
The pysces dynamical cores:
CAM-SE and HOMME in JAX

Owen Hughes, (University of Michigan)

Three scientific problems that motivate this work:

Less constrained
 model params

Model tuning

Three scientific problems that motivate this work:

Less constrained
 model params

Forecast model

Model tuning

Three scientific problems that motivate this work:

Less constrained
 model params

Forecast model

Model tuning

What's the optimal choice for parameters that we have more
freedom to change?

Three scientific problems that motivate this work:

Variational data assimilation:

Courtesy of: https://www.ecmwf.int/en/newsletter/175/earth-system-science/linearised-physics-heart-ecmwfs-4d-var

minimize
x ∈ model adjustment

Three scientific problems that motivate this work:

Variational data assimilation:

Courtesy of: https://www.ecmwf.int/en/newsletter/175/earth-system-science/linearised-physics-heart-ecmwfs-4d-var

minimize
x ∈ model adjustments

Requires:

Adjoint ("backwards mode") of forecast model

Three scientific problems that motivate this work:

Variational data assimilation:

Courtesy of: https://www.ecmwf.int/en/newsletter/175/earth-system-science/linearised-physics-heart-ecmwfs-4d-var

minimize
x ∈ model adjustments

Requires*:

Adjoint ("backwards mode") of forecast model

What's the optimal state that reconciles prediction and observation?

Three scientific problems that motivate this work:

Discrepancy function

Hybrid physics/ml
forecast operator

Atmosphere state
Neural network params

Hybrid physics/ML models:

Three scientific problems that motivate this work:

Discrepancy function

Hybrid physics/ml
forecast operator

Atmosphere state
Neural network params

Hybrid physics/ML models:

What's the optimal neural network for adjusting a physical model to fit "ground truth"

Optimization is a really powerful mathematical way
to phrase problems, and it shows up everywhere.

Fact:
You really should do optimization using a gradient of

your cost function if it's humanly feasible to do so.

Time n Time n+3

Time n Time n+3

Adjoint allows us to calculate good search direction to minimize/maximize a
cost function by efficiently calculating .

Adjoint:

● linearize your model
● take the transpose of the typical jacobian (tangent linear model)

● Use it for almost all optimization tasks.

JAX is a python library that automatically calculates these
differentials for Numpy operations on CPU/GPU/TPU:

jax.grad(C)(x_npk)

NeuralGCM: JAX dynamical core + ML physics

● Google reimplemented the IFS spectral model in JAX, and coupled it to a
column-wise deep neural network model.

● IFS model:
○ Quasi-uniform effective grid resolution. No grid refinement.
○ Pretty old school
○ STILL A GOOD DYNAMICAL CORE

pysces is a CPU/GPU automatically differentiable port of
CAM-SE and HOMME (sister dynamical core)

Source code

https://github.com/OkayHughes/pysces

pysces is a CPU/GPU automatically differentiable port of
CAM-SE and HOMME (sister dynamical core)

Source code Extensive unit tests
(nested, looks less exhaustive than it is)

https://github.com/OkayHughes/pysces

pysces is a CPU/GPU automatically differentiable port of
CAM-SE and HOMME (sister dynamical core)

Source code Extensive unit tests
(nested, looks less exhaustive than it is)

● Easy (ish) to install
○ I'll share a google colab notebook at the end of this presentation so you can

start playing with it today
○ Still not as user friendly as it needs to be.
○ missing important functionality that's still not tested well enough to release

(e.g. tracer advection)

https://github.com/OkayHughes/pysces

What does the model do right now?

● Support for CAM-SE dry mass coordinate (with variable Rgas thermo)
○ Temperature-based thermodynamic variable

● Support for HOMME moist mass coordinate (shallow hydrostatic)
○ Hamiltonian-based thermodynamic variable

● Support for variable-resolution grids
○ Tensor-hyperviscosity based on Guba et al. (2014)

● CAM-like substepping
● MPI-based parallelism

○ not differentiable
○ multiple-host capabilities untested, but should work VERY QUICKLY

● JAX sharding based parallelism
○ Differentiable
○ multiple-host capabilities are WIP
○ Exposes processor connectivity info to compiler through array dim.

■ Compiler may not presently exploit this, but this should be very possible.

Design priorities

● Model should be versatile, and still have value if JAX becomes unmaintained
○ We use JAX-numpy interoperability so the same code can be run with or without JAX installed

on your system.
○ An earlier version of the code showed that PyTorch could also be used for parallelism.

■ There are a number of reasons that isn't a priority
● Model should be able to be run easily, and scale to a modest number of

processors. This is not a replacement for CAM-SE, HOMME(XX)
● Untested code is unfinished code.
● People keep figuring out how to compile Numpy-style array operations.

○ If we phrase our performance-critical code that way, there will still be a way to make it fast in 5
years, and probably run it on whatever accelerator is fashionable.

The model works:

Topographic baroclinic wave (Hughes and Jablonowski, 2023).

Grid spacing vary from ne60 to ne15.

The model works:

Topographic baroclinic wave (Hughes and Jablonowski, 2023).

Grid spacing vary from ne60 to ne15.

You can try it out in a Colab
(online jupyter notebook)

Conclusions:

If you're interested in any of the three problems I mentioned at the start of this talk, the model
should be quite useful once I get tracer advection tested. Also, I've only partially tested that the
automatic gradients do what they're advertised to do (seem to be working on one GPU).

CAM-SE runs on GPUs. You could start porting an intermediate complexity CAM
configuration to python tomorrow.

I want to make this a community model. Right now, things will break. If you think the model will
be useful to you, try using it and then open issues on the repo:
https://github.com/OkayHughes/pysces.

https://github.com/OkayHughes/pysces

PLEASE: help me explore if this can be a community model
● If you fall into one of these three groups, please

consider filling out a google form
○ You want to be updated when this model hits v0.1.0, and

has basically all the functionality of a dynamical core
○ You want to provide input on where you should take the

model next. Should I focus on:
■ Non-hydrostatic capabilities?
■ Semi-lagrangian tracer advection?
■ Finite Volume physics grid (pg2 grids)
■ Standardized disk IO

○ You want to schedule a quick < 30 minute meeting to talk
about an idea that pysces might be useful for and would
like to talk through what you would need

● If you know someone who might like to use this
model,

Appreciation + gratitude

● I wrote and designed this codebase basically entirely myself, with a couple of
high-level (but rather life saving) suggestions from Dhamma Kimpara (NSF
NCAR).

● That said, writing this code would have been impossible without mentorship
from Drs. Oksana Guba and Mark Taylor (SNL), the masterminds behind the
adiabatic dynamics side of HOMME

● Dr. Peter Lauritzen (NSF NCAR) helped me quickly get up to speed on what
CAM modelers find valuable about CAM-SE, and how physics coupling
should work.

● Professor Christiane Jablonowski, who's still helping me find my niche in the
atmospheric modeling world.

Questions? Did I miss something crucial?

