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Trends in atmospheric CH, mole fractions

Global Monthly Mean CHq4 N|Sbet et al. (2023)

. Further acceleration “Recent studies point to strongly
S increased emissions from wetlands,
g™ especially in the tropics”
§ Equilibration Start of new growth
g % Llarge tropical source from wetland
3 1700 ] emissions, and agriculture.
20" century rise <+ Possible contribution by negative
1650} ZZZ’Z&‘}‘L‘Z%QZSV"JQ @ anomalies in OH radicals (e.g., Chen et
1550 5550 %10 5550 al., 2025) driven by NOx emissions

Year

reduction following COVID-19
Figure 1. Global monthly mean of atmospheric CH,, NOAA network. Note convex equilibration curve to 2006; concave

acceleration curve from 2007. The convex curve from the 1980s to early 2000s is consistent with relaxation to a source-sink I OC kd O wn S an d eXt r e me fl re e mi S S I O n S

steady state (Dlugokencky et al., 2003), but then the start of a renewed growth became apparent in 2007, and the slope of the ( i )
new concave curve steepened in 2013 (acceleration of growth), followed by further acceleration in 2020. Modified from Lan e 'g ! A u St ra II a 2 O] 9
et al. (2022). Data from https://gml.noaa.gov/dv/data.html.

Nisbet, E. G, etal. (2023), Atmospheric Methane: Comparison Between Methane's Record in 2006 -2022 and During Glacial
Terminations Global Biogeochemical Cycles.

Chen et al, (2025), Converging evidence for reduced global atmospheric oxidation in 2020, National Science Review.



Hydroxyl radical -OH

Super-Fast GEOS-Chem MCMv3.3
Climate Model Chemical Transport Model Reference Box Model
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>

Figure 2. A visual representation of the species-reaction graphs used in this work, analogous to Figure 1. Vertex color (dark-light) and size (small-large) scales
on a per-graph basis with the out-degree centrality (the number of edges leaving a node, see Section 5). Use cases and global graph properties (M = modularity,
R = Reciprocity, y = Gamma fitting parameter, see Section 4) are summarized below graph labels.

Vertex centrality: OH is the most important species of atmospheric chemistry

Silva, S. J., et al., A Graph Theoretical Intercomparison of Atmospheric Chemical Mechanisms, Geophysical Research Letters, 2021.
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Reconciliate atmospheric OH estimates

< Uncertainties of 10 % in methyl-chloroform inversions (e.g. global methane budget
2025).

< chemistry-climate model (CCM) prognostic OH have uncertainties of around 20 %
% CCMs tend to overestimate the OH distribution
% Current estimates diverge on the latitudinal and temporal distribution of OH
== Greenland fim air
| = Greenland ice cores average
=== Greenland multiModel AerChemMIP
— Uigiaguik NOAA annual mean [CO) “The AerChemMIP model mean is
o ; about 20% lower than ice archive
datasets at northern high
latitudes during the entire 1850 -
2014 period.”
o (a)
1850 1875 1900 1925 1950 1975 2000 2025

Fain, X., et al, (2025)
Saunois et al,, (2025)



Emission-driven methane simulations:

CESM-SSP434 prescribed methane mole fraction (January 2017) 5000

% Evaluating the impact of chemistry and
chemistry changes on the methane

growth rate.

1950

) \ ) 1900

% Include and quantify chemical feedback.

1800

% Feedback on emissions processes within 1750

the Earth System (e.g., soil, fires, and
wetlands response to C"mdte) CESM-CH4 (NOAA CarbonTracker-CH4 2025) (January 2017)

1700
2000
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CESM-CH4: methane flux emission- 1900

. -
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Methane posterior flux are provided by < %é R 1850
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Impact of short-lived halogen (SLH) chemistry

CESM2.2 SLH simulations Chemistry Methane AnthroCOemis.  Fire COemis.
chemistry
(Fernandez et
al,, 2025)
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Tropospheric Ozone burden vs OH

O. Wild et al.: Uncertainty in global O3 and OH 4049
450 T T T T 330 T T T
FRSGC/UCI CTM
320 |- -
aof- ¢ ] — Lighining NOx
=0 * . = 310 — Dry deposition 4
E e Wet deposition
< F /
5 L Strattrop exchange ]
= sl > S \ — Temperature
3 . d o — i!uwmw E
2 2 N — Comvection
s s
g 0r . 1 % 0 E
g 2
2 2 )
E T e Licutesuties £ 20 E
250 [~ @ ACCENT models . b
® HTAPn . 260 P |
® ACCMIP models @ ®
7 ) P FUUEN P PP PP S PR P P ) TR EPRPRPN RPN RPN BRI
6 7 8 9 10 11 12 13 14 8 9 10 11 12
CH, chemical lifetime /yrs CH, chemical lifetime /yrs

Figure 1. Tropospheric oxidant budgets from previous published studies and model intercomparisons (a), along with measurement-based
estimates of the tropospheric O3 burden and CHy lifetime (shaded regions). Panel (b) shows results from one-at-a-time sensitivity studies
with a single model revealing the extent to which individual processes can influence the budgets (see Wild, 2007, for details). Note that
results in (a) differing emissi and met logical years (study details are given in Table 1) and that (b) covers only part of the
parameter space shown in (a).

