

200 -

400 A

600 -

800 -

1000 A

p—
—
Sr—  —
_ —
-—

SCAM Ensemble (500) Spread

Emulator Ensemble (10k, trained on 500-member SCAM) Spread
AVl DeTagu

—— SCAM (synthetic observation)

— = SCAM Best (500): Case 59, RMSE: 0.01

— Emul Best (10k trained on 500-member SCAM): Case 1035, RMSE: 0.01

| I | | I |

0.0 0.1 0.2 0.3 0.4 0.5
CLOUD

UNIVERSITY OF

ILLINOIS

AAAAAA ~-CHAMPAIGN

The best Case and
synthetic observation
Closely align (RMSE:
0.01)

Therefore, the parameter
values involved in these
best cases should be
close to the parameter
value of synthetic
observation?
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Traditional Calibration: Normalized Parameter Error |
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ration: Normalized Parameter Error

Emulation

Traditional Cali

SCAM

MIinRMSE TGCLDLWP:3678th
MinRMSE Combined:3739th

. True

@ MinRMSE Cloud:1035th

(a) @ Te

MinRMSE TGCLDLWP:165th (b)
@ MinRMSE Cloud:59th

MinRMSE Combined:304th

00PPE

Parameter Name

5

100PPE

Parameter Name

micro_mg_autocon_fact
sol _factb interstitial
microp_aero_wsub_min
zmconv_capelmt]
microp_aero_npccn_scale
zmconv_ke Ind
micro_mg_dcs|
micro_mg_iaccr_factor
zmconv_dmpdz
micro_mg_accre_enhan_fact
zmconv_c0_ocn
micro_mg_max_nicons|
micro_mg_effi_factor
dust_emis_fact
microp_aero_wsubi_min
zmconv_momcd
sol_factic_interstitial
zmconv_c0 Ind

cldfrc dp2

zmconv_ke
micro_mg_autocon_nd_exp
micro_mg_vtrmi_factor
micro_mg_homog_size
cldfrc_dpl
zmconv_tiedke_add
microp_aero_wsub scale
micro_mg_autocon_lwp_exp
microp_aero_wsubi_scale
seasalt_emis_scale
micro_mg_berg_eff facton
zmconv_num_cin

‘_

Paqg

(¢)

@ T

@ MinRMSE Cloud:49th

MinRMSE TGCLDLWP:31st
MinRMSE Combined:11th

(d) @ T

@ MinRMSE Cloud:7492nd

MIinRMSE TGCLDLWP:8160th
MinRMSE Combined:9315th

micro_mg_autocon_fact
sol_factb_interstitial
microp_aero_wsub_min
zmconv_capelmt
microp_aero_npccn_scale
zmconv_ke Ind
micro_mg_dcs
micro_mg_iaccr_factor
zmconv_dmpdz
micro_mg_accre_enhan_fact
zmconv_c0_ocn
micro_mg_max_nicons
micro_mg_effi_factor
dust_emis_fact]
microp_aero_wsubi_min
zmconv_momcd
sol_factic_interstitial
zmconv_c0_Ind

cldfrc_dp2

zmconv_ke
micro_mg_autocon_nd_exp
micro_mg_vtrmi_factor
micro_mg_homog_size
cldfrc_dpl

zmconv _tiedke add
microp_aero_wsub scale|
micro_mg_autocon_Iwp_exp
microp_aero_wsubi_scale
seasalt emis scale
micro_mg_berg_eff factor
zmconv_num_cin

0.2

0.4

Normalized RMSE:

0.6 0.8 1.0

P —Pscam \2
(T)

0.2 0.4

Normalized RMSE:

0.6 0.8

P —Pscamy2
(T)

1.0

1.

ND

The parameter set values
associated with these
best-match profiles differ
substantially

In each case Random
parameters are retrieved
(equifinality).

