Towards a machine learning
enhanced version of the |
Community Earth System
Model (CESM3-MLe)

Exploiting Al/ML across CESM Activity

David Lawrence
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Al/ML can help build next-generation Earth System modeling frameworks

Earth
observations

Kilometre-scale
climate models

Hybrid (physics + ML) ESM
yedip yj.f; S ML downscaling/
ﬁ‘% regional refinement

\ Reduced systematic

errors and more accurate
climate projections
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Actionable climate science

CREDIT is a machine learning-based
research platform for training and
operating Al autoregressive models

@ LEAPB Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)



Earth System Models are also virtual laboratories

Virtual laboratory to study

« Earth system variability and change
« Earth system predictability
« Weather from local to global scales

« Biogeochemical cycles

« Air quality

* Space weather

* |ce sheet - climate interactions

* Hydrological cycles

« Ecological change

* Processes and process interactions

« Land-atmosphere (physical, chemical)
interactions

* Ocean-sea ice-atmosphere interactions
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Actionable climate science

CREDIT is a machine learning-based
research platform for training and
operating Al autoregressive models




Al/ML can help build next-generation Earth System modeling frameworks

Hybrid (physi ML) ESM
yeidip Y§S;+ ) g ML downscaling/
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climate projections
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observations
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Kilometre-scale
climate models

CREDIT is a machine learning-based
research platform for training and
operating Al autoregressive models

@ LEAPB Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)
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Unresolved Small + Complex Processes Require “Parameterizations” which

drive projection uncertainties

Clouds Ocean Eddies Photosynthesis

Light

Physical
+
Biological
Processes
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e Model errors dominate (>50%) uncertainties <40 years

Gentine et al., 2018 Geo Res Lett, Newsom, Zanna et al.,.2020-Geo Res Lett; Bronselaer +Zanna, 2020 Nature; Friedlingstein
@ LEAP et al. 2006 J Climate
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» Learning the Earth

LAY with Artificial MZLINES
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LEAP forward in the reliability,
utility, and reach of climate
projections through synergistic
innovations in data science and
climate science
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Towards a machine learning enhanced version of CESM (CESM3-MLe)

CLM CAM

Constrain by another variable
alone (with structural error)

*—=
Generate a perturbed parameter =
ensemble 250 - o Local obs
248 1
. . 2
Train machine s
ML Emulation . 8
P learning emulator =
e’ LN 244 4
1
= = 242
Metrics Confront model with 5 ] . ,
. 240 Constrain by one
W) observational data variable alone
?\* 238 1 @
. @ .~
.‘. L4
Consirain Con Stl’aln 0.0 0.2 0.4 0.6 0.8 1.0
W posterior microp_aero_wsubi_scale
Iterative refocusing ‘ parameter - -
space Constrain by another variable
\—/ # alone (no structural error)

History matching approach
(Yang et al., 2026, JAMES)

Linnia Hawkins, Daniel Kennedy, Katie Dagon, Qingyuan Yang, Greg Elsaesser, Marcus van Lier
Dave Lawrence Walqui, Brian Medeiros, Addisu Semie




Towards a machine learning enhanced version of CESM (CESM3-MLe)

Generate a PPE

Leaf area index bias
,»3.“"" bl :

Default
Train emulator MAE =1.36

PPE and calibrate

ML Emulation

Calibrated
MAE = 0.60

Observational target

—— observed
unconstrained
e LAl
e LAI, GPP, Biomass

Gross Primary Productivity (PgC/yr)

0 1 2 3 4 5
Leaf Area Index (m?/m?)