Table 1. Global tropospheric metrics from previous model studies.

Studies Number O3 burden CHy4 lifetime References

Early literature studies 33 studies 307 £38Tg Wild (2007)

ACCENT intercomparison 21 models 344 +£39Tg 9.6+ 1.4 years  Stevenson et al. (2006)

HTAP intercomparison 12 models 328+41Tg 10.2+1.7 years Fiore et al. (2009)

ACCMIP intercomparison 14 models 337+23Tg 9.8+ 1.6years  Young et al (2013), Voulgarakis et al. (2013)
Observational estimates 335+20Tg 11.2+1.3 years Wild (2007), Prather et al. (2012)

Tropospheric O3 burden (60°S to 60°N, Tg)
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8 Wild et al, Global sensitivity analysis of chemistry—climate model budgets of tropospheric ozone and OH: exploring model diversity, 2020
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I CESM2.2/CAM-chem simulations

eI prescribed methane (SSP434 Y Y R Y _ MorITT
after 2015) inversion**
CESM-245 prescribegf:':tz%?;‘)e (SSP245 ¢ Ams-Mosalc FINN2.5 e
CESM-CH4 NOAA CT-CH4 2025* CAMS-MOSAIC FINN2.5 inye?:ig:**
% 2002 as spinup, 2003 to 2022 included
f09, 32 vertical layers, and nudged to MERRA-2 Oh.Y. etal,. CarbonTracker CH, 2025.

NOAA Global Monitoring Laboratory, 2025.

*NOAA CarbonTracker-CH4 2025 (Oh et al,, 2025) o .
o Gaubert, et al. "Nonlinear and non-Gaussian ensemble
10 From Gaubert et GI'I (2024) assimilation of MOPITT CO." JGR: Atmospheres, 2024.



I CESM2.2/CAM-chem simulations

eI prescribed methane (SSP434 Y YRR ST MOPITT
after 2015) : inversion**
} prescribed methane (SSP245 ) MOPITT
CESM-245 after 2015) CAMS-MOSAIC FINN2.5 inversion**
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- - * -
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f09, 32 vertical layers, and nudged to MERRA-2
*NOAA CarbonTracker-CH4 2025 (Oh et al.,, 2025)
n  ** From Gaubert et al, (2024)

Oh, Y., etal,. CarbonTracker CH, 2025.

NOAA Global Monitoring Laboratory, 2025.

Gaubert, et al. "Nonlinear and non-Gaussian ensemble
assimilation of MOPITT CO." JGR: Atmospheres, 2024.



CMIP7 CO emissions:

CESM-CH4-CMIP7 - CESM-CH4
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Comparison with MOPITTV9J CO
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Comparison with Airborne field campaign

50 ) NASA NIER KORUS-AQ (May-June 2016) 100 ) NASA NIER KORUS-AQ (May-June 2016) 100 .C) NASA NIER KORUS-AQ (May-June 2016)

\ —CH (ppb) — CO (pph) -
) | = = = HISS-AC
i s CESM-CH4 400 - 400 - = L e

400 - — CESM-CH4
s CESM-CH4-CMIP7 s CESM-CH4-CMIP7
w— CESM-CH4-CMIP7-CO w— CESM-CH4-CMIP7-CO
500 - 500 - 500 -
§ 92_’ 3:‘ — ), (pph)
< 600- < 600- < 600 - o
5 5 5 — CESM-CH4
2 4 2 s CESM.CH4-CMIPT
& 700 - & 700 - £ 700 - s— CESM-CH4-CMIP7-CO
800 - 800 - 800 -
900 - 900 - 900 -
1750 1800 1850 1900 1950 2000 2050 50 100 150 200 250 300 350 60 80 100 120
CHj (ppb) CO (ppb) Os (ppb)
D) NSF/NASA ACCLIP (August 2022) E) NSF/NASA ACCLIP (August 2022) F) NSF/NASA ACCLIP (August 2022) s
14000 - 14000 - 14000 - >
—CO (ppb)
e CESM-SSP245
12000 - 12000 - —C R 12000 -
e CESM-CH4
s CESM-CH4-CMIP7
10000 - 10000 - = CEM-CHE U700 10000 -
E —CH, (pph) = -
E 8000 - m— CESM-SSP245 é 8000 - E 8000 -
A s CESM-SSP434 3 2
a w—— CESM-CH4 2 E
= 6000 - s CESM-CH4-CMIP7 = 6000 - £ 6000 -
<« = CESM-CH4-CMIP7-CO < <
4000 - 4000 - 4000 - — ) (pph)
w— CESM-SSP245
s CESM-SSP434
2000 - 2000 - 2000 - — CESM-CH4
s CESM-CH4-CMIP7
m— CESM-CH4-CMIP7-CO
0-. B " ' 0- ' ' ) ' 0- V ' i '
1800 1900 2000 2100 50 100 150 200 0 50 100 150 200
CHs (ppb) CO (ppb) Os (ppb)

