Land Modeling II

Biogeochemistry and Ecosystems

Adrianna Foster Project Scientist II, NCAR CGD Terrestrial Sciences Section

Community Earth System Model (CESM) Tutorial Tuesday, July 8

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977

Land biogeochemistry in CESM

CESM Tutorial

Land biogeochemistry in CESM

CESM Tutorial

How do ecosystems change when climate changes?

CESM Tutorial

Climate -ecosystem question

Enquiry into Plants, c. 350 BC

Theophrastus, Palermo Botanical Garden

Transplanted species outside natural range Changes in phenology with climate Relationship between altitude/latitude and climate/vegetation

Climate -ecosystem question

Tableau des Régions équinoxiales from Humboldt (1807)

Morrissey et al. (2019) Nature Ecology and Evolution

Climate -ecosystem question

humidity provinces

Holdridge life zones

Liu et al. 2006 Journal of Climate

Longer time scales - fate of carbon

Atmospheric CO₂ at Mauna Loa Observatory

Scripps Institute of Oceanography NOAA Global Monitoring Laboratory

https://gml.noaa.gov/ccgg/trends/mlo.html

Longer time scales - fate of carbon

Atmospheric CO₂ at Mauna Loa Observatory

Scripps Institute of Oceanography NOAA Global Monitoring Laboratory

Upward trend due to human activities

https://gml.noaa.gov/ccgg/trends/mlo.html

Upward trend due to human activities

Longer time scales - fate of carbon

Recent monthly mean CO₂ at Mauna Loa Observatory

https://gml.noaa.gov/ccgg/trends/mlo.html

Annual Carbon Emissions and their Partitioning Friedlingstein et al. Global Carbon Budget 2024

CESM Tutorial

Annual Carbon Emissions and their Partitioning Friedlingstein et al. Global Carbon Budget 2024

CESM Tutorial

Annual Carbon Emissions and their Partitioning Friedlingstein et al. Global Carbon Budget 2024

CESM Tutorial

Annual Carbon Emissions and their Partitioning Friedlingstein et al. Global Carbon Budget 2024

https://serc.carleton.edu/integrate/teaching_materials/earth_modeling/student_materials/unit9_article1.html

https://serc.carleton.edu/integrate/teaching_materials/earth_modeling/student_materials/unit9_article1.html

Land biogeochemistry in CESM

CESM Tutorial

"Bretherton diagram" showing the concept of an Earth System Model

CESM Tutorial

Full-Form Earth System Models: Coupled Carbon-Climate Interaction Experiment (the "Flying Leap")

by Inez Fung, Peter Rayner, and Pierre Friedlingstein; Edited by Dork Sahagian

IGBP Newsletter, May 2000. The flying leap proposal was to make atmospheric CO_2 a prognostic variable in climate models

NCAR and CESM were key players in the development of the concept and creation of the first coupled carbon cycle models.

A. Swann, BGCWG Every tonne of CO₂ emissions adds to global warming

Full-Form Earth System Models: Coupled Carbon-Climate Interaction Experiment (the "Flying Leap")

by Inez Fung, Peter Rayner, and Pierre Friedlingstein; Edited by Dork Sahagian

IGBP Newsletter, May 2000. The flying leap proposal was to make atmospheric CO_2 a prognostic variable in climate models

NCAR and CESM were key players in the development of the concept and creation of the first coupled carbon cycle models.

+ Coupled C-N biogeochemistry - CESM1

Full-Form Earth System Models: Coupled Carbon-Climate Interaction Experiment (the "Flying Leap")

by Inez Fung, Peter Rayner, and Pierre Friedlingstein; Edited by Dork Sahagian

IGBP Newsletter, May 2000. The flying leap proposal was to make atmospheric CO_2 a prognostic variable in climate models

NCAR and CESM were key players in the development of the concept and creation of the first coupled carbon cycle models.

- + Coupled C-N biogeochemistry CESM1
- + Explicit crop management CESM2

1% CO2 / year Land & Ocean uptake Temperature change

Three experiments:

- 1. Fully coupled
- 2. Biogeochemically coupled
- 3. Radiatively coupled

Cumulative land CO₂ sink

Arora et al. 2020

Cumulative land CO₂ sink

still large uncertainty in magnitude of land sink

Arora et al. 2020

Cumulative land CO₂ sink

Arora et al. 2020

Cumulative ocean CO₂ sink

Arora et al. 2020

Global average surface temperature change (°C)

Arora et al. 2020

Community LAND MODEL DEVELO

CESM Tutorial

afoster@ucar.edu

YOU!

Bonan 2008, Science

CESM Tutorial

Bonan 2008, Science

Leaves

Bonan 2008, Science

Bonan 2008, Science

NCAR UCAR

Photosynthesis Stomatal Conductance

Canopy & Light

Two-stream radiation approximation, sunlit/shaded leaf

GPP: Gross Primary Productivity

CESM Tutorial

Leaves

Photosynthesis Stomatal Conductance

Canopy & Light

Two-stream radiation approximation, sunlit/shaded leaf

Allocation & Respiration

leaves, woods, roots

AR: Autotrophic respiration

NPP: Net Primary Productivity = GPP - AR

Bonan 2008, Science

CESM Tutorial

Bonan 2008, Science

NCAR UCAR

Photosynthesis Stomatal Conductance

Canopy & Light

Two-stream radiation approximation, sunlit/shaded leaf

Allocation & Respiration

leaves, woods, roots

Phenology & Turnover

mortality, litter, etc.