R
Methods applied to calibrate CLM6 for CESM3 e e




Towards a machine learning enhanced version of CESM (CESM3-MLe)

O

. R

Generate a PPE Benchmarking CLM "§>b Qs}’b\)
@

Ecosystem and Carbon Cycle

Train emulator o
PPE and calibrate Burned Area

Carbon Dioxide
Gross Primary Productivity
Leaf Area Index
Global Net Ecosystem Carbon Balance
Net Ecosystem Exchange
Ecosystem Respiration
Soil Carbon
o Nitrogen Fixation
Observational target T it e Mothane
Hydrology Cycle
—— observed Evapotranspiration
75 e unconstrained Evaporative Fraction

L]

(S e LAl Latent Heat
50{ o e LAl GPP, Biomass Runoff

ML Emulation

Gross Primary Productivity (PgC/yr)

0 1 2 3 4 5 Sensible Heat

Leaf Area Index (mz/mz) Terrestrial Water Storage Anomaly
Snow Water Equivalent
Permafrost
Surface Soil Moisture

Methods applied to calibrate CLM6 for CESM3 Relative Scale

Worse Value  Better Value




From none (other than -v tuning) to multiple approaches to calibrate CAM!

Contrastive learning
framework (Da Fan and DJ Gagne) - om

* KK2000
4 OBS (best estimate)

Jan

- Model training and latent feature
visualization

- Explainable Al applied to latent
distance to identify structural
differences

- Bayesian optimization calibration
using latent distance

KK2000 Member #

QuadTune (Larson et al., 2025)
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“Poor man's” model tuner. Carves into regions and ~
parameter dependence w/ uncorrelated quadratic emulator

History matching approach
(Yang et al., 2025, JAMES; Yang et al., in prep)
- Simple emulator per target (~2 params as input)
- Target many local climatologies (e.g. Avg. 10° zonal
LWCF, SWCF ...)
- Detect structural error before parameter estimation,
neglect variables w/ large structural error

Constrain by another variable
alone (with structural error)

o—
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Constrain by another variable
alone (no structural error)




CAM: Additive Gaussian Process Emulator (vang et al., JAMES, accepted)

Insight: Individually insensitive parameters can be cumulatively important

Why? Some parameters are only locally/regionally sensitive

Therefore: Emulating only global climatologies may not be sufficient for all problems
Implication: May be able to both decrease local biases while still calibrating globally
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Towards a machine learning enhanced version of CESM (CESM3-MLe)

Demonstrate pathway and impact of ML-based parameterizations in CESM
Warm rain microphysics: Emulate cloud droplet autoconversion and accretion with NNs trained on
CAM simulations with warm rain process replaced with highly resolved bin microphysics (TAU code)

1071 Precipitation - Frequency PDF

1073 - I CMORPH [ ML-warmRain [ KK2000 (CAM6 default)

0 200 400 600 800
Precip (mm/day)

Figure from Addisu Semie



Towards a machine learning enhanced version of CESM (CESM3-MLe)

Demonstrate pathway and impact of ML-based parameterizations in CESM
Warm rain microphysics: Emulate cloud droplet autoconversion and accretion with NNs trained on

CAM simulations with warm rain process replaced with highly resolved bin microphysics (TAU code)

1071 Precipitation - Frequency PDF

10731 B CMORPH [ ML-Warm Rain

B KK2000 (CAM6 default)

Possible improved tail
behavior from using ML-warm
rain parameterization

0 200 400 600 800
Precip (mm/day)

Figure from Addisu Semie



Developing workflow to recalibrate after ML parameterization implemented

1. ML warm rain
microphysics —
improvement in rainfall 10
precip - frequency PDF

1074 Precipitation - Frequency PDF

[ CMORPH [ ML-Warm Rain

B KK2000 (CAMS6 default)

3. Using ML for auto-tuning, re-calibrate
CAM to correct the degraded
performance, while (hopefully)

- o - L simultaneously retaining the improvement

Precip (mm/day) in rainfall intensity - frequency distribution

‘ML-Emuiated .
"SUr_fg-Jce"r-.

