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CAMulator: & | Z 0GR
specific humidity

(lowest model level)

Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.


https://docs.google.com/file/d/1KATRrmdfU8HgLQfOwxFvlM4u3B5psz7d/preview
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CAMulator: Emulator of the Community Atmosphere Model @ ZNSAR

350x speed up over CAM6

PHYSICS CONSERVATION BLOCK

1) Non-negative Correction

2) Dry Mass Correction

3) Moisture Budget Correction
m 4)  Total Atmos. Energy Correction

OUTPUTS

[ Cross-embedding Layer

- Short/Long Transformer
- Upsampling Block

5 Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.



CAMulator:

Varkible Descripton Units _ Single LeveVLevels Variable Description Units  Single Level/Levels

Prognostic Variables (Input and Output) Prognostic Variables (Input and Output)

U Zonal Wind m/s 32 levels

s < U Zonal Wind m/s 32 levels
b Meridional, Wind mix Sdlevels \" Meridional Wind m/s 32 levels
T Temperature K 32 levels
Otot Specific Total Wat e 32 Jovel T Temperature K 32 levels
PSO SE:I cPro et ‘(; 8 Si e]veLs q Otot Specific Total Water ke/kg 32 levels
ace rressure a nge Leve PS Surface Pressure Pa Single Level
ERERLLT Near-Surface Air Temperature K Single Level TREFHT Near-Surface Air Temperature K Single Level
Dynamic Forcing Variables (Input Only) Diagnostic Variables (Output Only)
SOLIN Incoming Solar Radiation J/m?2 Single Level PRECT Precipitation Rate m Single Level
SST Sea Surface Temperature K Single Level CLDTOT Total Cloud Cover fraction  Single Level
Static Forcing Variables (Input Only) CLDHGH High Cloud Cover fraction  Single Level
: : : CLDLOW Low Cloud Cover fraction Single Level
Surface Geop. Normalized Surface Height m?s?  Single Level . . .
: : : : CLDMED Medium Cloud Cover fraction Single Level
Land-Sea Mask Land Mask L 1 le Level g
and-Sea Mas and Mask x Cosine Latitude  unitless Single Leve TAUX Zonal Wind Stress Ni?  SinglsiLevel
TAUY Meridional Wind Stress N/m?  Single Level
U10 10m Wind Speed m/s Single Level
QFLX Surface Moisture Flux m Single Level
FSNS Net Solar Flux at Surface J/m? Single Level
FLNS Net Longwave Flux at Surface J/m? Single Level
FSNT Net Solar Flux at TOA J/m? Single Level
Py FLNT Net Longwave Flux at TOA J/m? Single Level
Prog_nOStlc' I Lo &_ eliioll SHFLX Sensible Heat Flux J/m?  Single Level
Forcing Variables: input C A M u | a to r LHFLX Latent Heat Flux J/m?2 Single Level

Diagnostic: output

| Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.



I C AMulator: Emulator of the Community Atmosphere Model @ ‘ Z NSAR

What if we rolled it out for more than 200 years?

(k) H 2000 Climatological SST
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Column-integrated heat content in CAMulator to fixed year-2000 climatological SSTs

7 Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.



CAMulator: Emulator of the Community Atmosphere Model @ ZNSAR

What if we force it with observed SSTs?

210

(a) CAM and CAMulator 1979-2013 SST
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A 12-member CAMulator ensemble (teal) is compared to the CAM6 simulation (purple) using observed SSTs from 1979-2014.
CAMulator successfully captures the long-term warming trend and interannual variability.

Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.



CAMulator: i

ENSO Precip Response (8 strongest Nino-Nina):

CAMG6 DJF

DJF ENSO Precip: CAM (Nifio - Nifia) DJF ENSO Precip: CAMulator (Nifio - Nifia)
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Pattern Correlation: ~0.9

Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.
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CAMulator: Emulator of the Community Atmosphere Model @ 7

NCAR
UCAR

(@) PNA Regression: CAMulator [38.0%)] (€) NAO Regression: CAMulator [31.8%]
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Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.
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CAMulator: @

2 NCAR
UCAR

A\

<. READY

CAMulator v1
Training Data-AMIP

CAMulator v2
Training Data-Coupled

Chapman et al. 2025. “CAMulator: Fast Emulation of the Community Atmosphere Model.” arXiv [Physics.Ao-Ph]. arXiv. http://arxiv.org/abs/2504.06007.



XXXmulator:

&

NCAR
UCAR

CAMulator v1
Training Data-AMIP

CAMulator v2
Training Data-Coupled

subCESMulator

+ ocean & land



sUbCESMulator: v Emulator for $25 Prediction

PHYSICS CONSERVATION BLOCK
1)  Non-negative Correction

Sea Surface 2)  Dry Mass Correction

Temperature

3)  Moisture Budget Correction
4)  Total Atmos. Energy Correction

OUTPUTS

Soil Moisture
Surface Temp.

[ Cross-embedding Layer

- Short/Long Transformer

Data: CESM2 Coupled Runs (1980-2050) B ussampiing Biock
Training: 1980-2024
Validation: 2025-2030

13 Mayer et al. (in prep)
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subCESMulator: L Emulator for $2S Prediction

Sea Surface
Temperature

Soil Moisture

Surface Temp.