This result highlights the
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Posterior distributions identify a small subset of

HMC constrains key parameters

parameters.
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HMC Probabilistic Calibration: Normalized Posterior Distribution

edian 0%
5905)'?'5 ERRITT: — EINELT: 1. HMC c.:ons.tra.ins _key parameters:
el T [E 11 E E] | éﬁ = tE T 4117 11 Posterior distributions identify a small
;Z;i I 3 I~ ! : . = & mil | i] | l [T subset of parameters.
§§ o L o [ 01 "ERRER, uelk T T LT ? % '1112. Consistency across variables:
e - T "1~ Rl - T - Same parameters are constrained for
gg =R T ITT] E? THHT EE T ? - fg% 31T Lf‘ LWP (TGCLDLWP), relative humidity
T SRS r-_ .- 1l1z.1--- (RELHUM), and residual energy
- g % T CEAER ey ?U U@j“ﬂ @T balance (RESTOM).
= - p L1y 7. 11 z | 1/3. Reason: sensitivity matters:
E BE. - - - - - - 2 a2 :aace===2== Constrained parameters are the
“EY -z 2 c s === ::2:2::2:::zs:2::=:2:z5::5:z: mMmostsensitive; insensitive
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ST oad PR LER nigEdcorEfiateig it RMSE-based calibration which often
R R . 5 selects random parameters.
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Summary

1. Traditional observation matching fails to retrieve 'true' parameters: Even in a

perfect-model (synthetic observation) setup, best-match or RMSE-based tuning cannot
reliably recover true parameter values due to equifinality and compensating errors.

2. Probabilistic calibration is robust and informative: A Bayesian GP-HMC framework
successfully identifies sensitive parameters and quantifies uncertainty through posterior
distributions, providing physically meaningful constraints rather than arbitrary point estimates.

3. Consistency across variables and ensemble sizes: GP-HMC consistently recovers the
same subset of identifiable parameters for all variables using both 500-member and

100-member PPEs, in contrast to observation matching, which selects different parameters in
each realization.

SCAM as an efficient training tool for GCMs
SCAM enables computationally efficient parameter identification and uncertainty quantification,
serving as a powerful pre-conditioning step for full 3D climate model tuning and reducing
expensive trial-and-error simulations.
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Interested in collaboration?
Please feel free to reach out: pappup2@illinois.edu

Thank
You
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Motivation: Recent Calibration Efforts

About = News = Research = LEAP Pangeo

L E /\ p Education ~ Broadening Participation
Knowledge Transfer Events = Internal « Enbacriba

Support LEAP

| earning the Earth with Artificial Intelligence and Physics
(LEAP) is an NSF Science Technology Center (STC) launched
in 20217.

Research Focus

LEAP will focus on hybridizing ML by integrating physical knowledge for implementation with the open-source Community Earth System Model
(CESM) by:

1. Reducing the existing model structural errors related to the lack of comprehension of the process at play (e.g., clouds + microphysics);

2. Optimally estimating the model parameters using a Bayesian approach; and

. Developing new observational products which will be used to evaluate the M skill.

*https://leap.columbia.edu/research-home/ —
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Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 128-139.
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Temperature (K)

Why SCAM?

Temperature Time Series at (36.6°N, 262.5°E)
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Mean at (36.6°N, 262.5°E)
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Physics Scheme Parameter Name Description Default Max Min  Unit

Microphysics (11) micro.mg accre_enhan fact Accretion enhancing factor 1.0 10.0 0.1
micro_mg_autocon _fact Autoconversion factor 0.01 0.2 0.005
micro_mg_autocon_lwp_exp LWP exponent 2.47 3.30 2.1
micro_mg_autocon nd_exp  Autoconversion exponent -1.1 -0.8 -2.0
micro_mg_berg_eff factor Bergeron efficiency factor 1.0 1.0 0.1
micro_mg_dcs Autoconversion size threshold ice—snow 500e-6  1000e-6 50e-6 m
micro_mg_effi_factor Scale effective radius for optics calculation 1.0 2.0 0.1
micro_mg_homog_size Homogeneous freezing ice particle size 25e-6 200e-6  10e-6 m
micro_mg_iaccr_factor Scaling ice and snow accretion 1.0 1.0 0.2
micro_mg_max_nicons Maximum allowed ice number concentration 100e6 10000e6  leb5 kgt
micro_mg_vtrmi_factor Ice fall speed scaling 1.0 5.0 0.2 ms!

