

Towards a machine learning enhanced version of the Community Earth System Model (CESM3-MLe)

Exploiting AI/ML across CESM Activity

David Lawrence

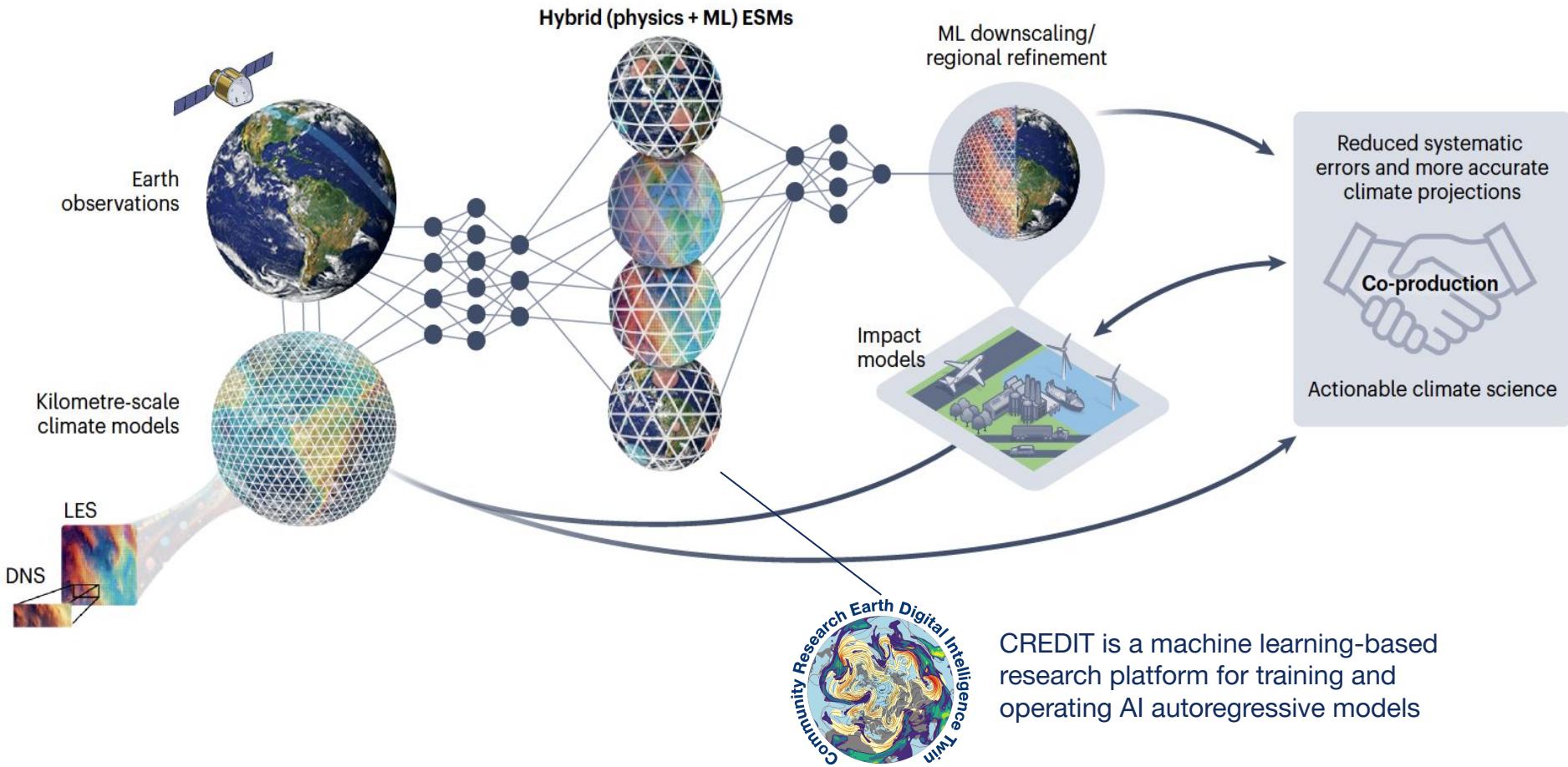
CESM Chief Scientist

LEAP Model Development Liaison

NCAR

FUTURE

AI/ML can help build next-generation Earth System modeling frameworks



CREDIT is a machine learning-based research platform for training and operating AI autoregressive models

Earth System Models are also virtual laboratories

Virtual laboratory to study

- Earth system variability and change
- Earth system predictability
- Weather from local to global scales
- Biogeochemical cycles
- Air quality
- Space weather
- Ice sheet - climate interactions
- Hydrological cycles
- Ecological change
- Processes and process interactions
- Land-atmosphere (physical, chemical) interactions
- Ocean-sea ice-atmosphere interactions
- ...



AI/ML can help build next-generation Earth System modeling frameworks

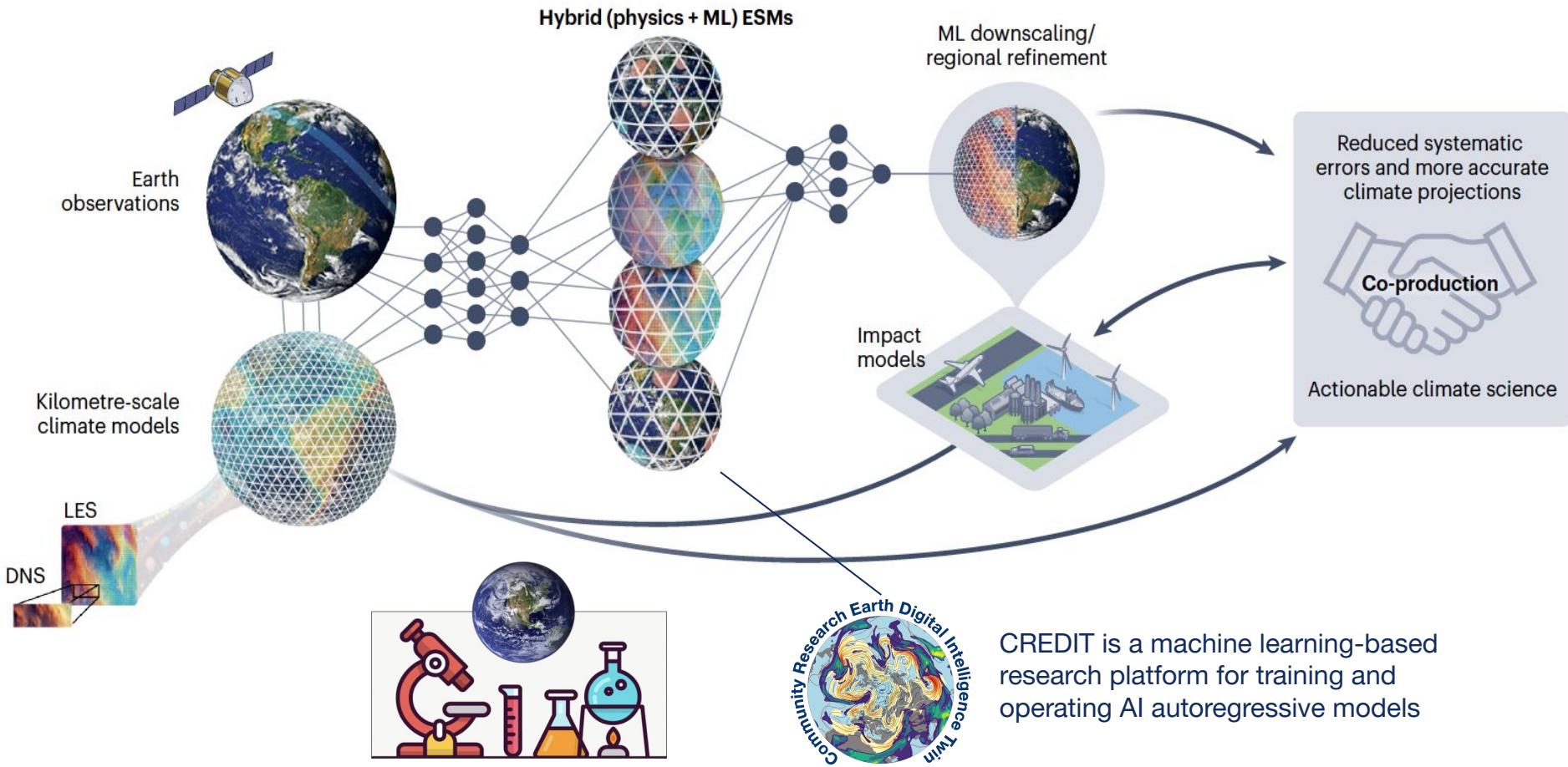


Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)

AI/ML can help build next-generation Earth System modeling frameworks

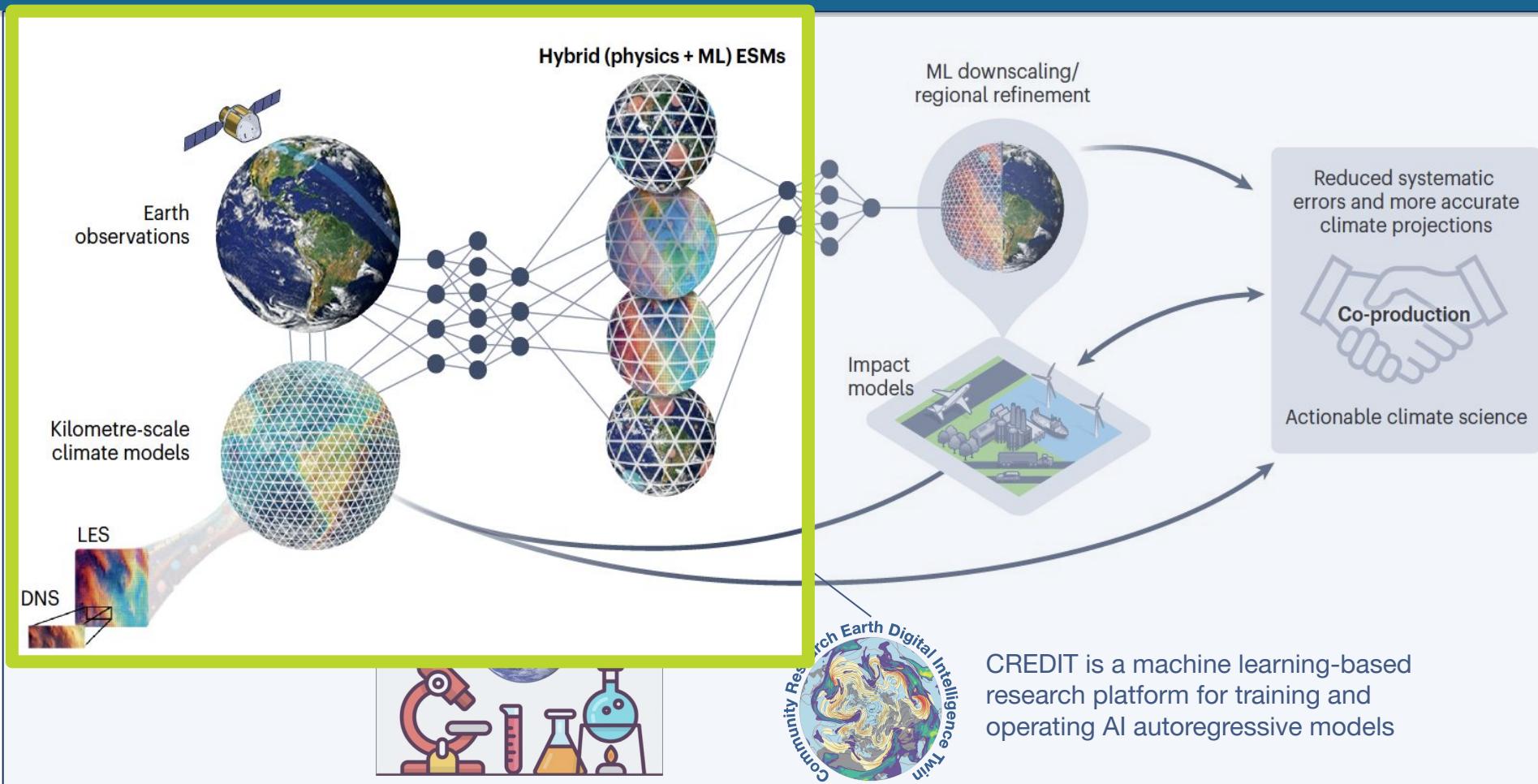
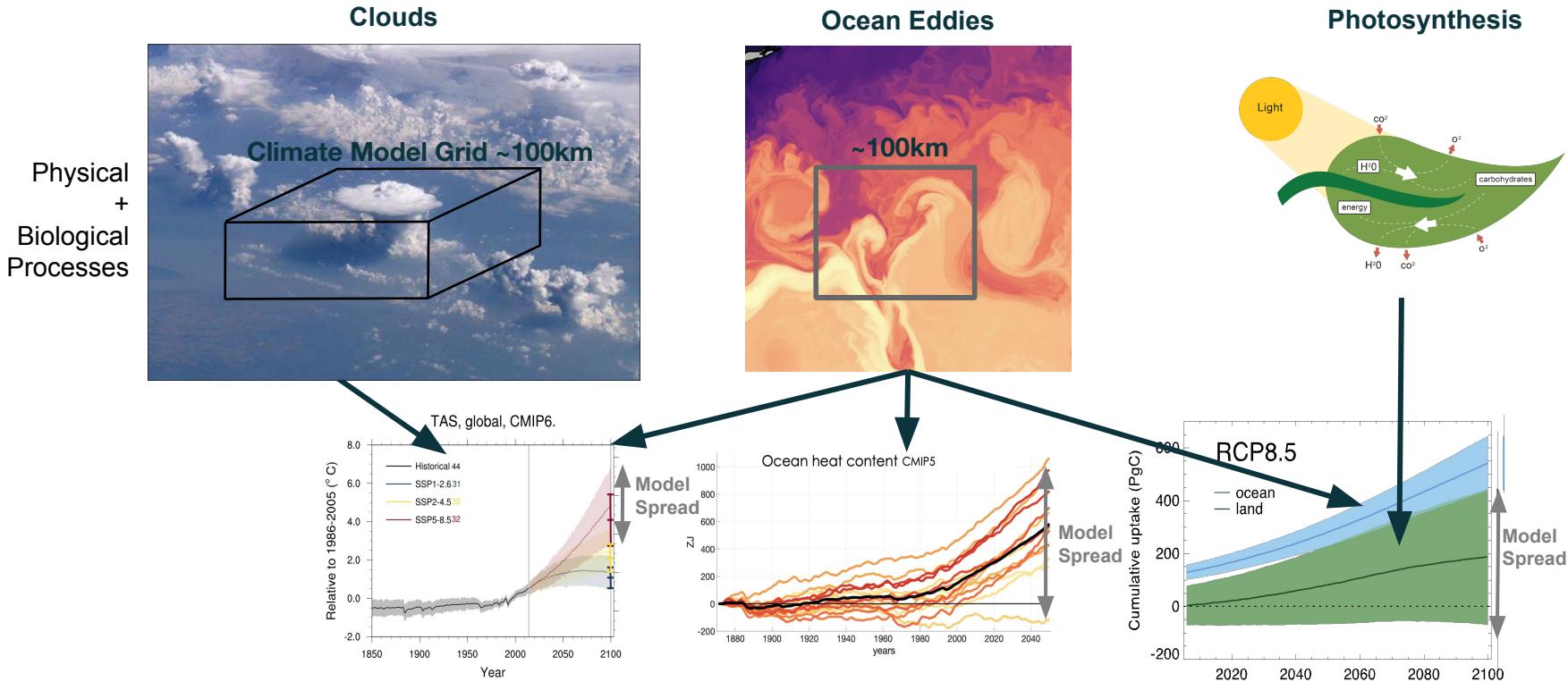


Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)

Unresolved Small + Complex Processes Require “Parameterizations” which drive projection uncertainties

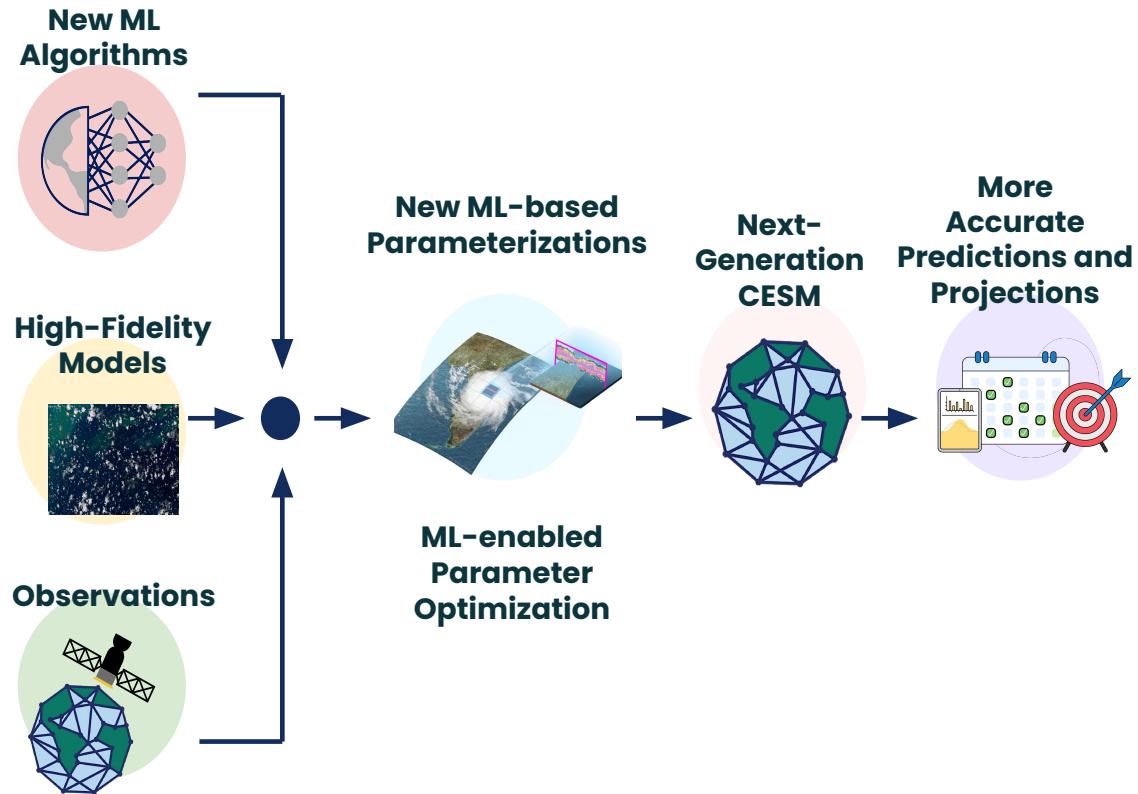


- Model errors dominate (>50%) uncertainties <40 years

Towards a machine learning enhanced version of the Community Earth System Model (CESM3-MLe)

Learning the Earth with Artificial Intelligence and Physics NSF Science and Technology Center

M²LInES
Schmidt Sciences



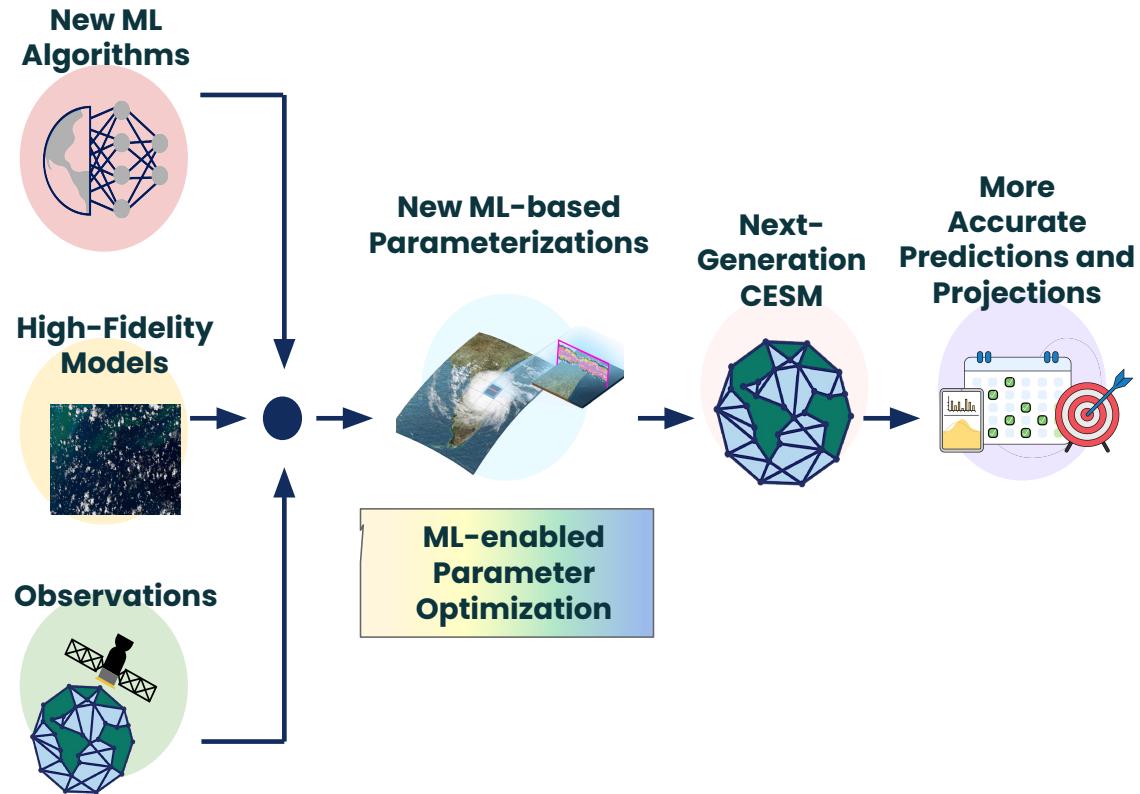
Harness new ML + data to transform CESM

*LEAP forward in the **reliability**, **utility**, and **reach** of climate projections through synergistic innovations in data science and climate science*

Towards a machine learning enhanced version of the Community Earth System Model (CESM3-MLe)

Learning the Earth with Artificial Intelligence and Physics NSF Science and Technology Center

M²LInES
Schmidt Sciences



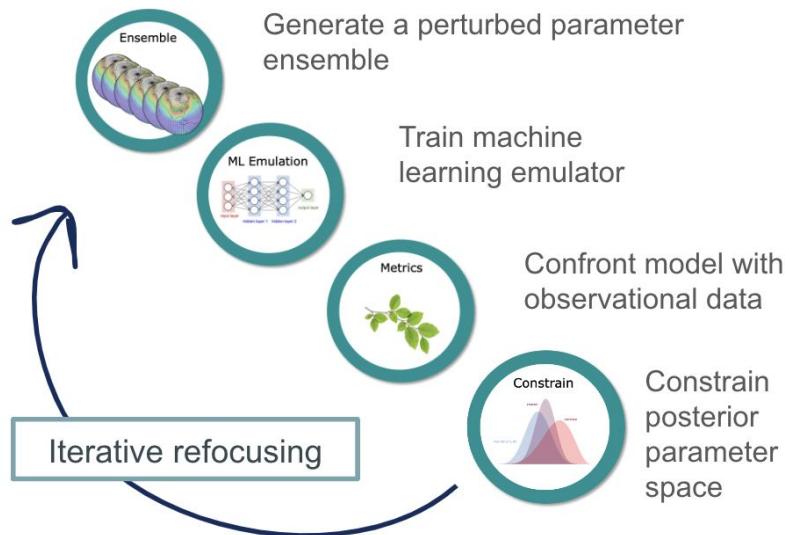
Harness new ML + data to transform CESM

*LEAP forward in the **reliability**, **utility**, and **reach** of climate projections through synergistic innovations in data science and climate science*

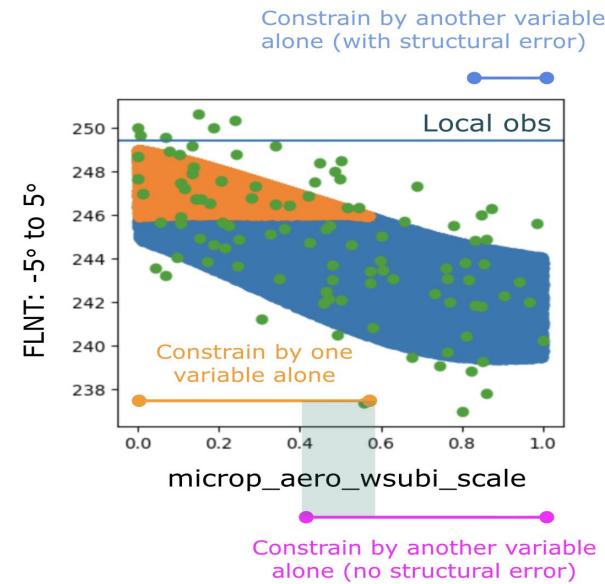
Towards a machine learning enhanced version of CESM (CESM3-MLe)

Machine Learning Enhanced Climate Model (CESM3-MLe)

CLM



CAM



History matching approach
(Yang et al., 2026, JAMES)

Linnia Hawkins, Daniel Kennedy, Katie Dagon,
Dave Lawrence

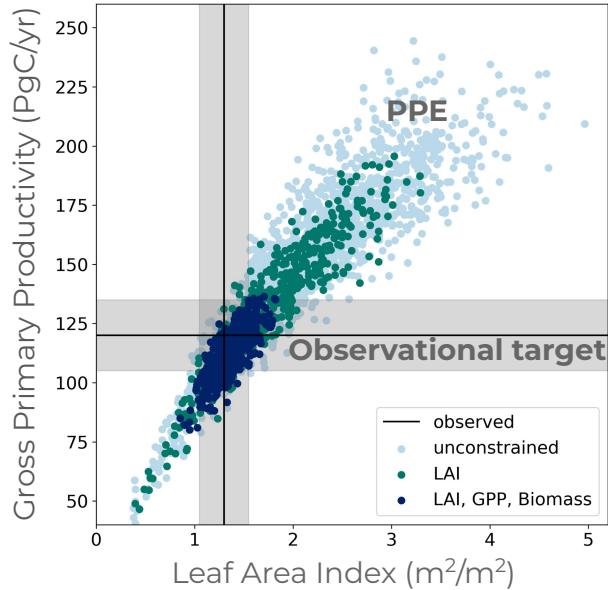
Qingyuan Yang, Greg Elsaesser, Marcus van Lier
Walqui, Brian Medeiros, Addisu Semie

NCAR
Operated by UCAR

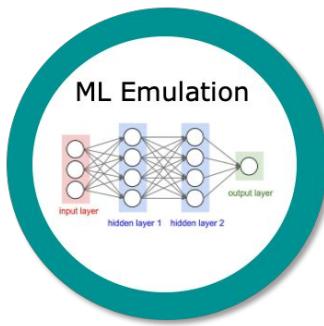
LEAP

Towards a machine learning enhanced version of CESM (CESM3-MLe)

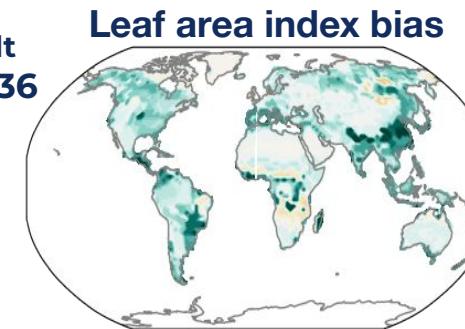
Generate a PPE



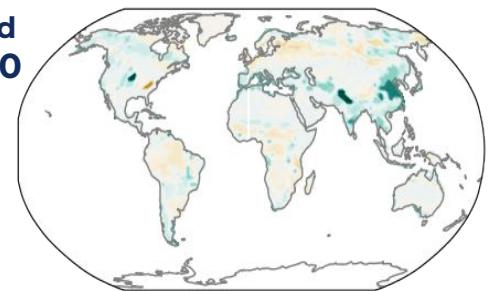
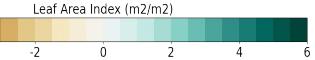
Train emulator and calibrate