CESM-CH4-CMIP7 shows a persistent low bias throughout the troposphere.
CESM-CH4 reproduces observed vertical gradients for CH,, CO, and Os



CH4 mole fraction (ppb) CH4 mole fraction (ppb)

CH4 mole fraction (ppb)

NOAA Marine Boundary Layer Atmospheric Growth Rate

2000-

1900 -

1800-

1950-

1900-

1850 -

1800 -

1750~

Monthly Mean CH4 (NET)

1700-

1900 -
1850 -
1800 -
1750~

1700-

16

Atmospheric Growtﬁ Rate (ppb)

25-

20-

15-

10-

w

NOAA MBL reference
CESM-55P245
CESM-S5P434

CESM-CH4
CESM-CH4-CMIP7
CESM-CH4-CMIP7-CO ‘i ' |

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

CESM: observation-driven prescribed methane is slightly higher than
the NOAA MBL data, while scenarios after 2015 overestimate methane
Modelled Atmospheric Growth Rate Both is better in emission-driven
simulations than in observation-driven prescribed field

Low tropical CO emissions prevents correct CH4 simulation with
CMIP7 forcings



Tropospheric Ozone burden vs OH
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I OH budget (2010-2019)

CESM-CH4 (2003-2022) Bossolasco et al., 2024 Lelieveld et al., 2016

| . . N,
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j(H,0,)
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% OH recycling probability of 0.61: global and annual OH is well buffered to perturbations
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OH budget (2010-2019)
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Ensemble Simulations: Nudging to ERA5 experiment

nens U \' T Q
1 0.1 0.1 0 0
2 0.11 0.11 0.01 0.01
3 0.12 0.12 0.02 0.02
4 0.13 0.13 0.03 0.03
5 0.14 0.14 0.04 0.04
6 0.15 0.15 0.05 0.05
7 0.16 0.16 0.06 0.06
8 017 0.17 0.07 0.07
9 0.18 0.18 0.08 0.08
10 0.19 0.19 0.09 0.09
11 0.2 0.2 0.1 0.1
12 0.21 0.21 0.11 0.11
13 0.22 0.22 0.12 0.12
14 0.23 0.23 0.13 0.13
15 0.24 0.24 0.14 0.14
16 0.25 0.25 0.15 0.15
17 0.26 0.26 0.16 0.16
18 0.27 0.27 017 0.17
19 0.28 0.28 0.18 0.18
20 0.29 0.29 0.19 0.19
21 0.3 0.3 0.2 0.2
22 0.31 0.31 0.21 0.21
23 0.32 0.32 0.22 0.22
24 0.33 0.33 0.23 0.23
25 0.34 0.34 0.24 0.24
26 0.35 0.35 0.25 0.25
27 0.36 0.36 0.26 0.26
28 0.37 0.37 0.27 0.27
29 0.38 0.38 0.28 0.28
30 0.39 0.39 0.29 0.29




Ensemble Simulations
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Ensemble Simulations
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Ensemble Simulations
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Conclusions

Including halogen chemistry reduces global tropospheric OH, increasing the CH4
lifetime by ~1 year.

Emission-driven CH4 simulations show sensitivity of OH and CH4 to anthropogenic and
fire CO emissions, consistent with satellite and aircraft constraints.

CESM-CH4 reproduces more realistically MOPITT CO, surface in-situ CH4, and aircraft
in-situ CO, CH, and O3 observations compared to CMIP7-based input emissions.

Modelled Atmospheric Growth Rate Both is better in one emission-driven simulations
than in the simulations using observation-driven prescribed fields.

Stronger nudging to ERA-5 provides higher emissions from vegetation (MEGAN) and
lower ozone photolysis and source of OH, changing the lifetime by ~1 year.
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Figure 2. (a) Global anthropogenic methane emissions (including biomass burning) over 2000-2050 from historical inventories (black line
and shaded grey area) and future projections (coloured lines) (in Tg CH4 yr~!) from selected scenarios harmonised with historical emissions
(CEDS) for CMIP6 activities (Gidden et al., 2019). Historical mean emissions correspond to the average of anthropogenic inventories listed
in Table 1 added to the GFEDv4.1s (van der Werf et al., 2017) biomass burning historical emissions. (b) Global atmospheric methane
concentrations for NOAA surface site observations (black) and projections based on SSPs (Riahi et al., 2017) with concentrations estimated
using MAGICC (Meinshausen et al., 2017, 2020). Red dots show the last year available (2022 for observations).
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