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Many pre-industrial controls in between. Lots of tuning



Many pre-industrial co Is in between. Lots of tuning

The focus here:

- How things have evolved between this time last year (121) and now (271/276)



Many pre-industrial controls in between. Lots of tuning

The focus here:

- How things have evolved between this time last year (121) and ndw (271/276)
. The representation of basic features of the climate system in 271/276
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Precipitation (land only) & @ncar
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Precipitation (ocean only) & @ncar
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250 hPa velocity potential & #NcAR
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250 hPa velocity potential
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SH jet (850 hPa zonal mean zonal wind) | @NeaR
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SH jet (850 hPa zonal mean zonal wind) | @NeaR
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SH jet (850 hPa zonal mean zonal wind)
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CESM2 jet strength
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700 hPa zonal wind
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I 700 hPa zonal wind
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I 700 hPa zonal wind (Northern Hemisphere) | & nNcar
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I 700 hPa zonal wind (Southern Hemisphere) @& nNcar
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500 hPa eddy streamfunction & #ZNCAR
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500 hPa eddy streamfunction & #ZNCAR

Degradation in NH stationary waves &®
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500 hPa eddy streamfunction & #ZNCAR
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I 500 hPa eddy streamfunction
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500 hPa eddy streamfunction (NH)
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I 500 hPa eddy streamfunction (SH)
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Conclusions & 2 NcAr
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From the perspective of the large-scale climate, things have improved since this time last year
Problems that we were having with ENSO seem to be alleviated.

For large-scale circulation metrics, CESM3 is comparable to CESM2 for many things and is on
the good end of the CMIPG6 distribution

- We see substantial improvements in the SH circulation. Jet stream strength is better,
stationary waves also better

- Some degradations in the Northern Hemisphere, particularly in winter

Work is ongoing to understand low frequency Southern Ocean variability and alleviate it