Default
MAE = 1.36



Calibrated
MAE = 0.60

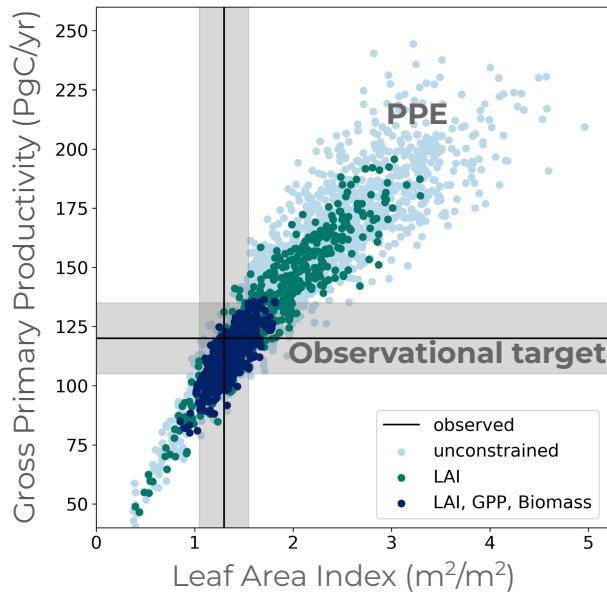


Methods applied to calibrate CLM6 for CESM3

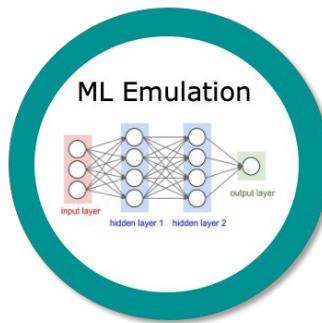
NCAR
Operated by UCAR

Towards a machine learning enhanced version of CESM (CESM3-MLe)

Generate a PPE



Train emulator and calibrate

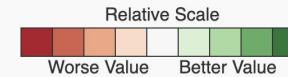


Benchmarking CLM

Table showing the results of Benchmarking CLM across various ecosystem and carbon cycle parameters. The color scale indicates the relative scale from Worse Value (red) to Better Value (green).

Parameter	Relative Scale
Ecosystem and Carbon Cycle	Green
Biomass	Green
Burned Area	Orange
Carbon Dioxide	Red
Gross Primary Productivity	Red
Leaf Area Index	Green
Global Net Ecosystem Carbon Balance	Green
Net Ecosystem Exchange	Orange
Ecosystem Respiration	Orange
Soil Carbon	Green
Nitrogen Fixation	Green
Methane	Green
Hydrology Cycle	White
Evapotranspiration	Orange
Evaporative Fraction	Orange
Latent Heat	Green
Runoff	White
Sensible Heat	Orange
Terrestrial Water Storage Anomaly	Green
Snow Water Equivalent	White
Permafrost	Green
Surface Soil Moisture	Orange

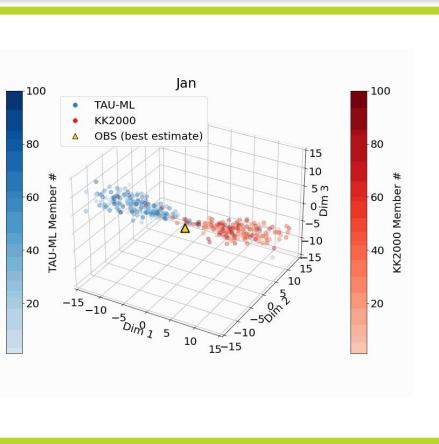
Methods applied to calibrate CLM6 for CESM3



From none (other than tuning) to multiple approaches to calibrate CAM!

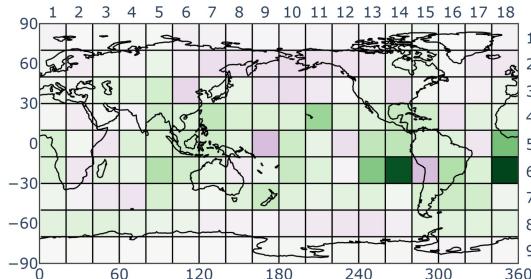
Contrastive learning framework (Da Fan and DJ Gagne)

- Model training and latent feature visualization
- Explainable AI applied to latent distance to identify structural differences
- Bayesian optimization calibration using latent distance



QuadTune (Larson et al., 2025)

“Poor man’s” model tuner. Carves into regions and ~ parameter dependence w/ uncorrelated quadratic emulator

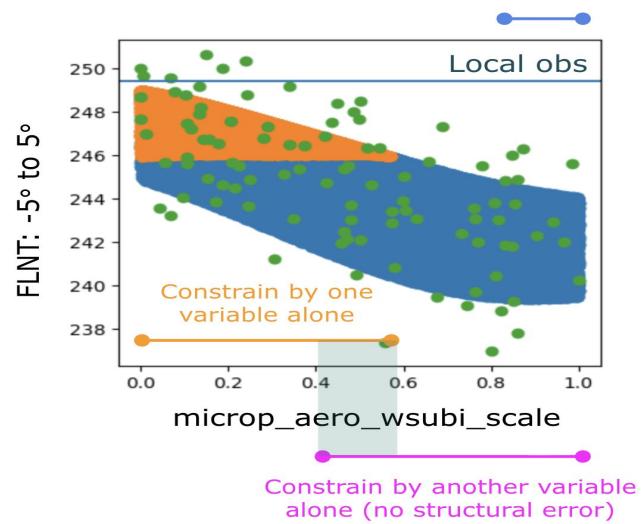


History matching approach

(Yang et al., 2025, JAMES; Yang et al., in prep)

- Simple emulator per target (~2 params as input)
- Target many local climatologies (e.g. Avg. 10° zonal LWCF, SWCF ...)
- Detect structural error before parameter estimation, **neglect variables w/ large structural error**

Constrain by another variable alone (with structural error)



NCAR
Operated by UCAR

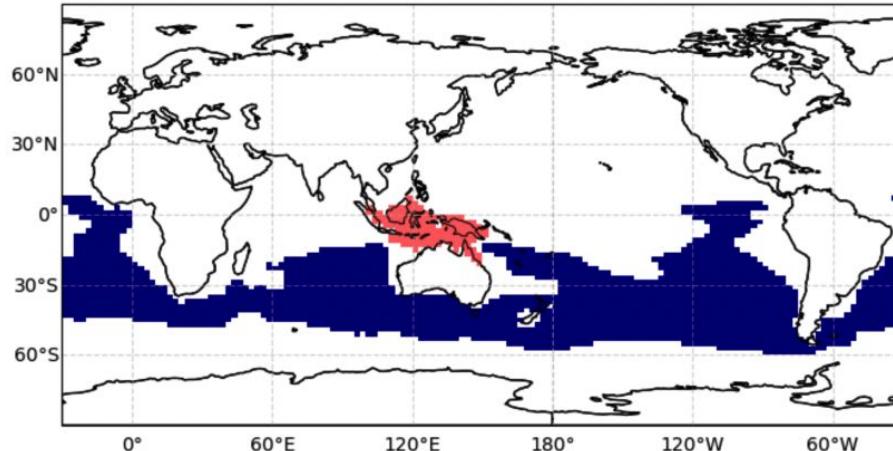
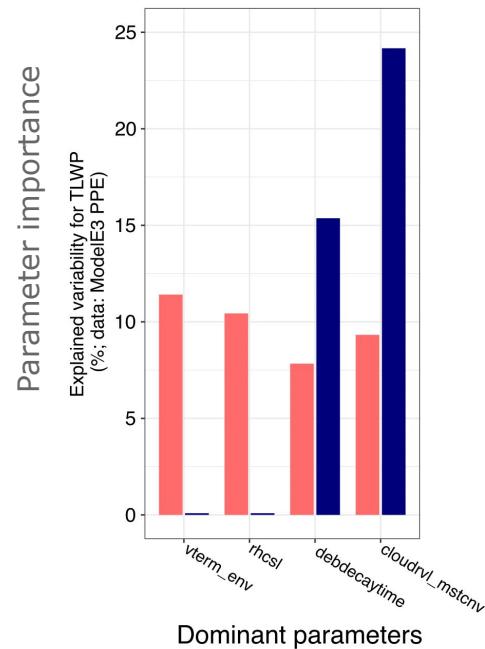
LEAP

Insight: Individually insensitive parameters can be cumulatively important

Why? Some parameters are only locally/regionally sensitive

Therefore: Emulating only global climatologies may not be sufficient for all problems

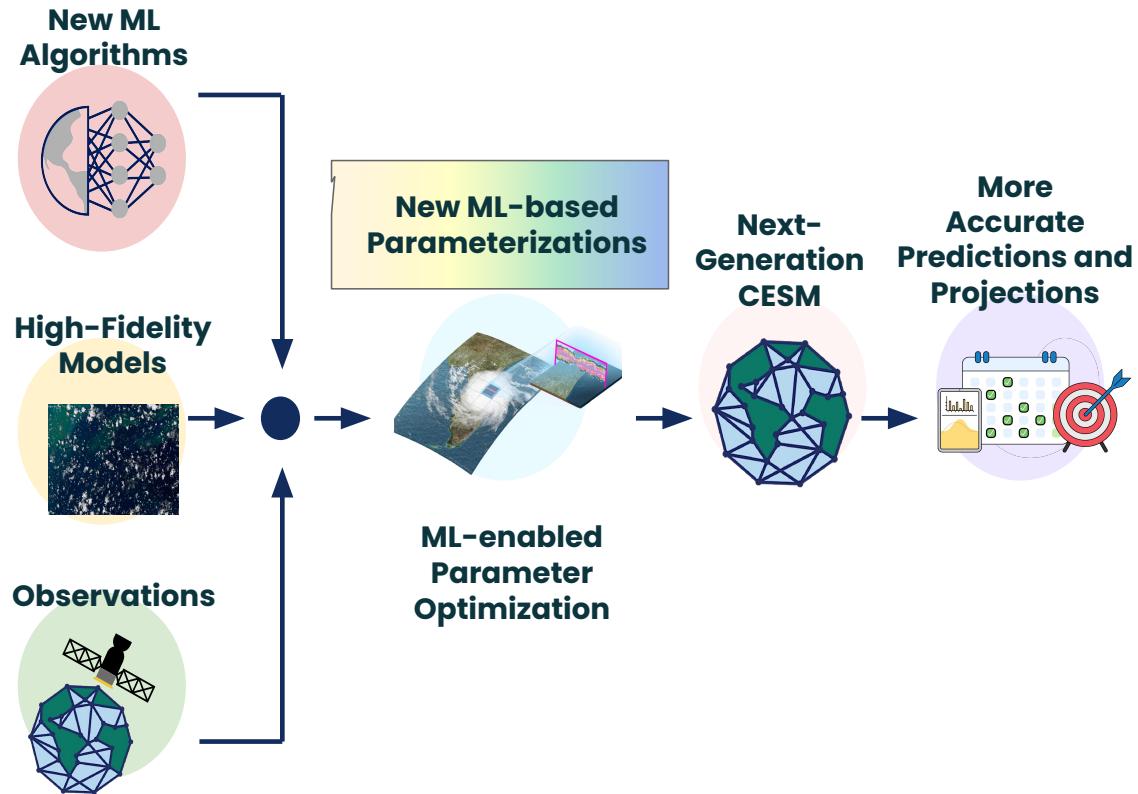
Implication: May be able to both decrease local biases while still calibrating globally



Towards a machine learning enhanced version of the Community Earth System Model (CESM3-MLe)

Learning the Earth
with Artificial
intelligence and
Physics NSF Science
and Technology
Center

M²LInES
Schmidt
Sciences



**Harness new
ML + data to
transform CESM**

*LEAP forward in the **reliability**, **utility**, and **reach** of climate projections through synergistic innovations in data science and climate science*

Towards a machine learning enhanced version of CESM (CESM3-MLe)

Demonstrate pathway and impact of ML-based parameterizations in CESM

Warm rain microphysics: Emulate cloud droplet autoconversion and accretion with NNs trained on CAM simulations with warm rain process replaced with highly resolved bin microphysics (TAU code)

