

CAR

Representing Land in the Earth System I: Biogeophysics Will Wieder CESM Tutorial 2025

This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility spo nsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

Representing Land in ESMs:

- Why?
- How?
- Future directions

Many Thanks

- CESM Land Model Working Group
- Dave Lawrence, Gordon Bonan
- LMWG Software Engineering Tear
- LMWG Liaisons, Keith Oleson & Sam Levis

Land-Atmosphere Interactions

How much do soil moisture anomalies influence the atmosphere, the evolution of weather, and the generation of precipitation?

Water

How are water (and food) resources under threat from climate change?

Land Modeling: Why?

Wieder et al., PNAS 2022

Land Use and Land Cover Change

How do changes in land properties affect water, energy & biogeochemical feedbacks in the Earth system?

How does the Earth system respond to change on Land?

Arctic Greening (courtesy NSIDC)

Deforestation (courtesy NPR)

Permafrost Thaw (Nat. Geo.) Agriculture

Agriculture (John K Forest Fires (Columbia)

CESM and CLM as a Community Modeling Tool

https://github.com/ESCOMP/ctsm

CESM and CLM as a Community Modeling Tool

https://github.com/ESCOMP/ctsm

Land Modeling in CESM

Motivation:

Land is the critical interface through which humanity affects and is affected by, adapts to, and mitigates global environmental change

Goal:

Comprehensive representations of land biogeophysics, hydrology, plant physiology, biogeochemistry, anthropogenic land use, agricultural management, ecosystem dynamics, and urban environments

Land Modeling in ESMs: How

- Exchanges of momentum, energy, water vapor, Ç,Quust, and other trace gases/materials between land and atmosphere + routir of runoff to the ocean
- States of land surface (e.g., soil moisture, soil temperature, canol temperature, snow, carbon and nitrogen stocks in vegetation and soil)
- Characteristics of land surface (e.g., soil texture, surface roughness, albedo, emissivity, vegetation type, and leaf area index

Key Processes within CLM / CTSM

Biogeophysics

Biogeochemistry

Lawrence et al. 2019

Land Modeling: How?

At each time step CLM solves the Surface Energy Balance

Surface energy fluxes

$S^{\downarrow}-S^{\uparrow} + L^{\downarrow}-L^{\uparrow} = \lambda E + H + G$

- $S^{\downarrow},\,S^{\uparrow}$ are down / upwelling solar radiation,
- L^{\downarrow} , L^{\uparrow} are down / upwelling longwave radiation,
- $\boldsymbol{\lambda}$ is latent heat of vaporization,
- E is evaporation,
- H is sensible heat flux
- G is ground heat flux

Lawrence et al. 2019

... and the Surface Water Balance

 $P = ES + ET + EC + R + (\Delta W_{soil} + \Delta W_{snow} + \Delta W_{sfcw} + \Delta W_{can}) / \Delta t$

P is rainfall/snowfall,

ES is soil evaporation,

ET is transpiration,

EC is canopy evaporation,

R is runoff (surf + sulsurface),

 ΔW_{soil} , ΔW_{snow} , ΔW_{sfcw} , & ΔW_{can} are changes in soil moisture, snow, surface water, and canopy water over a timestep

Lawrence et al. 2019

"The ability of a landsurface scheme to model evaporation correctly depends crucially on its ability to model runoff correctly. The two fluxes are intricately related through soil moisture."

(Koster and Milly, 1997).

What is this statement missing?

Soil Wetness

Land Model Complexity: Plants

Blue marble...

... Green Earth

Photosynthesis model

Plant physiological controls on transpiration and Sexchange Function of solar radiation, humidity deficit, soil moisture, [G@emperature, leaf N content]

Land Modeling: How?

Biogeophysics (SP mode)

- Photosynthesis and stomatal resistance
- Hydrology
- Snow
- Soil thermodynamics
- Surface albedo and radiative fluxes

Biogeochemistry (BGC mode, above +)

- Carbon / nitrogen pools, allocation, respiration
- Vegetation phenology
- Plant Mortality
- Decomposition
- External nitrogen cycle
- Methane production and emission

And...

- Urban
- Crop and irrigation
- Lakes
- Fire and fire emissions
- Dust emissions
- Biogenic Volatile Organic Compound emissions
- Glaciers and ice sheets
- River flow
- Vegetation demography

Lawrence et al. 2019

Terrestrial surface energy budget

How do plants and climate interact?

19

Not all forests have the same climate impact

Bonan 2008

Bonan et al. 2024

CAR

20

Not all forests have the same climate impact

Bonan 2008 Bonan et al. 2024

Land Modeling: How?

Land Surface Heterogeneity

Lawrence et al. 2019

Changing Land Surface Heterogeneity

Lawrence et al. 2019

/ / 23

Changing Land Surface Heterogeneity

24

Land Use / Land Cover Change

Land Modeling in ESM: Future Directions

Ecosystems: FATES

Food: Crop Model

Water: Hillslope Hydrology

Urban: CLM -U

Land Modeling: Future Directions

26

Abbreviated list of land biophysical features in CESM3+

Emission Driven Focus

Interactive Fires

Updatedsurface datasets, dust scheme, roughness length, snow optical properties, excess ice, crop calendars, more...

Calibration Capabilities & Parameter Uncertainty

Transient Urban Extent

Transient Hillslope Capabilities

Transient FATES with LULCC

Questions & Discussion

Earth system to reforestation

Full understanding of climate impacts from reforestation requires ESMs Changes in albedo and BVOC emissions from reforestation offset radiative forcing (RF) from CO₂ removal in CESM2

Weber et al. Science 2024

Land Model Complexity: Snow

State Variables $N, w_{liq,i}, w_{ice,i}, \Delta z_i, T_i$

- Up to 10-layers of varying thickness
- Represented processes
 - Accumulation and fresh snow density: T, wind)
 - Melt, refreezing, aging
 - Compaction
 - destructive metamorphism(T, wind)
 - overburden
 - melt-freeze cycles
 - Sublimation
 - Water and energy transfer across snow layers
 - Aerosol (black carbon, dust) deposition
 - Canopy snow storage and unloading
 - Canopy snow radiation
 - Snow burial of vegetation
 - Snow cover fraction
- Missing processes
 - Blowing snow
 - Subgrid variations in snow depth
 - Depth hoar

Subgrid heterogeneity in soil moisture

Subgrid Hillslope Processes

CESM grid cell (~*k1°)

Observed vegetation patterns imply lateral movement of water and strong influence of slope and aspect

Hillslope Hydrology

Explicit Lateral Flow Within Gridcell

Downscaled Meteorology

CLM-Urban Model (CLM -U)

CAR

CLM-Urban Model (CLM -U)

- New Urban Extent (2000-2100): Gao and O'Neill (2020), Gao and Pesaresi (2021), replaces static circa-2000 Jackson et al. (2010)
- Dynamic Urban Capability changes in urban extent over time (Fang et al. 2024)
- Improved Urban Properties: Oleson and Feddema (2019), modifies Jackson et al. (2010)
- Explicit Air Conditioning Adoption: Li et al. (2023)

Present -day climate

Cities have more hot days and warm nights than rural land

21st century climate change

Cities increase more in hot days and warm nights than does rural land

