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Introduction: The Radiation Belts

Outer Radiation Belt

Rotational : : :
Axis \ 3<L<7 The outer belt i1s highly dynamic,
precipitation Highly variable ~hours responding to solar wind fluctuations
< ~3 10s keV to multi-MeV and the resulting geomagnetic activity

electrons
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The RB structure results from acceleration,
transport and loss of electrons in the

magnetosphere, heavily dependent on
wave-particle interactions
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CORONAL MASS EJECTIONS
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The RBs are part of the near-Earth environment,

contributing to Space Weather

Motivation

» Precipitation of RB particles affects

lonospheric conductivity

* Energy input Into upper atmosphere
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Motivation

THERMOSPHERE

» Precipitation of RB particles affects
lonospheric conductivity

plasma sheet
radiation belts

L b el t * Energy mputmto.upper z_ﬂmosphere
fatitudes T ANSPORT st alters atmospheric chemistry

DRIVERS o %o :
o e geget e enhancing ozone loss

MESOSPHERE
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* [here Is no consensus on the RB
energy Input, especially the high-
energy tall

* NOx enhancement due to SEP,
GCRs, and auroral electrons is
underestimated
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Particle Precipitation:
Drivers, Properties, and Impacts

The RBs are part of the near-Earth environment, Y I

COntribUting to Space Weather :?q",cﬁ':ﬁ“tfi on Atmosphere, lonosphere,
Magnetosphere Coupling




Background Work: Inputs & Response

* lonization rates due to RB precipitation vastly differ across research groups, even if the same
exact data source (POES) and event (Mar-Apr 2010) are considered

 POES data is assumed to detect “precipitation” no matter the true precipitation intensity
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Background Work: Inputs & Response

» Collection of ~144 precipitation events (from single-pass ELFIN

o i _ 160 particle precipitation inputs
CubeSats), specifically at relativistic energies
ST - 140 f 0
« New ionization rate method: BERI (Boulder Electron Radiation £ 10"
to lonization) model [ Xu+2020]: 100 | 7 |
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Background Work: Inputs & Response

* NOx production is enhanced during RB electron precipitation, leading to some ozone depletion

longitude O°E, latitude 65°N WACCM simulations
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Background Work: Inputs & Response

* NOx production is enhanced during RB electron precipitation, leading to some ozone depletion

Change of NOx Change of O3
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Background Work: O3 Depletion Evidence

* NOx production is enhanced during RB electron precipitation, leading to some ozone depletion

Vertical O3 profiles

REP from POES observations
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Objectives

Key Science Questions*
<+ What is the realistic energy input from REP?
<+ What are the resulting effects?

*focus on relativistic electron precipitation (REP)

» Consider realistic precipitation regions rather than a “constant” drizzle of relativistic electrons
(which overestimates the energy input and may be realistic for sub-relativistic electrons only)

» Specifically target the atmospheric response to relativistic (~>700 keV) electrons rather than
sub-relativistic ones, to understand if these alone affect the response

» Consider the realistic local-time dependence of precipitation patches rather than assuming
they span all longitudes

» Quantify realistic O3 loss — affect radiative heating, atmospheric thermal structure, and in turn
zonal winds, wave propagation, circulation and strength of descent in polar winter



Electron Precipitation: LEO satellites

* POES/MetOp [2012—now]
* 2-SEeC
2 look directions
* >30, >100, >300, >700 keV electrons
* 10s—100s keV protons

e Collect relativistic electron precipitation
events (REP, >700 keV) into patches
(regions of precipitation)

lonization Rates: BERI
e Boulder Electron Radiation to lonization

model [Xu+2020]

e 33 keV — 33 MeV

Atmospheric Modeling: WACCM

* C

—SM 2.1

e Forced by ocean sea surface temperature
e Specified Dynamics + D ionization scheme
* 1°X1° resolution

Data & Methodology

" magnetopause
° (not to scale)

magnetic field ]ifi?-uf-

outer radiation belt

- Evaluate local&global response vs no-R

- Build a customized input file of realistic REP patc
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- Quantity key players in response (tlux, area, time, etc.)
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REP properties

Occurrence Rate
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A REP patch example: 2013-07-05 03:56 to 05:41 UT

Example of REP In the patch
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A REP patch example: lonization Rates

lonization rate from BERI vs CMIP6 recommendations
lonization 2013-07-05 | GM lat =~ 63.8°

lonization rate from BERI
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mesosphere, not covered by MEE
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lonization rates for July 2013 (custom input) vs CMIP6

Custom REP inputs: lonization rate from BERI CMIP6 Medium Electron Energy input from Fang+2010
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lonization rates for July 2013 (custom input) vs CMIP6

Custom REP inputs: lonization rate from BERI
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CMIP6 Medium Electron Energy input from Fang+2010
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lonization rates for July 2013 (custom input) vs CMIP6

Custom REP inputs _ y input from Fang+2010
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lonization rates for July 2013 (custom input)

GCR ionization forcing
-75 lat 0 lon

REP lonization Forcing
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Preliminary results: HOx & NOx Enhancement, O3 Loss

HOXx enhancement
Time: 2013-07-01 00:00

HOXx remains elevated
during polar night 03 reduction
Time: 2013-07-01 00:00
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Summary & Future Work

 Radiation Belt precipitation input is possibly underestimated, especially at relativistic energies

e Relativistic Electron Precipitation (REP) deposits energy in the mesosphere, with the primary
lonization peak at ~60km

* From a database of POES/MetOp observations of REP (2012—2023), we can identify REP
regions or “patches”

 We develop a custom input to WACCM to specifically study REP effects on the atmosphere
(NOx, HOx, O3)

e Simulations of WACCM to evaluate the REP effects on the atmosphere are ongoing:
* Are there any visible/impactful changes?
* Are the effects local or global, and sustained over time?

 What is the main REP characteristic (flux, regional extent, temporal duration, etc.) that
impacts the local/global effects the most?

Email me for feedback and collaborations!
luisacap @bu.edu
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