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Intro: Simulated Antarctic Clouds “bright” enough?

Simulation - Observation:
Multi-model mean - CERES-EBAF
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Fig 1. Surface incoming shortwave radiation bias during
Austral summertimel'l. Mallet, et al.,(2023)



Intro: Natural Marine Cloud Brightening

Simulation - Observation:
Multi-model mean - CERES-EBAF
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Fig 1. Surface incoming shortwave radiation bias during
Austral summertimel'l. Mallet, et al.,(2023)
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Fig 2. Geographic distribution of the high-Nd-quartile
scenes during Austral summertime, Mace et al.,
(2021)
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Multi-model mean - CERES-EBAF
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Fig 3. Latitudinal distribution of
relative bias of CCN population



Over the Summertime Southern Ocean
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Intro;: CAM6 CCN Seasonal Bias

Niu et al. 2025 JGR-A:
(doi 0.1029/2024JD042734)

A. Sometimes overestimate 3Sw
sea- salts

B. CAMG6 missing small
sulfates
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To do list;

A. Tuning up sea salts|
B. Tuning down sulfates 1

Free troposphere

Reduced sea-salt emission flux from U434 to 1/,,28
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A.Tuning down sea-salt emission
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B.

Tuning up sulfates

2018 Jan, Voyage from Hobart to Mawson
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Influence on Clouds
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Fig 4. Histogram of N4 from observation and



Influence on Radiation: become more reflective
Multi-model mean - CERES-EBAF DMS X 3+ U28- baserun
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Fig 1. Surface incoming shortwave radiation (W m-2) Fig 2. TOA Shortwave Cloud Radiative Forcing (W m2)
bias during Austral summertimel'l. Mallet, et al.,(2023) during 2018 Jan.
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