PHYSICS CONSERVATION BLOCK

1)  Non-negative Correction

2)  Dry Mass Correction

3)  Moisture Budget Correction

4)  Total Atmos. Energy Correction

) ) [ Cross-embedding Layer

- Short/Long Transformer

Data: CESM2 Coupled Runs (1980-2050) B ussampiing Biock
Training: 1980-2024
Validation: 2025-2030

OUTPUTS

\ Modified subCESMulator
Data: CESM2-LE
Training: 1990-2025 x 5 members = 175 years

(typical S2S models train on 1979-2025 = 46 years)

+ more land & ocean variables
Mayer et al. (in prep)
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NCAR
UCAR

CAMulator v1
Training Data-AMIP

CAMulator v2
Training Data-Coupled

subCESMulator

+ ocean & land



I <Mulator: ML Emulators to date

CAMulator v1 CAMulator v2
Training Data-AMIP Training Data-Coupled

WIP)

subCESMulator

+ ocean & land
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Al Weather Quest Submission

Kirsten J. Mayer, Katherine Dagon, William E. Chapman, Charlie Becker,
John Schreck, David John Gagne, Judith Berner, Abby Jaye, Sasha Glanville

Can we use a Al model trained on CESM for subseasonal forecasting?



18

A Weather
Quest
By S ECMWF

The Al Weather Quest, organised by the European Centre for
Medium-Range Weather Forecasts (ECMWF), is an ambitious
international competition designed to harness artificial
intelligence (Al) and machine learning (ML) in advancing sub-
seasonal weather forecasting. With 35+ international teams,
170+ participants, and 60+ Al/ML models, it is already
setting a new benchmark for sub-seasonal prediction. See
how they perform and add your forecasts to the challenge!

Loegel et al. 2025

Participants provide weekly, global
forecasts at a 1.5 degree resolution of
quintile probabilities for weekly-mean
(Days 19-25 and Days 26-32):

e Temperature
e Precipitation
e Sealevel pressure

Evaluated against initial ERAS release data
using ranked probability skill score (RPSS)
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INITIALIZATION

DYNAMICAL FORCING

We initialize with 11 perturbations of each 31 member of GEFS
initializations (341 members)

— Perturbation method based on CESM S2S hindcast method
(see Section 2.b of Richter et al. 2022)

SST and ICEFRAC are forcing variables in CAMulator, so we

persist their initial conditions throughout forecast

QUINTILES

CAMulator is trained on coupled runs, so we calculate
quintiles based on CESM training data (2000-2025)

Takes ~7 hrs
to submit
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CAMulator:

WEEK 3:

e All Variables

o 14th out of 20 teams

o  28th out of 36 models
e 2m Temperature

o  20th out of 22 teams

o  38th out of 40 models
e MSLP

o 17th out of 20 teams

o  34th out of 38 models
e Precipitation

o 16th out of 21 teams

o  33rd out of 40 models

é‘
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FengshunHybrid
MicroEnsemble o) NSFNCAR

MicroDuet

All Variables

7 8
Competition weeks

Dynamical_S2SDatabase ° Dynamical_S2SDatabase °

© EcMwF multimodel_mean LPM

subCESMulator
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CAMulator:

WEEK 4:

e All Variables

o 14th out of 20 teams

o  29th out of 37 models
e 2m Temperature

o  20th out of 22 teams

o  39th out of 41 models
e MSLP

o 17th out of 20 teams

o  34th out of 38 models
e Precipitation

o 16th out of 21 teams

o  33rd out of 40 models
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AIWQ Next Steps

Move from CAMulator to subCESMulator

Switch to Stochastic Decomposition Layers which has

ENSEMBLE GENERATION shown good spread-skill ratios through medium-range
forecasts in WxFormer (Schreck et al. 2025)

Explore skill of real-time forecasts beyond quintiles & identify
areas of improvement

EVALUATION




@28 U.S. DEPARTMENT
Y of ENERGY

Office of Science

ML S2S Hindcasts

Kirsten J. Mayer, Charlie Becker, Sasha Glanville, John Schreck, Judith
Berner, Abby Jaye, Negin Sobhani

24



I <Mulator: ML Emulators to date

CAMulator v1 CAMulator v2
Training Data-AMIP Training Data-Coupled

25

subCESMulator

+ ocean & land
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ML-based S2S Hindcasts

P
N ¢ Y

A\

CAR
CAR

CAMulator and subCESMulator

Use same initial conditions & ensemble generation as the CESM S2S Hindcasts

Explore additional ensemble generation approaches with >10 members

Run additional (and extended) initialization dates

Apply diagnostic package

Make available to the community

QICL L [ 1



52S Forecast for Boulder, CO: Initialized 03 January 2000

— ERA5
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ML-Based Prediction  oomme™"

4
%

NCAR
UCAR

CAMulator Hindcasts

subCESMulator Training

One trained on CESM coupled simulation and another using the CESM2-LE output

subCESMulator Hindcasts

Science!



CREDIT:

CREDIT Platform for ML Emulation

o aresearch platform for training, operating, & conducting
research with ML models for Earth System science

o Platform Features

m Integrated pre-processing
Library of neural network architectures
Scalable training and inference on NCAR HPC
Physics constraints
Analysis tools and plotting

https:/miles.ucar.edu/software/credit/
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CAMulator: @

Slide from Will Chapman

(e) Physics Conservation Blocks
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