Aerosol (9) microp_aero_npccn_scale Scale activated liquid number 1.0 3.0 0.33 ;’5
microp_aero_wsub_min Min subgrid velocity for liquid activation 0.2 0.5 0 ms~! é L0
microp_aero_wsub_scale Subgrid velocity for liquid activation scaling 1.0 5.0 0.1 o g °-83§’
microp_aero_wsubi_min Min subgrid velocity for ice activation 0.001 0.2 0 ms ! B g" 0§
microp_aero_wsubi_scale Subgrid velocity for ice activation scaling 1.0 5.0 0.1 o2 § °-4§
dust_emis_fact Dust emission scaling factor 0.7 1.0 0.1 0.0 e22
seasalt_emis_scale Sea salt emission scaling factor 1.0 2.5 0.5 >0
sol_factb_interstitial Below-cloud scavenging of interstitial modal aerosols 0.1 1.0 0.1
sol_factic_interstitial In-cloud scavenging of interstitial modal aerosols 0.4 1.0 0.1

Convection (11)  cldfrc_dpl Parameter for deep convection cloud fraction 0.1 0.25 0.05
cldfrc_dp2 Parameter for deep convection cloud fraction 500 1000 100.0
zmconv_c(0_Ind Convective autoconversion over land 0.0075 0.1 0.002 m™!
zmconv_c(_ocn Convective autoconversion over ocean 0.3 0.1 0.02 m™!
zmconv_capelmt Triggering threshold for ZM convection 70 350 35.0 Jkg!
zmconv_dmpdz Entrainment parameter -1.0e-3 -2.0e-4 -2e-3 m! :
zmconv _ke Convective evaporation efficiency 95.0e-6 1.0e-5 1.0e-6 (kgm2s71)0-9s~1
zmconv_ke_Ind Convective evaporation efficiency over land 1.0e-6 1.0e-5 (kgm 25 1)0-5~1

Efficiency of pressure term in ZM downdraft CMT 0.7 1.0
Allowed number of negative buoyancy crossings 1.0 5.0
Convective parcel temperature perturbation 0.5 2.0 K

zmconv_momed
Zmconv_num_cin
zmconv_tiedke_add




SCM Variables & Observaton = SR NOIS

Sources
Variables Name (Unit) ARM IOPs Observation Sources
Temperature (K) SGP, TWP, NSA, etc MODIS, MERRA-2
Relative Humidity (-) SGP, TWP, NSA, etc MERRA-2
Cloud Fraction (-) SGP, TWP, NSA, etc MODIS, CALIPSO, CERES
Cloud Liquid (g/kg) SGP, TWP, NSA, etc MODIS, CALIPSO, CloudSat, GPM
Cloud Ice (g/kg) - MODIS, CALIPSO, CloudSat
Liquid Water Path (g/kg) SGP, TWP, NSA, etc MODIS, CloudSat
Precipitable Water (mm) SGP, TWP, NSA, etc MODIS, CERES, CloudSat, GPM
Short Wave Cloud Radiative Effect (W/m2) SGP, TWP, NSA, etc MODIS, CERES
Long Wave Cloud Radiative Effect (W/m2) SGP, TWP, NSA, etc MODIS, CERES
Surface Latent Heat Flux (W/m2) SGP, TWP, NSA, etc CERES, MERRA-2
Deep Convection Mass Flux (kg/kg/s) - CERES, GPM, MERRA-2
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Gaussian Process Emulator

