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Conventional Numerical Weather Prediction Models
are Expensive!!

"The time-to-solution for training FourCastNet measured on JUWELS Booster on 3,072 GPUs is 67.4 minutes,
resulting in an 80,000 times faster time-to-solution relative to state-of-the-art NWP, in inference."

Latency and Energy consumption for a 24-hour 100-member ensemble forecast
FCN - 30km | FCN - 18km :
IES (actual) (extrapolated) IFS / FCN(18km) Ratio
Nodes required 3060 1 2 1530
Latency
(Node-seconds) 984000 7 22 44727
Fﬁ‘;rgy Consumed | 571000 7 22 12318

Table 2: The FourCastNet model can compute a 100-member ensemble forecast on a single 4GPU A100 node. In
comparison, the IFS model needs 3060 nodes for such a forecast. In this table, we provide information about latency
and energy consumption for the FourCastNet model in comparison with the IFS model. The FourCastNet model at a
30km resolution is about 145,000 times faster on a single-node basis than the IFS model. We can also estimate the
cost of generating an 18km resolution forecast using FourCastNet. Such a hypothetical 18km model would be about
45,000 times faster than the IFS on a single-node basis. The FourCastNet model at 30km resolution uses 24,000 times

less energy to compute the ensemble forecast than the IFS model, while a hypothetical FourCastNet model at 18km
resolution would use 12000 times less energy.

*FourCastNet: https://doi.org/10.1145/3592979.3593412, https://doi.org/10.48550/arXiv.2202.11214
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Semi-Lagrangian Advection Operator for Deep Learning UBC

Large advection in grid scale is a problem to model.
Convolution Neural Networks (CNN) are not sufficient!

CNNs' depth needs to scale linearly with the scale of advection.
NSL: Semi-Lagrangian push operator to learn large advections.
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PARADIS: Global Weather Al Model at 1° Resolution

Table 5. Input and output variable inventory for the PARADIS model. Atmospheric variables are evaluated at 13 pressure levels (50, 100,
150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000 hPa).

Category Variable Name Input Output

Geopotential

Cartesian horizontal wind vector
Atmospheric Specific humidity

Temperature

Vertical velocity

10m Cartesian horizontal wind vector
2m Temperature
Surface Mean sea-level pressure
Surface pressure
Total column water

TOA incident solar radiation
Forcings Time of day (sin, cos)
Year progress (sin, cos)

Geopotential at surface
Land-sea mask
Topographic slope
Constants Sub-grid topographic standard deviation
Inverse longitude spacing
Latitude / longitude

cos(9)
sin(), cos(A)
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PARADIS: doi.org/10.48550/arXiv.2601.21151
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PARADIS vs ECMWF HRES vs Google GraphCast:
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A Figure 1. Tracking of cyclone eye for Hurricane Laura (August

2020) using different models and the observed trajectory (IBTrACS

+.. N dataset (Knapp et al., 2010; Gahtan et al., 2024)).
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Predicting Hurricane Laura (August 2020)
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Figure 1. Tracking of cyclone eye for Hurricane Laura (August
2020) using different models and the observed trajectory (IBTrACS
dataset (Knapp et al., 2010; Gahtan et al., 2024)).
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"All models are wrong, but some are useful” -

George E. P. Box - ,.
Figure 1. Tracking of cyclone eye for Hurricane Laura (August
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Easy to Generate Random Noise
But Not Easy to Generate Images : UBC
The backbone of generative Al W
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Distribution of Complex Data

Distribution of Noises

|deally,
Generative Model (Noise) = Real Data



Leveraging Flow Based Generative Models,
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Leveraging Flow Based Generative Models, UBC

Generative Model (Noise) = Realistic Data
Backward Flow:
Generative Model (Realistic Data) = Noise

Logic:

*F is a trained generative flow model.

Let X is a sample from physical data.

F(F-1(X)) =

*\We don't know the physical
perturbation dX, but since F-1(X) is a
Gaussian Noise, | can perturb F-1(X).
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Leveraging Flow Based Generative Models UBC

to Perturb Data Realistically W
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Figure 9: Three random perturbed states of a Moving
MNIST sample state.
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- - Figure 10: Three random perturbed states of a Weather-
Bench U10 state.

Figure 11: Perturbed states of a WeatherBench T850 state.

11



An Example from WeatherBench 1.40625deg

initial reconstructed

True Gaussian reconstruction error
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Conclusion ¥

* We got a technique to generate multiple perturbed initial states for Al and NWP models.
+ With Deep Learning, we can easily generate 1000 ensemble members in minutes.
* S0, easily produce 1000 ensemble predictions.

*  We engineering PARADIS 2.0 with ensemble forecasting system, to be released by the
Summer 2026.
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