2. But, likely will see degraded performance for other fields with new
ML parameterization ]

CAM default - observation CAM with warm rain ML- observation LEarr?;r R
r S ;

Slide from Qingyuan Yang and Greg Elsaesser



Developing workflow to recalibrate after ML parameterization implemented

Precipitation - Frequency PDF

= CMORPH

= ML-Warm Rain [ KK2000 (CAM6 default)

Each plot is for randomly
pulled parameter set from
a 200 member PPE with
and without ML warm rain
parameterization

— Improvement from ML
warm rain microphysics
parameterization is likely to
be retained after
recalibration

400 A 400 600 800 0 200 400 600 800
Precip (mm/day) Precip (mm/day) Precip (mm/day)

Figure from Addisu Semie



Calibration

Precipitation - Frequency PDF

10~ 4

B IMERG ML warm rain configuration
B ML opt can be calibrated to
] BN KK opt achieve good PDF

3 MP Emulator
B KK2000 Original KK2000
parameterization cannot

10-7 4

* Note that there may be some
degradations in climatological
fields in these calibrations

1079
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Figure from Addisu Semie



Accelerating progress towards evaluation of the hypothesis that ML
can help build improved ESMs
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This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.



CESM-MLe Integration Team

Enables productive and sustained interactions between LEAP, M?LInES, and other projects
and CESM scientists and developers
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Integration
team

ﬁgﬁ" github.com/leap-stc/Integration_team

..............


http://github.com/leap-stc/Integration_team

FTorch Bridge

FTorch Deep Convection (YOG)
Integration

Python FTorch Fortran

FTorch_CAM_integration/

— SIC
Machine learning research and Provides bridge to connect Many large-scale scientific |—/ cam/ #
development are predominantly ML models and Earth System models are developed using
conducted in Python. Models Fortran, C, or C++. —— Phys_control.F90
—— physpkg.F90
—— yog_intr.F90
—— nn_interface_CAM.F90
—— nn_convection_flux.F90
— nn_cf_net.F90
—— libraries/
L— FTorch/

M L— FTorch_cesm_interface.F99

ensorFlow

—— docs/
build_instructions.md
troubleshooting.md

® ® ®o o O

PyTorch

—— examples/
L— user_nl_cam

MODEL_CARD.md
README .md




Documentation & tools

leap-stc/integration team

Documentation

FTorch Deep Convection (YOG) Integration

This repository documents and provides sources for i ing a PyTorch-based deep: ion scheme (YOG) into CESM/CAM using
FTorch.

« Component: CAM (CESM3)

* What's ZM/YOG i ies via FTorch ipt model
« Key idea: Keep CAM physics + vertical remapping intact; swap the NN call with a TorchScript forward pass (FTorch), preserving CAM
data flow.
Repository Structure
FTorch_CAM_integration/ (=]
f— src/
— cam/ # Modified CAM physics source files

|— Phys_control.Fge

|— physpkg.F90

|— yog_intr.Foe

|— nn_interface_cau.F90
|— nn_convection_flux.F9@
L— nn_cf_net.F90

f— libraries/
L— FTorch/

L— FTorch_cesm_interface.F90 # Wrapper for FTorch model calls

f— docs/
|— build_instructions.md
L— troubleshooting.md

|— examples/
L— user_nl_cam

f— MODEL_CARD.md
L— README.md

Tools & support

Functional Unit Test set up

This example sets up a functional test on Derecho. The functional test is just a place to test your ml model using FTorch in Fortran. Please
file an issue if you run into problems.

Developed by Adrianna Foster & Linnia Hawkins

1) Clone CTSM
git clone https://github.com/ESCOMP/CTSM.git CTSM

1 suggest cloning to your work directory $WORK or [glade/work/username/
2) Add in some mods

cd CTSM @
git remote add jedwards https://github.com/jedwards4b/ctsm.git

git fetch jedwards

git checkout ftorch_dlfccec99

./bin/git-fleximod update

cd src/fates

git remote add linnia https://github.com/linniahawkins/fates

git fetch linnia

git checkout ml_example

3) Set up your environment

export Torch_DIR=/glade/work/jedwards/conda-envs/ml5.6/ 5]
module load conda
conda activate ctsm_pylib # or some python environment with matplotlib and numpy