LAI: leaf area index

Leaves

Photosynthesis Stomatal Conductance

Canopy & Light

Two-stream radiation approximation, sunlit/shaded leaf

Allocation & Respiration

leaves, woods, roots

Phenology & Turnover

mortality, litter, etc.

Decomposition

HR: heterotrophic respiration

Bonan 2008, Science

CESM Tutorial

Lawrence et al 2019, JAMES; https://ub.com/ESCOMR/tsm

Lawrence et al 2019, JAMES; https://ub.com/ESCOMR/tsm

Lawrence et al 2019, JAMES; https://ub.com/ESCOMR/tsm

Agriculture in CLM

CESM Tutorial

Agriculture in CLM

Fertilize

Irrigate

Transient fertilizer and irrigation (1850 – 2100)

CESM Tutorial

Where do parameter values come from?

Laboratory understanding of plant physiological processes

e.g., Farquhar: Photosynthesis is co-limited by light, energy, export of sugars

Trait databases e.g., TRY Database (Leaf N and dark respiration)

Optimality theory: plants try to optimize things like water use efficiency e.g., FUN and LUNA modules

Calibration!

Morrissey et al. (2019) Nature Ecology and Evolution

NCAR

Where do parameter values come from?

Land biogeochemistry in CESM

CESM Tutorial

Representing the land C sink

Danabasoglu et al 2020 JAMES

Model benchmarking

(1)
(5)
(10)
(11)
(2)
(3)

	CESM1	CESM1	CESM1	CESM2	CESM2	CESM2
Ecosystem and Carbon Cycle						
Biomass						
Burned Area						
Carbon Dioxide						
Gross Primary Productivity						
Leaf Area Index						
Global Net Ecosystem Carbon Balance						
Net Ecosystem Exchange						
Ecosystem Respiration						
Soil Carbon						
Hydrology Cycle						
Evapotranspiration						
Evaporative Fraction						
Latent Heat						
Runoff						
Sensible Heat						
Terrestrial Water Storage Anomaly						
Permafrost						
Radiation and Energy Cycle						
Albedo						
Surface Upward SW Radiation						
Surface Net SW Radiation						
Surface Upward LW Radiation						
Surface Net LW Radiation						
Surface Net Radiation						

Danabasoglu et al 2020 JAMES

CESM Tutorial

NCAR UCAR

	CESM1(1)	CESM1(5)	CESM1(10)	CESM2(1)	CESM2(2)	CESM2(3)
Forcings						
Surface Air Temperature						
Diurnal Max Temperature						
Diurnal Min Temperature						
Diurnal Temperature Range						
Precipitation						
Surface Relative Humidity						
Surface Downward SW Radiation						
Surface Downward LW Radiation						
Relationships						
Burned Area vs Precipitation						
Burned Area vs Surf Air Temp						
GPP vs ET.						
GPP vs Precipitation						
GPP vs Surf Down SW Radiation						
GPP vs Surf Net SW Radiation						
GPP vs Surf Air Temp						
LAI vs Precipitation						
ET vs Precipitation						
ET vs Surf Air Temp						

ILAMB -

International Land Model Benchmarking package

the Evolution of land modeling

How do ecosystems change when climate changes?

CESM Tutorial

How will ecosystems change with climate change?

Forest height, structure, age, competition all feed back to climate!

CESM Tutorial

Forests are a mosaic of patches

Forest dynamics are the average responses of many such gaps/patches

NCAR UCAR

Functionally Assembled Ecosystem Simulator (FATES)

cohort-specific model

30-minute photosynthesis and fluxes

daily growth and allocation

dynamic vegetation!

FATES vs. CLM (BL) tiling

CLM (BL): Tile by PFT

FATES: Tile by age-sincedisturbance

CESM Tutorial

FATES vs. CLM (BL) tiling

60 years	30 years
90 years	15 years
l year	5 years

CESM Tutorial

FATES vs. CLM (BL) tiling

Each tile contains cohorts of plants of different PFT and size

MIMICS: modeling microbial controls on soil carbon dynamics

Soil C model that considers relationships among litter quality, functional tradeoffs in microbial physiology, and microbial byproducts

More accurately represents C response to N enrichment

Representative hillslope model

CESM Tutorial

How will ecosystems change with climate change?

Community Terrestrial Systems Model: Land model used for climate change and weather predictions that can be run at single points (~ 1 ha) to global scale.

Hillslope Hydrology: Considers effects of aspect, elevation, and hydrologic connectivity on water availability (feature within CTSM).

FATES: Represents vegetation demographics, traits, and recovery from disturbance (feature within CTSM).

MIMICS: Soil biogeochemistry model (explicitly represent microbial activity and physiological diversity).