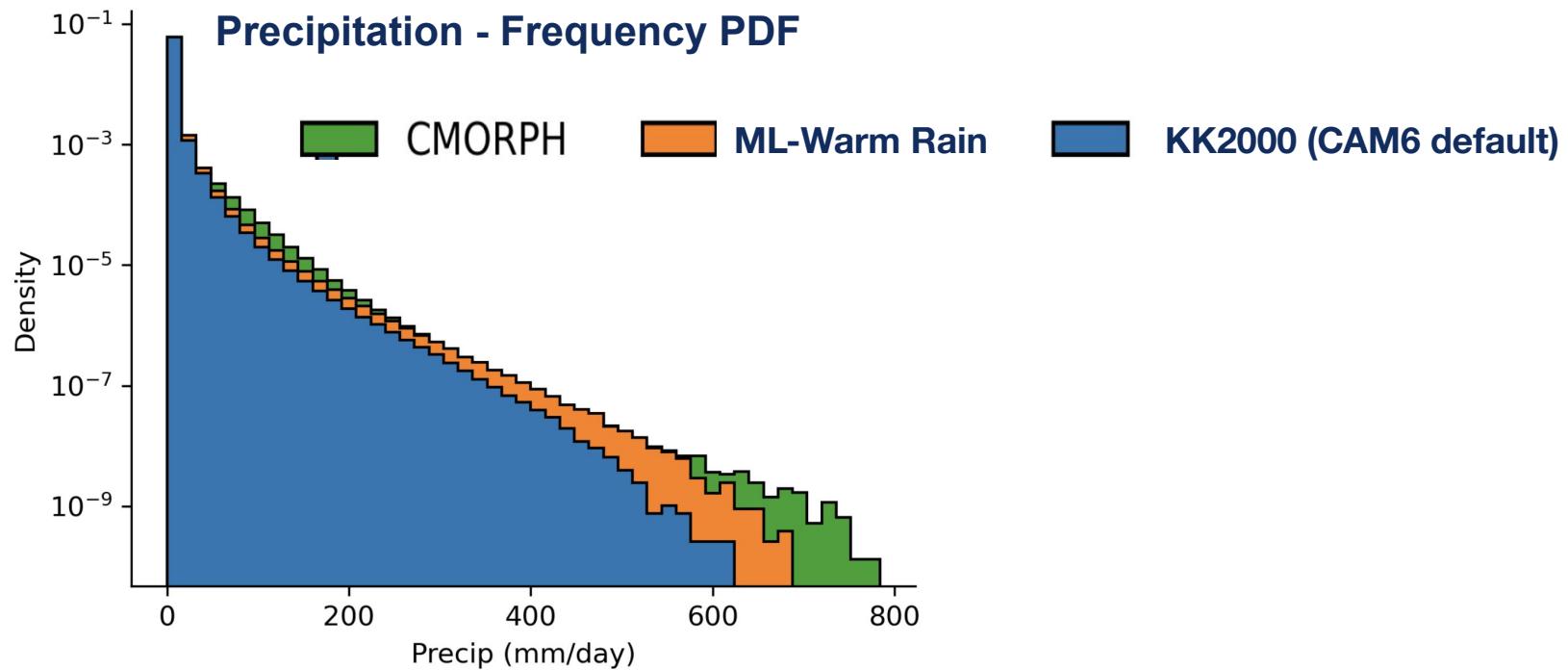
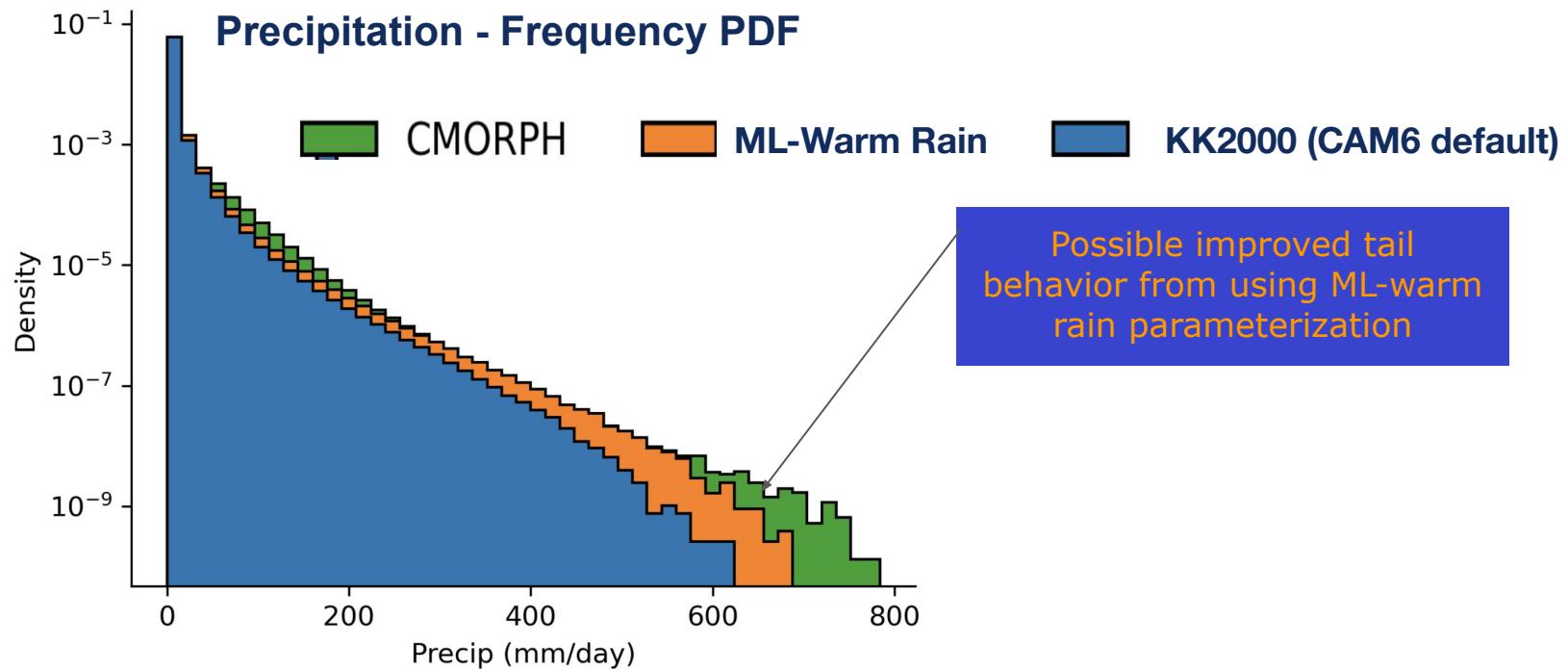


Figure from Addisu Semie

Towards a machine learning enhanced version of CESM (CESM3-MLe)

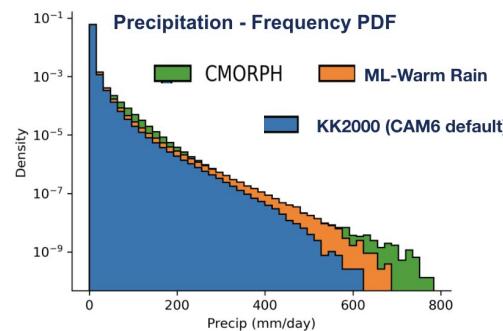
Demonstrate pathway and impact of ML-based parameterizations in CESM

Warm rain microphysics: Emulate cloud droplet autoconversion and accretion with NNs trained on CAM simulations with warm rain process replaced with highly resolved bin microphysics (TAU code)

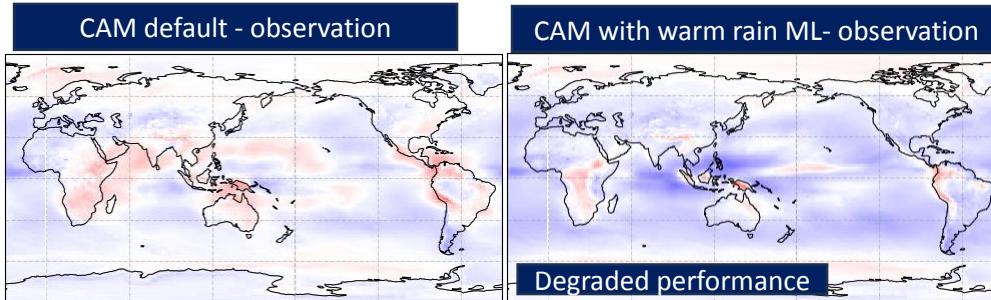


Developing workflow to recalibrate after ML parameterization implemented

1. ML warm rain microphysics → improvement in rainfall precip - frequency PDF

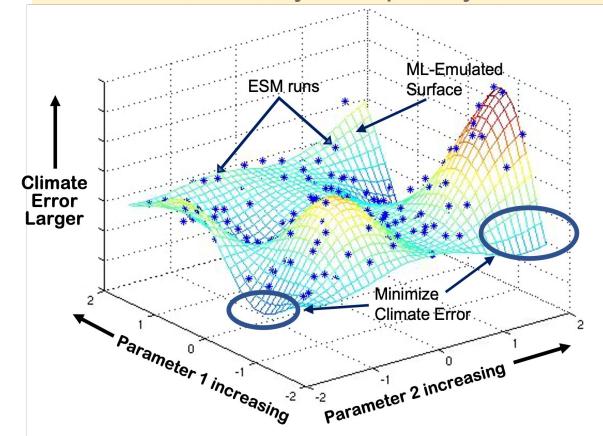


2. But, likely will see degraded performance for other fields with new ML parameterization



Schematic only; representative of a climatological radiation or cloud field

3. Using ML for auto-tuning, re-calibrate CAM to correct the degraded performance, while (hopefully) simultaneously retaining the improvement in rainfall intensity - frequency distribution



Slide from Qingyuan Yang and Greg Elsaesser

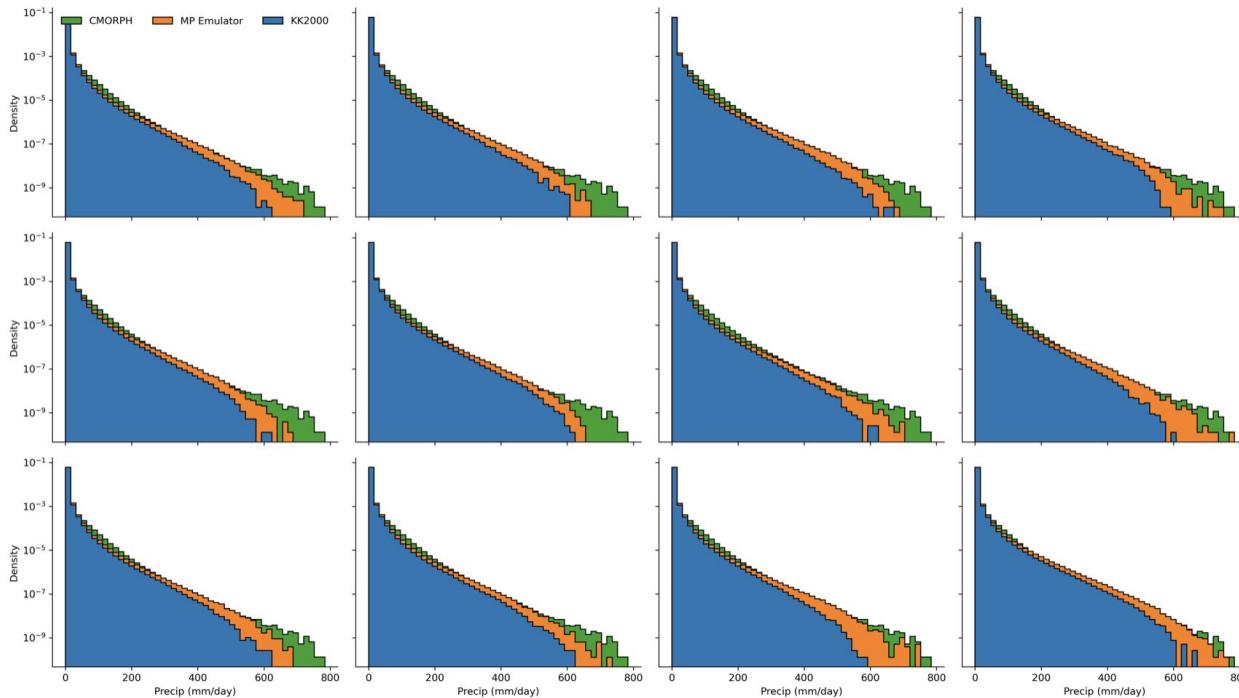
Developing workflow to recalibrate after ML parameterization implemented

Precipitation - Frequency PDF

CMORPH

ML-Warm Rain

KK2000 (CAM6 default)



Each plot is for randomly pulled parameter set from a 200 member PPE with and without ML warm rain parameterization

→ Improvement from ML warm rain microphysics parameterization is likely to be retained after recalibration

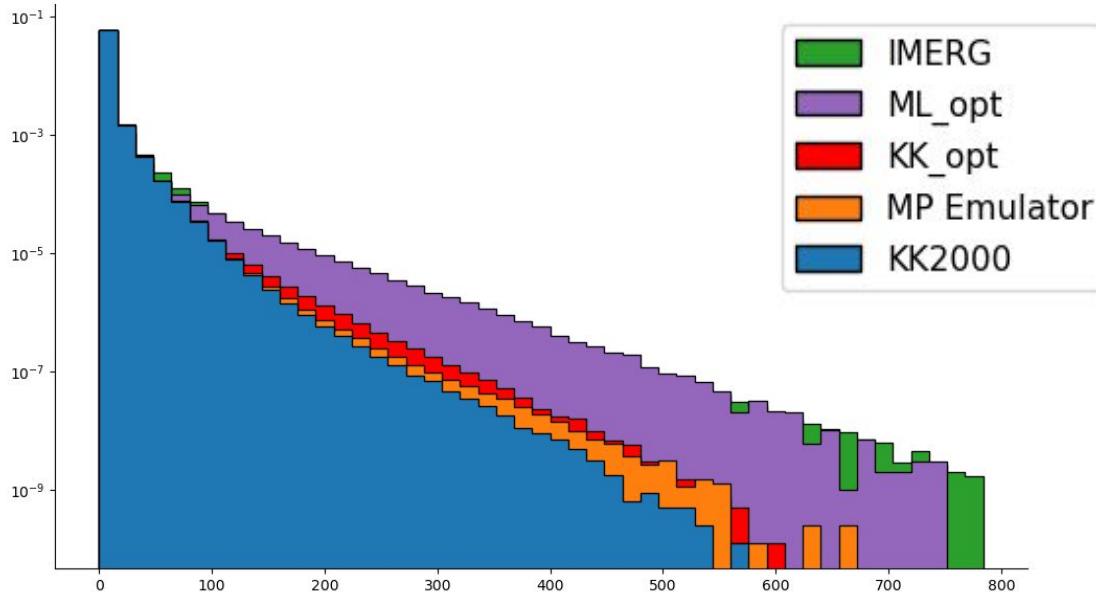
NCAR
Operated by UCAR

LEAP

Figure from Addisu Semie

Calibration

Precipitation - Frequency PDF

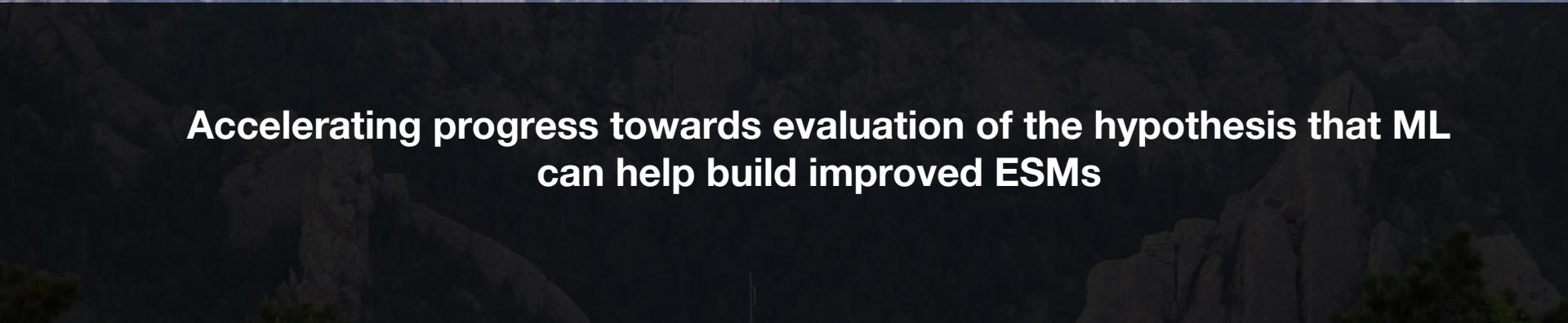


ML warm rain configuration
can be calibrated to
achieve good PDF

Original KK2000
parameterization cannot

* Note that there may be some
degradations in climatological
fields in these calibrations

