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Conventional Numerical  Weather Prediction Models 

are Expensive!!
"The time-to-solution for training FourCastNet measured on JUWELS Booster on 3,072 GPUs is 67.4 minutes, 
resulting in an 80,000 times faster time-to-solution relative to state-of-the-art NWP, in inference."

*FourCastNet: https://doi.org/10.1145/3592979.3593412, https://doi.org/10.48550/arXiv.2202.11214 

https://doi.org/10.1145/3592979.3593412
https://doi.org/10.48550/arXiv.2202.11214
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Large advection in grid scale is a problem to model.

Convolution Neural Networks (CNN) are not sufficient!

CNNs' depth needs to scale linearly with the scale of advection.

NSL: Semi-Lagrangian push operator to learn large advections.

Semi-Lagrangian Advection Operator for Deep Learning

NSL: Neural Semi Lagrangian
ADR: NSL Based CNN doi.org/10.52202/079017-1110
ResNet: doi.org/10.1109/CVPR.2016.90

UNet: doi.org/10.1007/978-3-319-24574-4_28

https://doi.org/10.52202/079017-1110
https://doi.org/10.52202/079017-1110
https://doi.org/10.52202/079017-1110
https://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
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PARADIS: Global Weather AI Model at 1° Resolution

PARADIS: doi.org/10.48550/arXiv.2601.21151

https://doi.org/10.48550/arXiv.2601.21151
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PARADIS vs ECMWF HRES  vs Google GraphCast: 

PARADIS: doi.org/10.48550/arXiv.2601.21151
HRES: doi.org/10.5065/D68050ZV
GraphCast: doi.org/10.1126/science.adi2336

Pangu: doi.org/10.1038/s41586-023-06185-3

     

    

     

    

     

    

     

    

     

    

     

    

     

    

     

    

     

    

     

    

     

     

     

                 

     

    

     

      

     

      

     

      

     

      

  
  
 

 
 
 
 
  
 

     

       

     

                  

     

                  

     

                       

     

            

     

        

     

     

     

    

     

     

     

    

     

     

     

    

                       

    

     

    

     

    

     

    

     

    

     

    

     

    

     

    

     

    

  
  
 

 
 
 
  
  
 
 
 
 
  
 
  
 

     

    

     

      

     

      

     

      

     

      

     

      

  
  
 

 
 
  
  
 
 
 
  
 
 
  
 
  
  

     

       

     

          

     

               

     

            

     

        

     

    

     

    

     

    

     

    

     

    

     

    

                           

    

     

    

     

     

     

     

     

     

  
  
 

  
  
 
  
  

 
  
 
 
  
 
 
  
  

     

       

     

          

     

               

     

            

     

        

Z500 Cyclones Tracked in 2020

https://doi.org/10.48550/arXiv.2601.21151
https://doi.org/10.5065/D68050ZV
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
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Predicting Hurricane Laura (August 2020)

PARADIS: doi.org/10.48550/arXiv.2601.21151
HRES: doi.org/10.5065/D68050ZV
GraphCast: doi.org/10.1126/science.adi2336

Pangu: doi.org/10.1038/s41586-023-06185-3

https://doi.org/10.48550/arXiv.2601.21151
https://doi.org/10.5065/D68050ZV
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
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"All models are wrong, but some are useful"

HRES: doi.org/10.5065/D68050ZV
Pangu: doi.org/10.1038/s41586-023-06185-3

Need f               f          F   c   ​ 

George E. P. Box

https://doi.org/10.5065/D68050ZV
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1038/s41586-023-06185-3
https://en.wikipedia.org/wiki/George_E._P._Box
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Easy to Generate Random Noise 
But Not Easy to Generate Images : 
                                                  The backbone of generative AI

Distribution of Complex Data Distribution of Noises

Ideally, 

Generative Model (Noise) = Real Data
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Leveraging Flow Based Generative Models 
                                               to Perturb Data Realistically

Reconstruction                             Perturbation
Invertible

Forward Flow:

Generative Model (Noise) = Realistic Data

Backward Flow:

Generative Model-1 (Realistic Data) = Noise

*https://doi.org/10.48550/arXiv.2508.01101

http://*https://doi.org/10.48550/arXiv.2508.01101
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Leveraging Flow Based Generative Models 
                                               to Perturb Data Realistically

   Perturbation

Forward Flow:

Generative Model (Noise) = Realistic Data

Backward Flow:

Generative Model-1 (Realistic Data) = Noise

Logic:

•F is a trained generative flow model.

•Let X is a sample from physical data.

F(F-1(X)) = X

•We don't know the physical 

perturbation dX, but since F-1(X) is a 

Gaussian Noise, I can perturb F-1(X).

• X' = F(F-1(X) + σN(O,I))

•physical perturbation (dX) = X' - X
*https://doi.org/10.48550/arXiv.2508.01101

http://*https://doi.org/10.48550/arXiv.2508.01101
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Leveraging Flow Based Generative Models 
                                               to Perturb Data Realistically
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An Example from WeatherBench 1.40625deg
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• We got a technique to generate multiple perturbed initial states for AI and NWP models.

• With Deep Learning, we can easily generate 1000 ensemble members in minutes. 

• So, easily produce 1000 ensemble predictions.

• We engineering PARADIS 2.0 with ensemble forecasting system, to be released by the 

Summer 2026.

Conclusion
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