Q
-‘" #cesm-integration



https://github.com/leap-stc/Integration_team

Parameterizations in development for possible inclusion in

CESM3-MLe

Earth system feedbacks and p t 1 with machine learning
Incoming Outgoing
solar energy heat energy
Transition from  Evaporative and
solid to vapor heat energy oo Cirrus clouds
exchanges ‘e
Stratus I (45
clouds Aerosols  Cumulus clouds
Snow cover (g
/
N P Atmosphere N
Precipitation Land surface % (temperature, winds
evaporation ‘\ (topography é‘,"_ and precipitation)
and reflectivity) bid

Evaporation  Stratus

and land uses

Marine

biology (currents, Wind and
temperature waves
v and salinity)
Realistich s ice v
geodieny overturning

Ocean bottom

topography

Figure modified from Eyring, Gentine, Camps-Valls,
Lawrence, Reichstein (Nature Climate Change, 2024)



Parameterizations in development for possible inclusion in
CESM3-MLe

Snow cover:

Atmosphere
(temperature, winds
and precipitation)

% x -
Precipitation
evaporation

Earth system feedbacks and p | | with hil
Incoming Outgoing
solar energy heat energy
Transition from  Evaporative and
solid to vapor heat energy 00 Cirrus clouds
exchanges ‘e
Stratus < L
clouds Aerosols  Cumulus clouds

i Vegetation %

Bnd ecologyda Evaporation  Stratus

clouds

Convective triggering

Heat saligity

exchange Cloud cover
Marine Ocean

biology (currents, Wind and
temperature waves
and salinity)

Realistic
geography

Sea ice I Vertical

overturning

s
%e

Ocean bottom
topography

Sea ice floe perimeter

ML-based calibration of CAM, CLM, MOMG independently

ICON, E3SM, lit. Figure modified from Eyring, Gentine, Camps-Valls,
Lawrence, Reichstein (Nature Climate Change, 2024)




Parameterizations in development for possible inclusion in
CESM3-MLe

Earth system feedbacks and p | | with hil

Incoming Outgoing
\ solar energy heat energy '
Transition from  Evaporative and
solid to vapor heat energy 00 Cirrus clouds
exchanges ‘e
Stratus \ %
clouds I Aerosols  Cumulus clouds

Snow cover:

Atmosphere
(temperature, winds
and precipitation)

% x -
Precipitation
evaporation

i Vegetation %

Bnd ecologyda Evaporation  Stratus

clouds

Convective triggering

Heat saligity

exchange Cloud cover
Marine Ocean

biology (currents, Wind and
temperature waves
and salinity)

Realistic
geography

Sea ice I Vertical

overturning

s
%e

Ocean bottom
topography

Sea ice floe perimeter

ML-based calibration of CAM, CLM, MOMG independently

ICON, E3SM, lit. Figure modified from Eyring, Gentine, Camps-Valls,
Lawrence, Reichstein (Nature Climate Change, 2024)




Initial CESM3-MLe AMIP configuration (by cMIP meeting in March?)

Gravity Waves

Ra d | at| on Earth system feedbacks and p { with machine learning @;*
— it “ Warm rain microphysics
‘ solar energy heat energy ‘
Transition from  Evaporative and g o
solid to vapor heat energy ° Cirrus clouds I ce micro p hyS ICS
St I exchanges R
clouds Aerosols Cumulus clouds
Snow cover
phenOIOgy Atmosphere B . .
Precipitati Land surface * (temperature, winds XaVI e r LeVI n e
evaporation (topography 4.!_ and precipitation)
Pedotransfer and reflectivity) kg 1 2 . 1 0 Wed
functions o Inf:lu s Evaporation  Stratus

Sea ice heat conduction
Ice sheet friction

I Sea ice floe perimeter

LEAP
Diajeng Atmojo

clouds Convective trigget.. .y

and land uses

Soil Vegetation y
moisure "?‘.'” Ld
Lakes [
and rivers \{tun gt

Cloud cover

Marine y
biology (currents, Wind and
temperature waves

v and salinity)