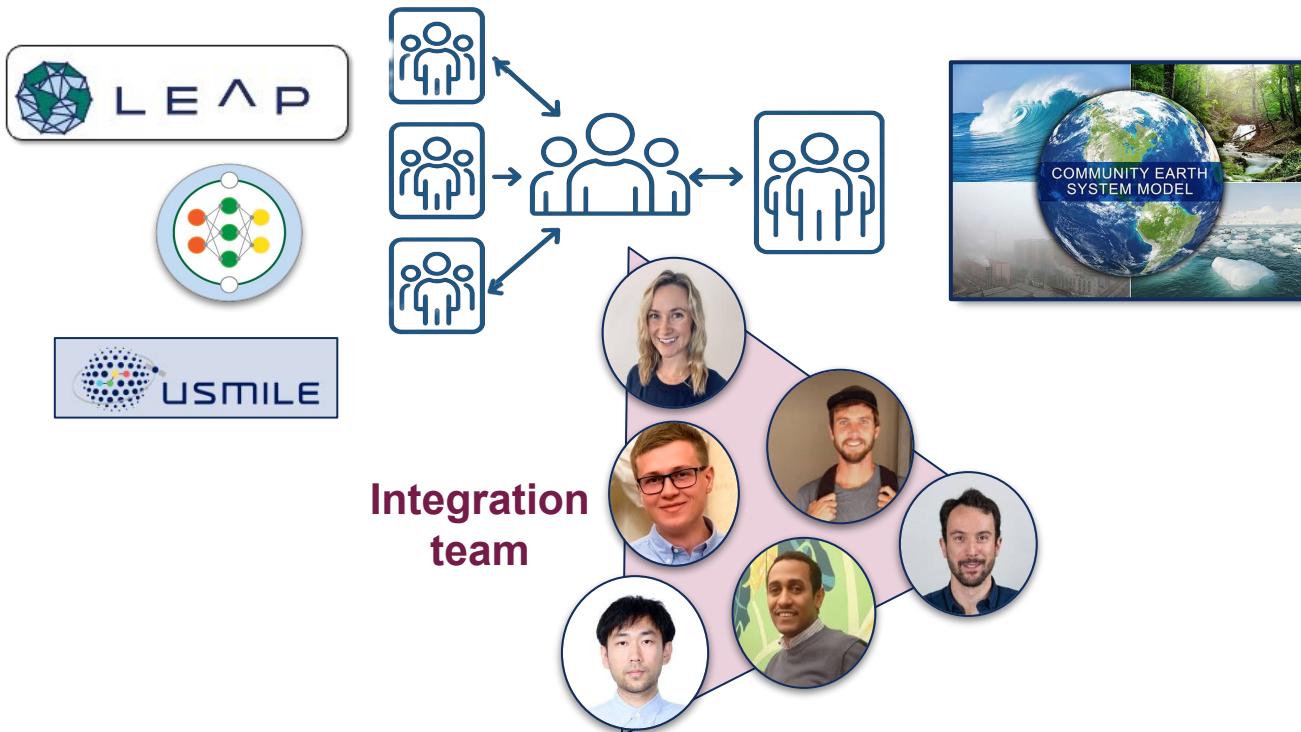
Figure from Addisu Semie



Accelerating progress towards evaluation of the hypothesis that ML can help build improved ESMs

CESM-MLe Integration Team

Enables productive and sustained interactions between LEAP, M²LInES, and other projects and CESM scientists and developers

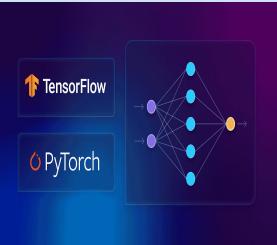


github.com/leap-stc/Integration_team

FTorch Bridge

Python

Machine learning research and development are predominantly conducted in Python.

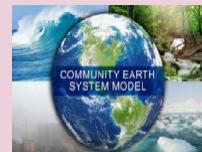


FTorch

Provides bridge to connect ML models and Earth System Models

Fortran

Many large-scale scientific models are developed using Fortran, C, or C++.



FTorch Deep Convection (YOG) Integration

```
FTorch_CAM_integration/
  └── src/
      └── cam/
          ├── Phys_control.F90
          ├── physpkg.F90
          ├── yog_intr.F90
          ├── nn_interface_CAM.F90
          ├── nn_convection_flux.F90
          └── nn_cf_net.F90

  └── libraries/
      └── FTorch/
          └── FTorch_cesm_interface.F90

  └── docs/
      └── build_instructions.md
          └── troubleshooting.md

  └── examples/
      └── user_nl_cam

  └── MODEL_CARD.md
  └── README.md
```

Documentation & tools

[leap-stc/integration_team](https://github.com/leap-stc/integration_team)

Documentation

FTorch Deep Convection (YOG) Integration

This repository documents and provides sources for integrating a PyTorch-based deep-convection scheme (YOG) into CESM/CAM using FTorch.

- Component: CAM (CESM3)
- What's replaced: ZM/YOG convection tendencies via FTorch TorchScript model
- Key idea: Keep CAM physics + vertical remapping intact; swap the NN call with a TorchScript forward pass (FTorch), preserving CAM data flow.

Repository Structure

```
FTorch_CAM_integration/
  -- src/
    -- cam/          # Modified CAM physics source files
      -- Phys_control.F90
      -- physpk.F90
      -- yog_intr.F90
      -- nn_interface_CAM.F90
      -- nn_convective_flux.F90
      -- nn_cf_net.F90
    -- libraries/
      -- FTorch/
        -- FTorch_cesm_interface.F90  # Wrapper for FTorch model calls
    -- docs/
      -- build_instructions.md
      -- troubleshooting.md
    -- examples/
      -- user_nl_cam
  -- MODEL_CARD.md
  -- README.md
```

Tools & support

Functional Unit Test set up

This example sets up a functional test on Derecho. The functional test is just a place to test your ml model using FTorch in Fortran. Please file an issue if you run into problems.

Developed by Adrianna Foster & Linnia Hawkins

1) Clone CTSM

```
git clone https://github.com/ESCOMP/CTSM.git CTSM
```

I suggest cloning to your work directory \$WORK or /glade/work/username/

2) Add in some mods

```
cd CTSM
git remote add jedwards https://github.com/jedwards4b/ctsm.git
git fetch jedwards
git checkout ftorch_d1fcce99
./bin/git-fleximod update
cd src/fates
git remote add linnia https://github.com/linniahawkins/fates
git fetch linnia
git checkout ml_example
git checkout ml_example
```

3) Set up your environment

```
export Torch_DIR=/glade/work/jedwards/conda-envs/ml5.6/
module load conda
conda activate ctsm_pylib # or some python environment with matplotlib and numpy
```


[#cesm-integration](https://github.com/leap-stc/integration_team)

NCAR
Operated by UCAR

LEAP

Parameterizations in development for possible inclusion in CESM3-MLe

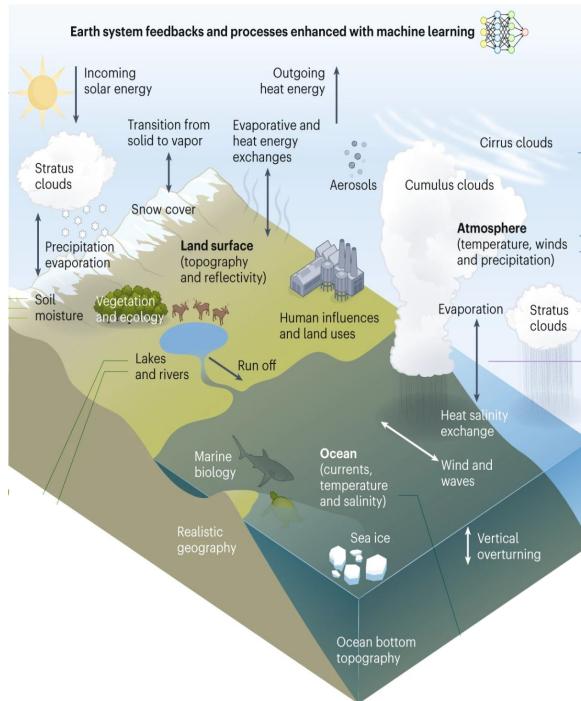
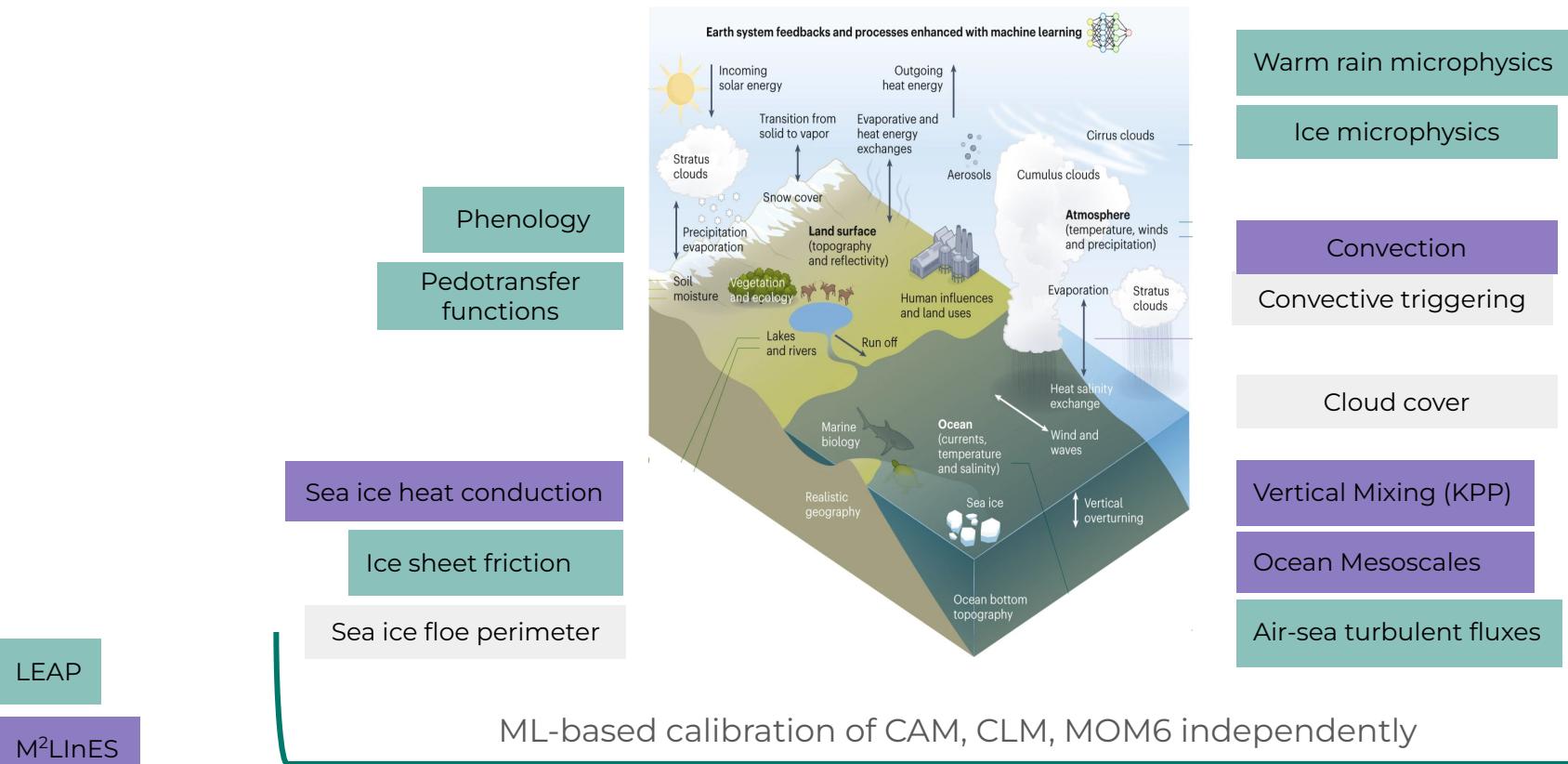
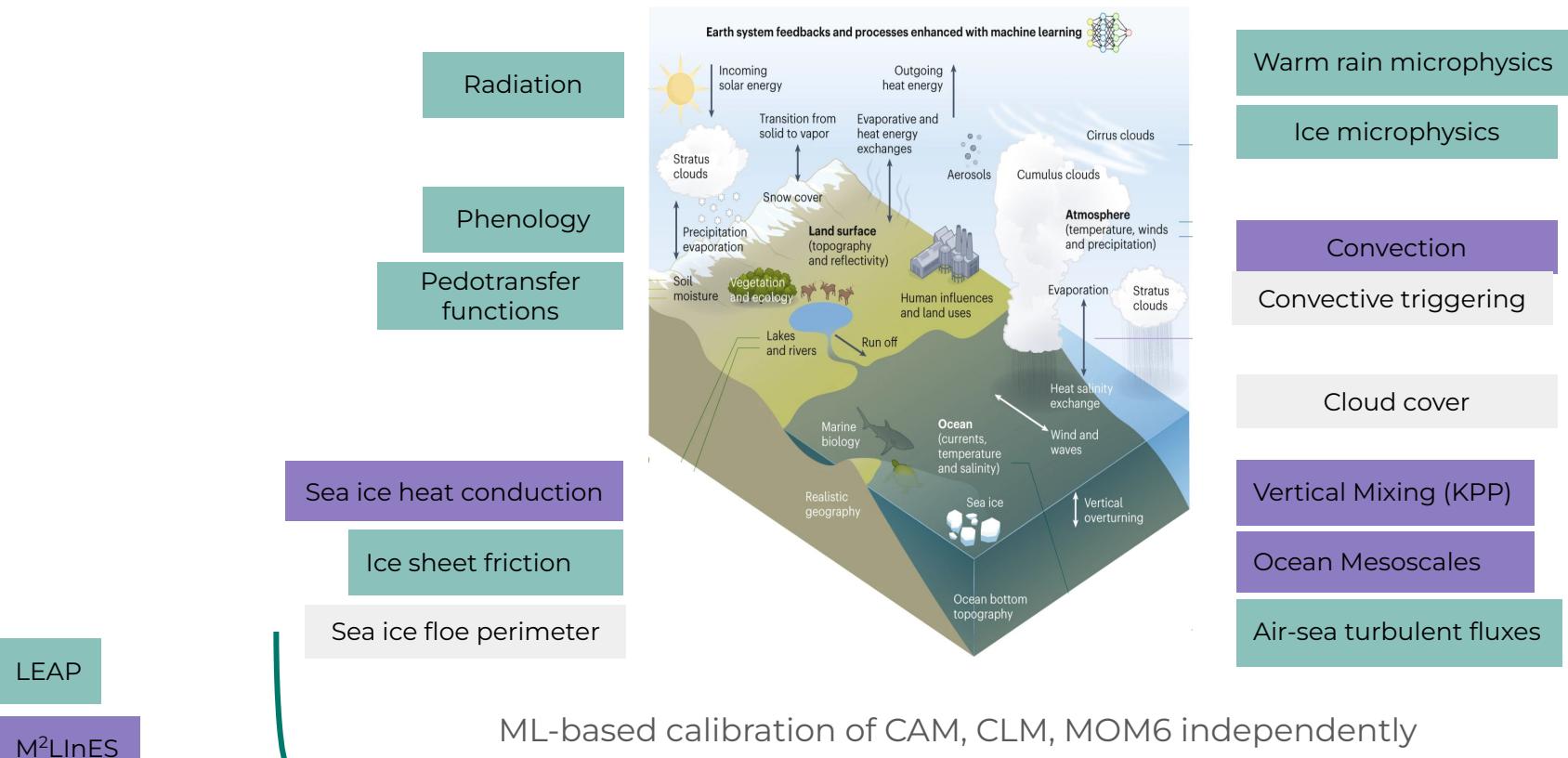