A Gaussian Process is a non-parametric method that defines a distribution over functions. In the
context of emulation, we model a function f (8) using a GP:

f(AY = GP(m(AY. k(A .
K(@6,8") = a’exp(—;(e W ACE

Prediction, E[f(O)] = u' = K'(K + o2l

Here, @ is the input parameter vector represents microphysics, convection parameters and
aerosol parameters..

m(60) is the mean function

K(6,8") is the covariant function or kernel and K' is the covariance between training and test
points and K is the covariance between training points only.
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Markov Chain Monte Carlo Hamiltonian Monte-Carlo (HMC)
2

Given the joint probability distribution described by Eq. 2 and an initial choice of para-
meters #’ and (emulated) output Y, the acceptance probability » of a new set of para-

1 < zObS _ Ai(a)
log Z£(0) = — 5 Z >
i=1

O meters (0) is given by:
p(Y°|Y')p(¢'16)p(¢') (4)
-
p(Y'Y)p(6]6")p(6)
Lo 0 .
— The esem.sampler.MCMCSampler class uses the TensorFlow-probability implementa-
t 1 K Z1 Accept () | = Z4 tion of Hamiltonian Monte-Carlo (HMC) which uses the gradient information automati-
e cally calculated by TensorFlow to inform the proposed new parameters 6. For simplici-
t Z2of Accept 0, = Z, L Y : ey — N xkiahis
2 o 2 2 ty, we assume that the proposal distribution is symmetric: p (6'|/0) = p (6|6'), which is
. _ implemented as a zero log-acceptance correction in the initialisation of the TensorFlow
t % Z3 Reject @ 6
3 L - 3 - target distribution. The target log probability provided to the TensorFlow HMC algo-
0@
(9 7 Accept 04 = Za rithm is then:
ts L5 o Reject O = 0, log(r) = log(p (Y°|Y")) + log(p(¢')) — log(p (Y°|Y)) — log(p(6)) (5)
—e90 -
t6 VA 6\ Accept 6 6 — Zg Note, that for this implementation the distance metric p must be cast as a probability
-—+ . . . . A . .
distribution with values [0, 1]. We therefore assume that this discrepancy can be ap-
. . proximated as a normal distribution centred about zero, with standard deviation equal
L] Ll
o ® to the sum of the squares of the variances as described in Eq. 3:
2
1(¥0y 6)
1 2 ( ot ) (
L YY) ~ — gt g g g
n p ~ — s O cnpt+ oy +0p+ 0%
( | ) - VCYE ¥ R S
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Results: Validation of GP

Proportion of 'Bad' estimates : 9.11%
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Results: Observation Requirement
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1 o
QQPEE oL bhood 2 EAE 171 10 H 1. HMC constrains key parameters:
LT L TPE P E T |1 L -Onstrains Xey parar
ce g DT hg by PR DR U S Y Posterior distributions consistently
L & : | L L L I I g . [_] Lo 1 Tl I | l I 1E identify a small subset of parameters.
TS % N T I N N R S - ~2. Consistency across variables:
el g LT THILITHTHAY LT &] e | U I Same parameters are constrained for
dp TP 1. 9 Tp B 9d _YE /| LWP (TGCLDLWP), relative humidity
Y E gk : i L = 7 pTyTarh E || (RELHUM), and residual energy
BT sl e s e Dalance (RESTOM)
g LTIl iIlilTl L0 3 Reason: sensitivity matters:
Constrained parameters are the
most sensitive; insensitive
parameters remain unconstrained,
e L e i i i i il siasiiiisiii-s.ios .4 Robustacrossensembles (100 &
EEfSEEE s i fiEyEiie o yel 8 o7 500 PPE) unlike typical
ECLES e LES FEeERs TRt EgoErELf T RMSE-based calibration which often
- fg g T g2 2 - I selects random parameters.
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