Realistic Sea ice I Vertical

Vertical Mixing (KPP)
geography '.‘. overturning

Ocean Mesoscales

Ocean bottom

topography

Air-sea turbulent fluxes

- 9:00 Thurs, PCWG ML-based calibration of CAM, CLM, MOMG independently

Other Qingyuan Yang

Linnia Hawkins, LMWG



Towards a
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enhanced version
of the
Community Earth

System Model
(CESM3-MLe)

Learning the Earth

with Artificial @ M2LINES
intelligence and Physics Schmidt
NSF Science and Sciences
Technology Center

(After CESM3 push) Move forward
to test the hypothesis that ML can
help build better and more
accurate ESMs

Defining Success for CESM3-MLe

Sustained team interactions
(e.g. PI, ML-param developer,
experienced CESM developer,
and SE)

More coordination /
communication

(github CESM-MLe project
management, regular
development meetings)

Hybrid Model Implementation
Workshop (joint with ICON-ML)
June 5-9

Anticipate that there will be
challenges

Reliability in out-of-training
climates

Potential for CESM model
instabilities

Unanticipated
interdependencies

Substantially new simulated
climate may degrade
orthogonal simulation aspects

New tuning challenges with
some knolbs removed

e Several ML-based parameterizations into CESM (1-2 atm, 1-2 ocn, 1-2

Ind, 1 sea ice/land ice)

e ML parameter calibration (Ind, atm)

e Reduced biases in critical fields, especially extremes
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Learning the Earth

with Artificial @ M2LINES
intelligence and Physics Schmidt
NSF Science and Sciences
Technology Center

(After CESM3 push) Move forward
to test the hypothesis that ML can
help build better and more
accurate ESMs

® Sustained team interactions
(e.g. PI, ML-param developer,
experienced CESM developer,
and SE)

e More coordination /
communication
(github CESM-MLe project
management, regular
development meetings)

e Hybrid Model Implementation
Workshop (joint with ICON-ML)
June 5-9

Anticipate that there will be
challenges

Reliability in out-of-training
climates

Potential for CESM model
instabilities

Unanticipated
interdependencies

Substantially new simulated
climate may degrade
orthogonal simulation aspects

New tuning challenges with
some knobs removed

Fundamental Challenge is that it is HARD to build a new coupled model!

e Schmidt Sciences call on coupled model calibration

e Use CESM3-MLe as ‘case study’ to see if we can develop
methodologies to produce a coupled model faster

e |deas: Utilize initialized prediction, efficient component calibration,
hierarchical calibration stepping up through timescales, faster

spinup methods, ..
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Emulators: CREDIT - Community Research Earth Digital Intelligence Twin

What is CREDIT? Datasets

An open foundational platform for

developing and deploying Al weather and ﬂ
Earth system prediction models for

autoregressive systems. Models

Graph

Recurrent
Transformer

CREDIT enables users to build custom
data and modeling pipelines to load data,

train configurable Al forward models, and

deploy them for real-time forecasting, Physics
hindcasting, or scenario projections. ]
Mass Energy Moisture
Conservation Conservation Budget
CREDIT offers both scientifically validated J— \
model configurations and endless /{;’(( m:
customization for any use case. Outputs \k \K "
\ SN

ﬁ;}* N\ NCAR Slide from Will Chapman and DJ Gagne




Working towards CESM3

p
~  Chemistry }
CAM7-Chem
E S N Atmosphere >( )
B COMUINITY EARTH :':;"(%’% (CAM7) LT, MT,
SYSTEM MODEL Y WACCM,
pot o N0 Land  WACCM-X
P (CTSM6
BGC-Crop, FATES)
Significant updates to all Coupler Sea lce
component models (CIME2) (CICES)
Targeting use of CESM3 (I\I/I?(I)\geAl;{sT \
ey Chell= mizuRoute) Land Ice
e : Ocean (CISM3)
Emls.S|ons.—dr|ven (MOMS)
conflguratllon. to be | Surface Waves
defaUIt, with Interactive (Wavewatchs) Biogeochemistry
ice sheets and fire aerosol (MARBL)

emissions?