Figure modified from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)

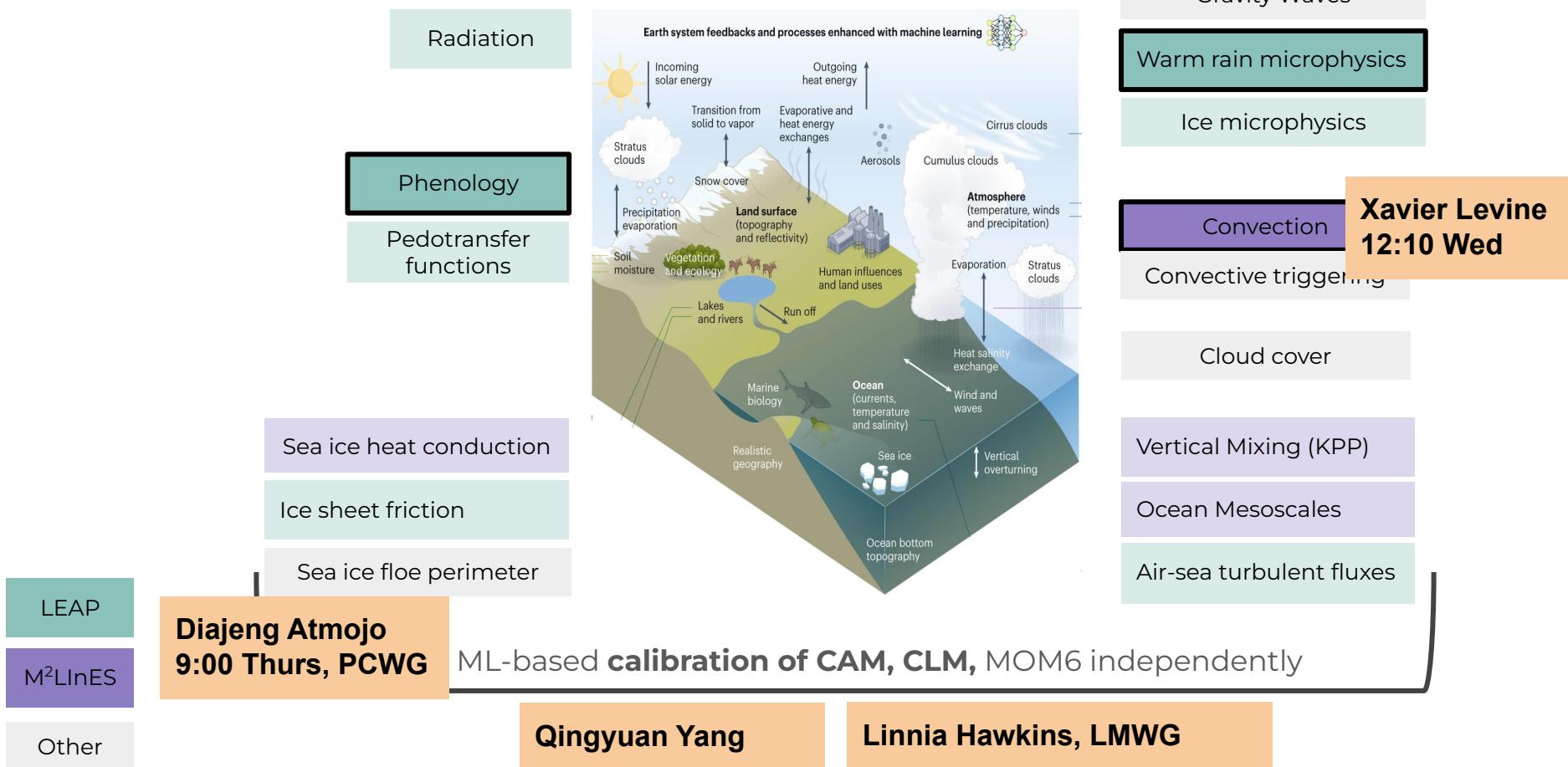
Parameterizations in development for possible inclusion in CESM3-MLe



Parameterizations in development for possible inclusion in CESM3-MLe



Initial CESM3-MLe AMIP configuration (by CMIP meeting in March?)



Towards a machine learning enhanced version of the **Community Earth System Model** (CESM3-MLe)

Learning the Earth
with Artificial
intelligence and Physics
NSF Science and
Technology Center

M²LINES
Schmidt
Sciences

(After CESM3 push) Move forward to test the hypothesis that ML can help build better and more accurate ESMs

- Sustained team interactions (e.g., PI, ML-param developer, experienced CESM developer, and SE)
- More coordination / communication (github CESM-MLe project management, regular development meetings)
- Hybrid Model Implementation Workshop (joint with ICON-ML) June 5-9

Anticipate that there will be challenges

- Reliability in out-of-training climates
- Potential for CESM model instabilities
- Unanticipated interdependencies
- Substantially new simulated climate may degrade orthogonal simulation aspects
- New tuning challenges with some knobs removed

Defining Success for CESM3-MLe

- Several ML-based parameterizations into CESM (1-2 atm, 1-2 ocn, 1-2 Ind, 1 sea ice/land ice)
- ML parameter calibration (Ind, atm)
- Reduced biases in critical fields, especially extremes

Towards a machine learning enhanced version of the Community Earth System Model (CESM3-MLe)

Learning the Earth
with Artificial
intelligence and Physics
NSF Science and
Technology Center

M²LINES
Schmidt
Sciences

(After CESM3 push) Move forward to test the hypothesis that ML can help build better and more accurate ESMs

- Sustained team interactions (e.g., PI, ML-param developer, experienced CESM developer, and SE)
- More coordination / communication (github CESM-MLe project management, regular development meetings)
- Hybrid Model Implementation Workshop (joint with ICON-ML) June 5-9

Anticipate that there will be challenges

- Reliability in out-of-training climates
- Potential for CESM model instabilities
- Unanticipated interdependencies
- Substantially new simulated climate may degrade orthogonal simulation aspects
- New tuning challenges with some knobs removed

Fundamental Challenge is that it is HARD to build a new coupled model!

- Schmidt Sciences call on coupled model calibration
- Use CESM3-MLe as 'case study' to see if we can develop methodologies to produce a coupled model faster
- Ideas: Utilize initialized prediction, efficient component calibration, hierarchical calibration stepping up through timescales, faster spinup methods, ...

Extra Slides

NCAR

What is CREDIT?

An ***open foundational platform*** for developing and deploying AI weather and Earth system prediction models for autoregressive systems.

CREDIT enables users to build custom data and modeling pipelines to load data, train configurable AI forward models, and deploy them for real-time forecasting, hindcasting, or scenario projections.

CREDIT offers both scientifically validated model configurations and endless customization for any use case.

Datasets

ERA5

CAM

GFS

CONUS 404

Models

WXFormer

NCAR FuXi

Graph Recurrent Transformer

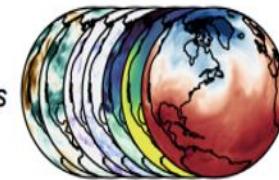
Physics

Mass Conservation

Energy Conservation

Moisture Budget

Outputs



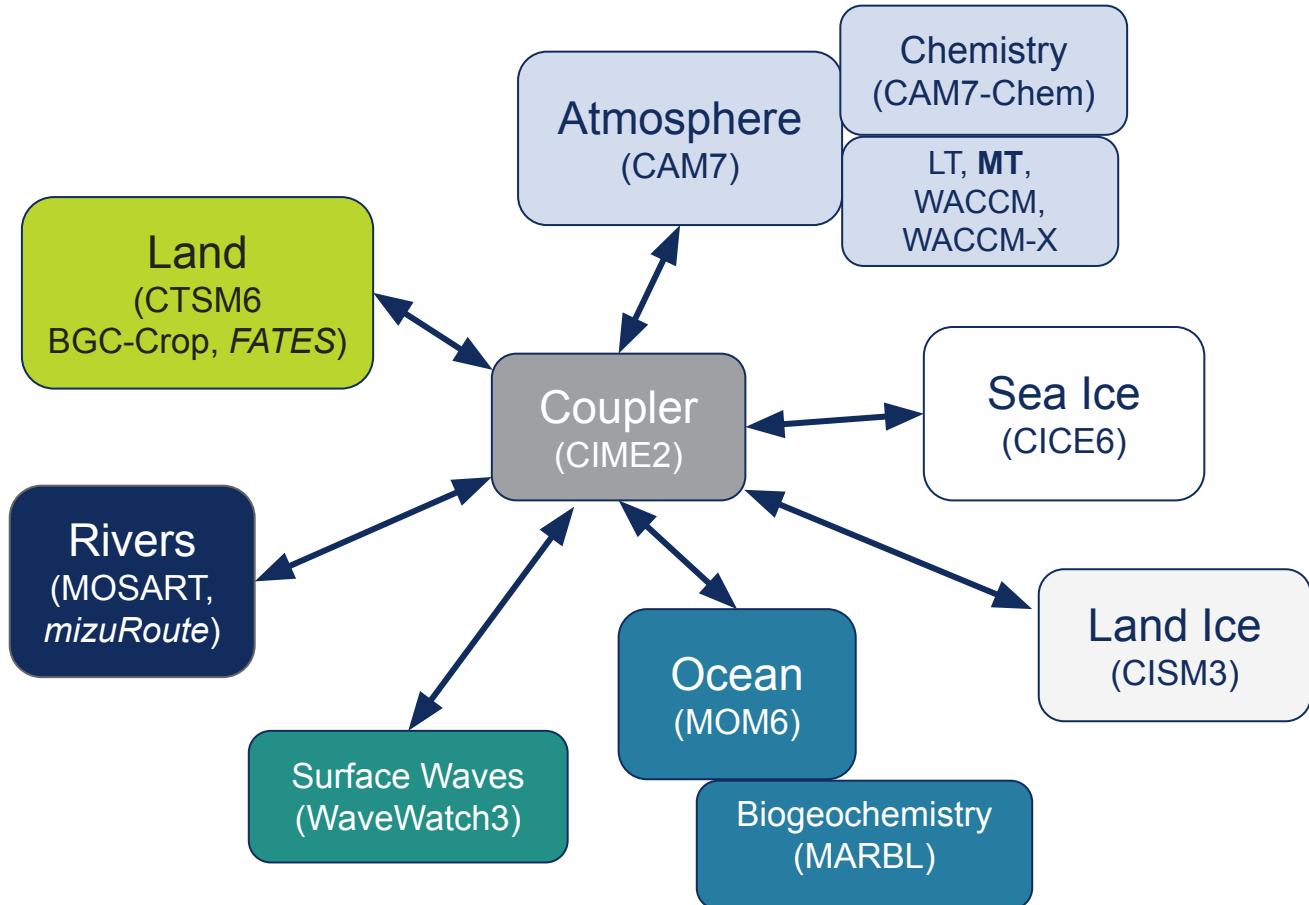
Working towards CESM3

COMMUNITY EARTH
SYSTEM MODEL

Significant updates to all component models

Targeting use of CESM3 for CMIP7

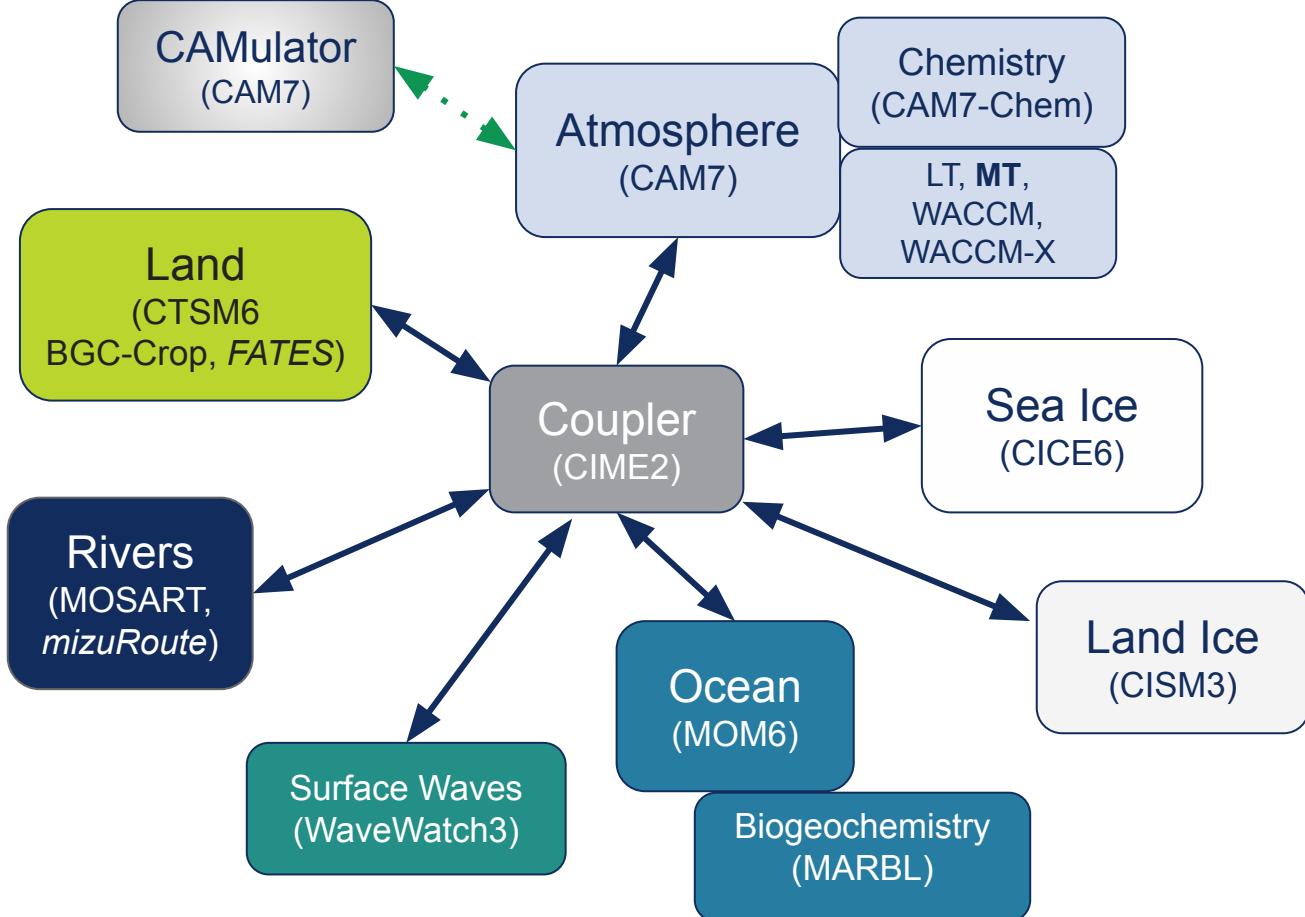
Emissions-driven configuration to be default, with interactive ice sheets and fire aerosol emissions?



CAMulator as part of CESM3 release

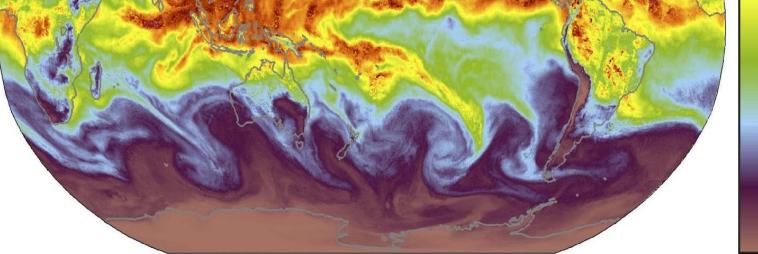
Supported CAMulator,
trained on CAM7

Flexible enough to easily
train on new simulations
or for different priority
emulated targets

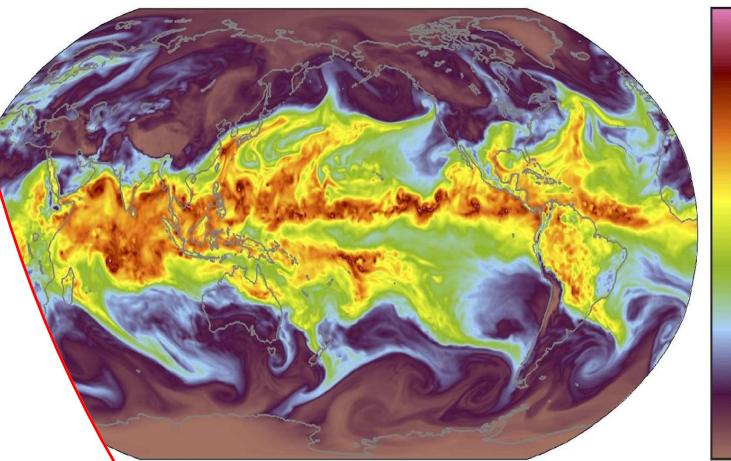
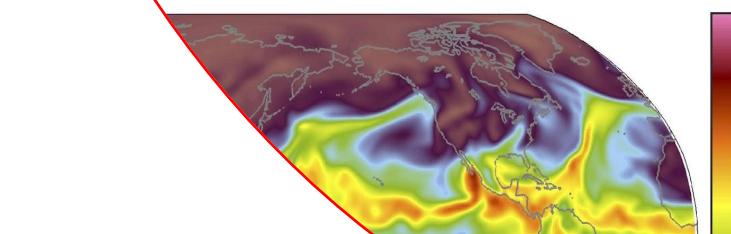


Towards emulation of CESM High Resolution simulations?

- CESM1.3(HR): 0.25° atm/Ind, 0.1° ocn
 - 10-member ensemble of historical and several projections

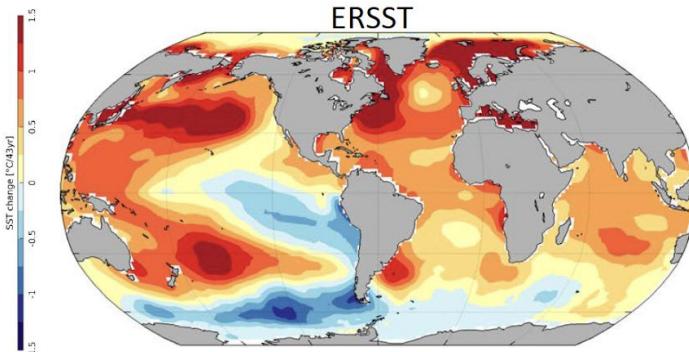
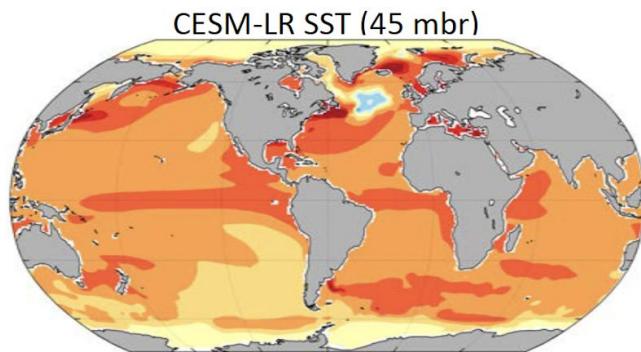
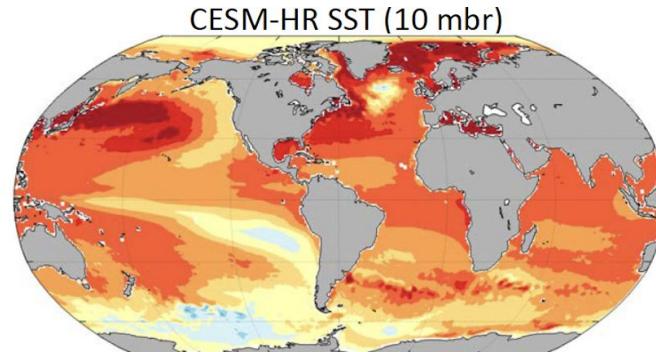


Vertically Integrated Water Vapor (IWV, in mm)



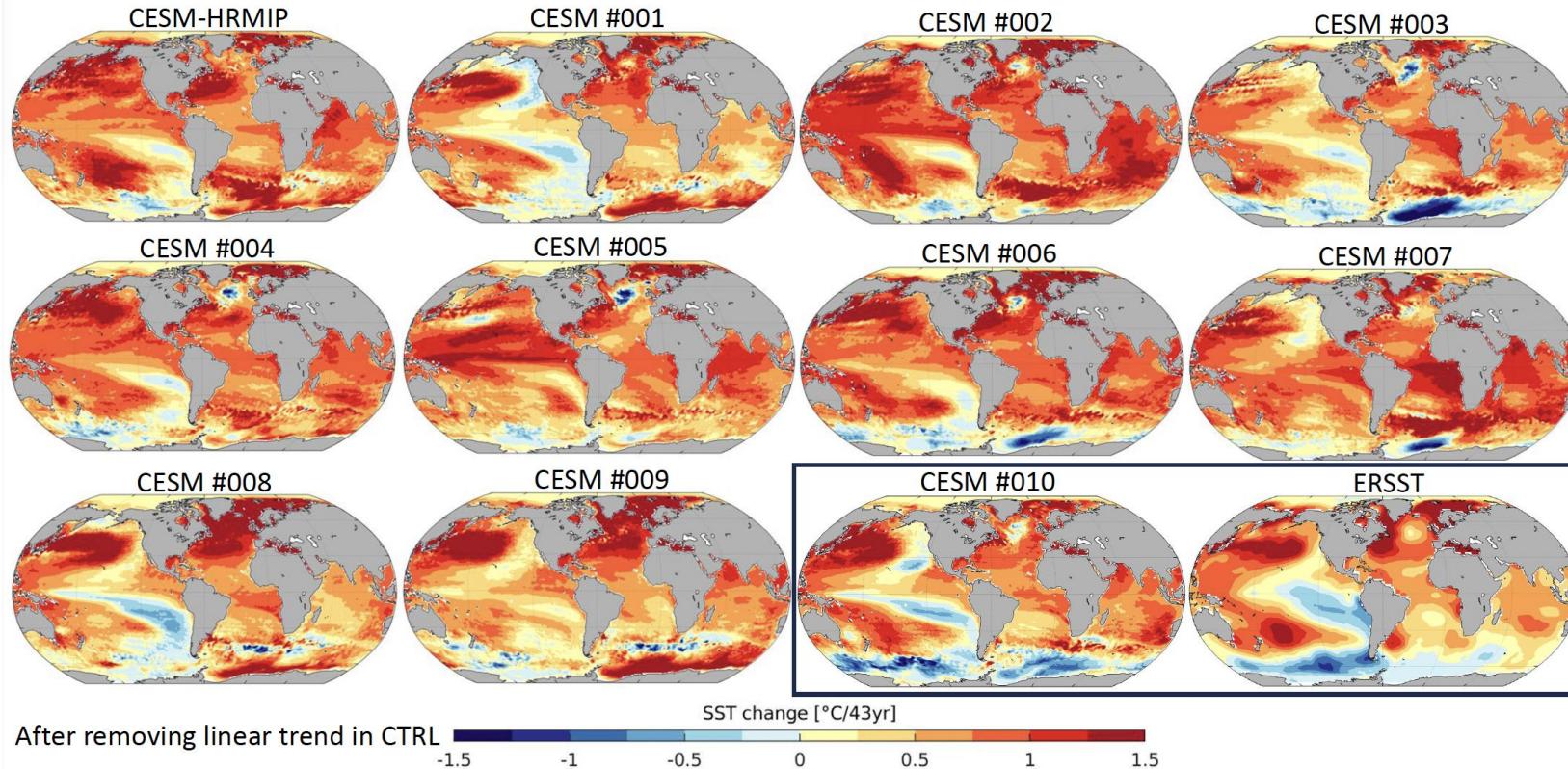
Chang et al. (2020, JAMES)