CAMulator as part of CESMS3 release

g
[ CAMulator JV | Chemistry
(CAM7) ., e (CAM7-Chem)
(CAM?) C LT, T, }
Y WACCM,
Land  WACCM-X
(CTSM6

BGC-Crop, FATES)

Sea Ice
Supported CAMulator, Coupler it
trained on CAM7 (CIME2)

. , Rivers
Flexible enough to easily (MOSART

train on new simulations mizuRoute) Land Ice
or for different priority Ocean (CISM3)
emulated targets (MOM®6)

Surface Waves
(WaveWatch3) Biogeochemistry
(MARBL)




Towards emulation of CESM High Resolution

simulations?

e CESM1.3(HR): 0.25° atm/Ind, 0.1° ocn

o 10-member ensemble of historical and
several projections

Chang et al. (2020, JAMES)



Linear trend (1980-2022) in SST

SST change [°Cr43yr]

CESM-HR SST (10 mbr)

Slide from Ping Chang



Linear trend (1980-2022) in SST

CESM-HRMIP CESM #001 . CESM #002 CESM #003

SST change [°C/43yr]
1 I B— ]
-1.5 -1 -0.5 0 0.5 1 15

Slide from Ping Chang
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CESM resolution hierarchy: progress and plans

e CESM1.3(HR): 0.25° atm/Ind, 0.1° ocn
e Developing CESM3(HR) version
o But, ~500K pe-hrs/syr
o 100M pe-hrs for 200 yrs simulation (!)

o Utilize a CESMulator to build ensembles
of single or a small number of realizations
of CESM3(HR)?

LCAMuIator}

[ CLMulator CICEulator

80

Coupler
(CIME2) 70

60

50

&y > {
,ﬁ»s‘F? Chang et al. (2020, JAMES)

..............



Next-generation Earth System modeling to address urgent mitigation and adaptation needs

Hybrid (physics + ML) ESMs
f(AVAv

) TN

ML downscaling/
regional refinement

. | Coupled
emulators

\ Reduced systematic

errors and more accurate
climate projections

/\
/ {Z’ﬁcﬂon\w

Earth
observations

Impact
b models
e _ %*:ﬁf*ﬁ, % : Actionable climate science
climate models (e o :ﬁ”ﬁ
Ao, Q
AV A J

L VAV, A
';‘95"‘; AVAVAVAY, 4 g
o YAy,
*-é,ggﬂe:"* g
""u‘?:.'f,

Figure from Eyring, Gentine, Camps-Valls, Lawrence, Reichstein (Nature Climate Change, 2024)




Can Al help accelerate process of building a coupled model?

1e7 EGreenlandiceland, Water Flux into Sea Water From Rivers
Building coupled models is hard 111 — 156 — 162 GMOM
10 it
PRXER TYIN J i
2 081 ‘ Vf ‘ t ‘; 1
507
" 06 '
05
Lab Sea Freeze problem 0000 0080 0160 0240
() —_— 2ty Year
1 CESM3 =
¥\ - . .
" il tost runs e e CGD-ML group is looking at Lab Sea freeze

issue (excessive freshwater, but from where?)

e Can Al identify signatures/precursors to Lab
Sea freeze that can help point developers to
processes to target for improvement?

e Take advantage of the 50+ member database
of runs that freeze and a new pertlim

0.2

: = % i = 7 ensemble that we are generating




LEAP v2.0: Accelerate the hybridization and joint
optimization

Atmospheric modulation of parameter
impacts on latent heat flux

Success of LEAP: Land Model
parameter calibration

Challenge for LEAP2.0: Translating
work to the coupled climate model:
Impact of parameter perturbations
can be different in Coupled vs Example shown for
Land-only (offline) simulations, even Medlyn slope stomatal
exhibiting a different sign of response  conductance parameter

Dampening - Amplifying
0.4 0.6 0.8 1.0 1.2 1.4 1.6
Slope of Linear Regression between Coupled

and Offline Changes in Latent Heat Flux

Figure from Zarakas et al., in review
Stippling indicates not statistically significantly different from 1

& ‘ & LEAP || YEAR4NSFSITEVISIT



Thank you!
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