Linear trend (1980-2022) in SST



Slide from Ping Chang

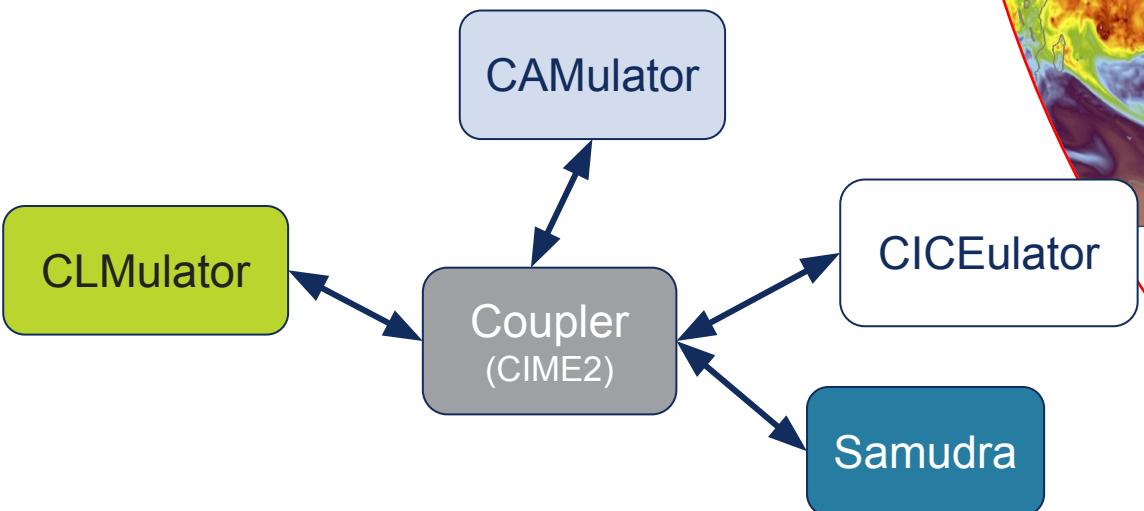
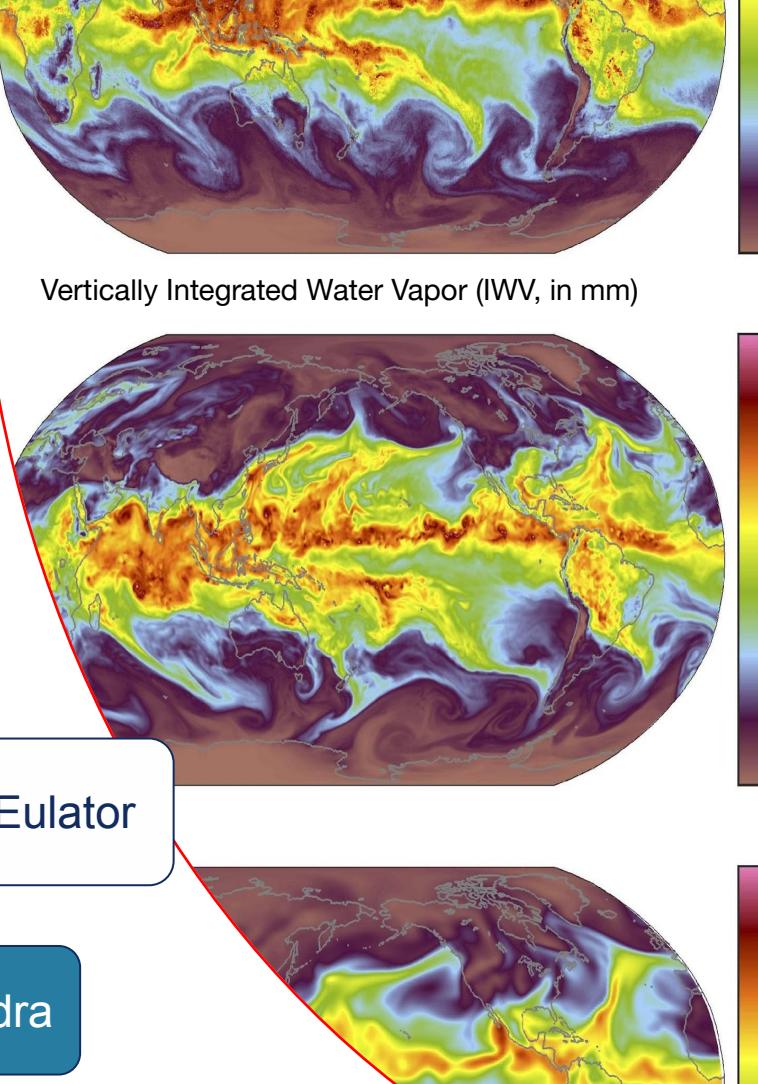
Linear trend (1980-2022) in SST



Slide from Ping Chang

CESM resolution hierarchy: progress and plans

- CESM1.3(HR): 0.25° atm/lnl, 0.1° ocn
- Developing CESM3(HR) version
 - But, ~500K pe-hrs/syr
 - 100M pe-hrs for 200 yrs simulation (!)
 - Utilize a CESMulator to build ensembles of single or a small number of realizations of CESM3(HR)?



Next-generation Earth System modeling to address urgent mitigation and adaptation needs

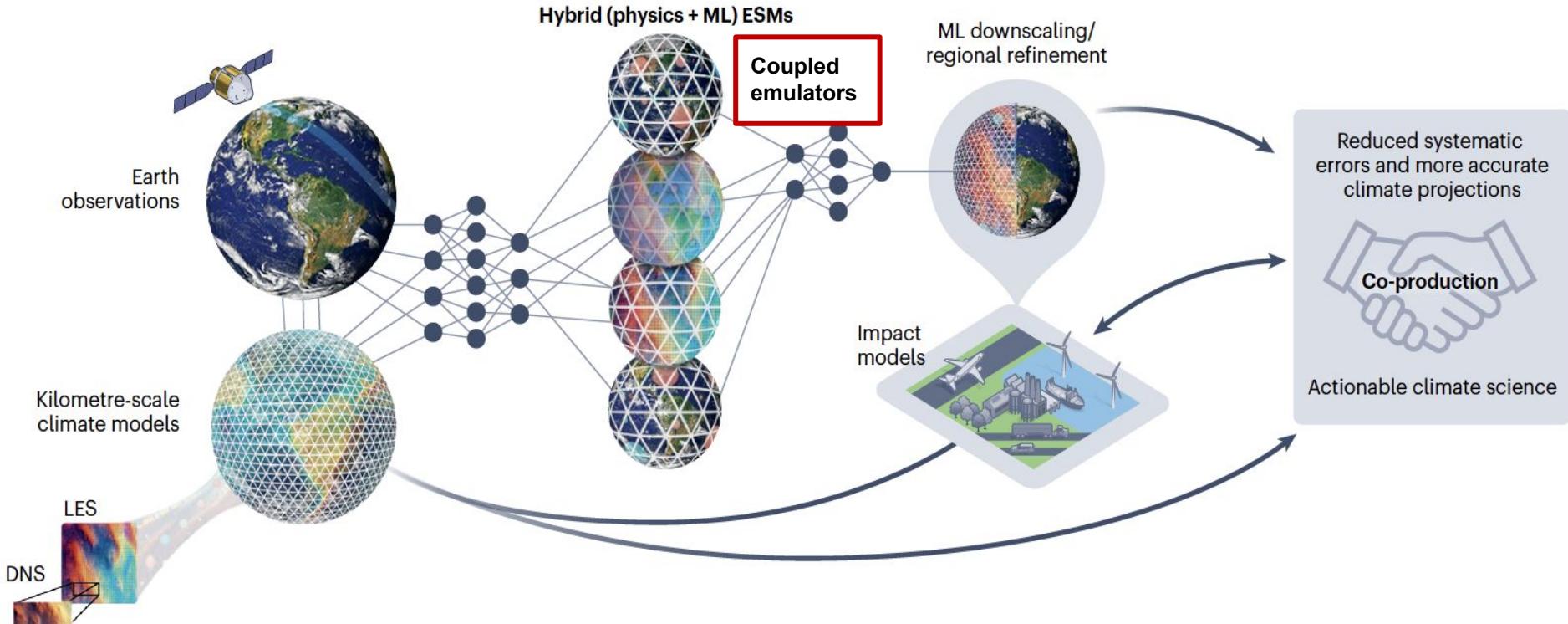
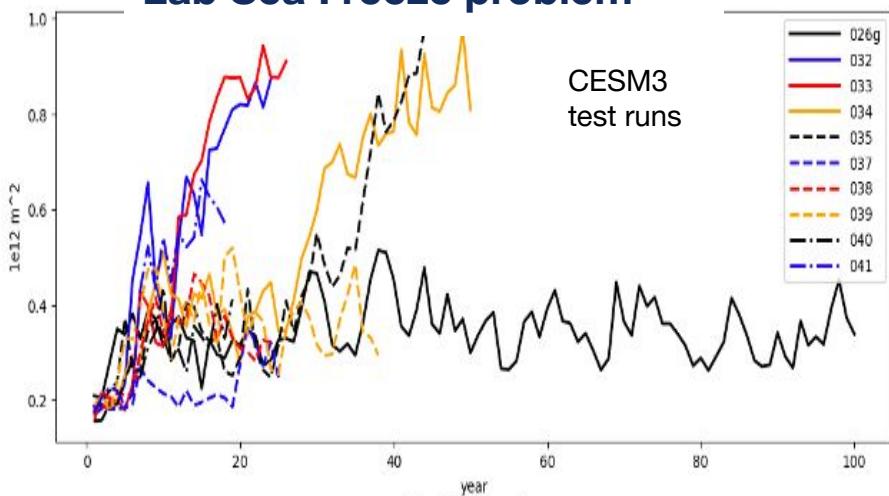
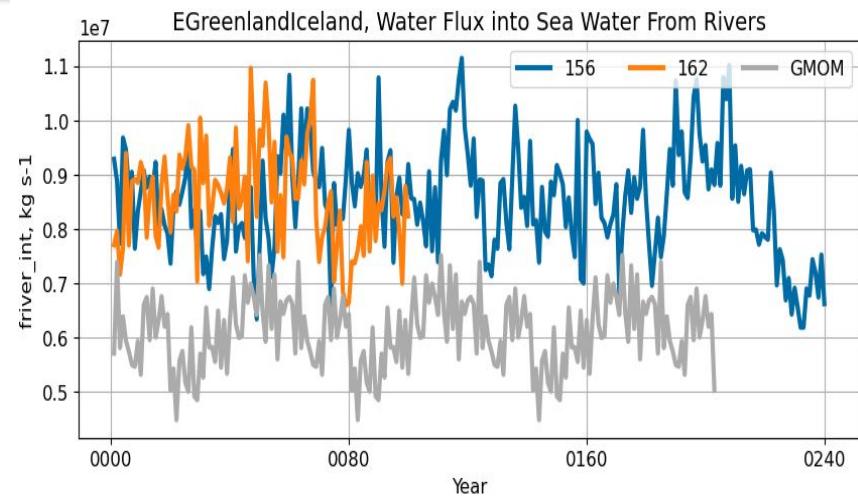


Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)

Can AI help accelerate process of building a coupled model?

Building coupled models is hard

Lab Sea Freeze problem



- CGD-ML group is looking at Lab Sea freeze issue (excessive freshwater, but from where?)
- Can AI identify signatures/precursors to Lab Sea freeze that can help point developers to processes to target for improvement?
- Take advantage of the 50+ member database of runs that freeze and a new pertlim ensemble that we are generating

LEAP v2.0: Accelerate the hybridization and joint optimization

Success of LEAP: Land Model parameter calibration

Challenge for LEAP2.0: Translating work to the coupled climate model:
Impact of parameter perturbations can be different in Coupled vs Land-only (offline) simulations, even exhibiting a different sign of response

Atmospheric modulation of parameter impacts on latent heat flux

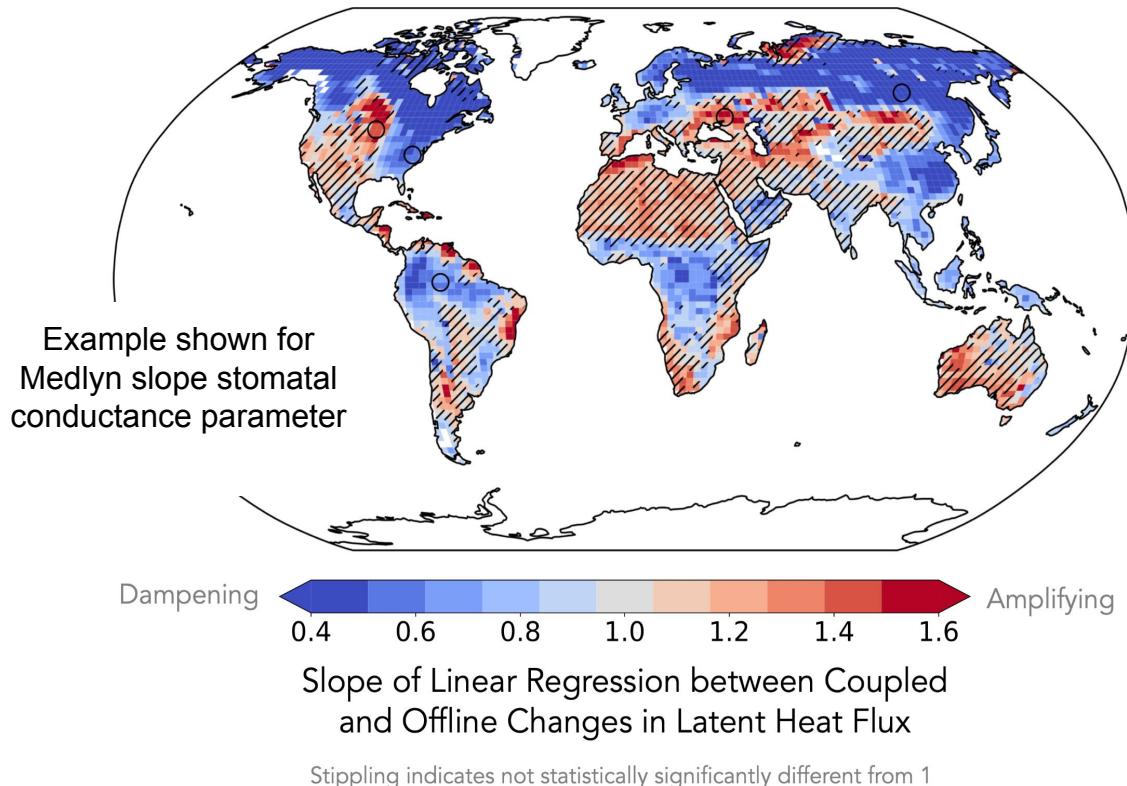


Figure from Zarakas et al., in review

Thank you!

NCAR