Sea Ice Modeling in the CESM
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What is Sea Ice?

Sea Ice is frozen sea water that forms seasonally

Photos from NASA Operation IceBridge



Sea ice Cover

& Photos from Feltham, T Photo from
2008 by Hajo Eicken Don Perovich

* Heterogeneous — lots of subgridscale variability
* Leads, ridges, melt ponds, floes, albedo, snow cover, etc.
* Individual floes of varying size can form a continuous cover

* Thickness on the order of meters



Sea Ice in CESM

Video courtesy of Tim Scheitlin of NCAR CISL




Extent (Millions of square kilometers)

Arctic vs. Antarctic

Arctic Sea Ice Extent

(Area of ocean with at least 15% sea ice)

~12M km?

2012

(record minimum) .

2024

0
1Jan

1Feb 1Mar 1Apr 1May 1Jun 1Jul 1Aug 1Sep 10Oct 1Nov 1Dec 31..
Date

ional Snow and ce Data Center, Boulder, CO

Ocean bounded by land
—> ice converges at
land, thick!

Land boundaries &
ocean heat determine
winter extent

near-real-time data

September (minimum)

Sea Ice Extent, Sep 2022

Russia

Alaska

Canada =

Edirope’

median ice edge 1981-2010

Total extent = 4.9 million sq km

Extent (millions of square kilometers)

March (maximum)

.
. Alaska

Canada

Edrope

National Snow and Ice Data Center, University of Colorado Boulder

near-real-time data

median ice edge 1981-2010

Total extent = 14.4 million sq km

Average Monthly Arctic Sea Ice Extent
September 1979 - 2023

* National Snow and Ice Data Center

3
1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 202

Year

National Snow and Ice Data Center, University of Colorado Boulder



Arctic vs. Antarctic September (Maximum) March (minimum)
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Arctic vs. Antarctic — seasonal evolution
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Why sea ice matters in the Earth system

Surface energy budget
- Albedo
- Surface turbulent fluxes

§ March Surface albedo %

Hydrologic cycle/Ocean Circulation
-2 Ice formation
-2 Ice transport

Climate Feedbacks (e.g.)

— Albedo feedback

- Ice growth/thickness feedback
- Ice/Cloud feedback

Goosse et al. 2018



Sea ice models: needs

Reasonable mean state & variability —
concentration, thickness, mass budgets — in both
nemispheres

Realistically simulates ice-ocean-atmosphere
exchanges of heat and moisture

Realistically simulates response to climate
perturbations

Computationally efficient (need to run for 1000s
of years, ensembles, etc.)



CICE (pronounced “sice”): The CICE Consortium Model

e CESM?2 uses CICE V5.1.2 (Hunke et al.)

 Full documentation available online:

 CESM3 uses CICE V6

* CICE development is through the

international CICE Consortium %
) \' CICE

Consortium



http://www.cesm.ucar.edu/models/cesm2.0/sea-ice/
http://www.cesm.ucar.edu/models/cesm2.0/sea-ice/
http://www.cesm.ucar.edu/models/cesm2.0/sea-ice/
https://github.com/CICE-Consortium/
https://github.com/CICE-Consortium/
https://github.com/CICE-Consortium/
https://github.com/CICE-Consortium/

CICE (and other sea ice models): 3 essential components

1. Dynamics

2. Thermodynamics
3. |ce thickness distribution




- Dynamics

— Solves force balance to
determine sea ice motion
and deformation

— Rheology describes stress
and deformation or flow of
ice




(e.g. Hibler, 1979)
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(e.g. Hibler, 1979)
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— Relate ice stress (o) to ice strain rate (g)
— CESM uses Elastic-Viscous-Plastic (EVP) scheme:

Ice is a continuum and can deform elastically (like a spring), flow like a viscous
fluid, and undergo plastic deformation (permanent deformation) under certain

conditions.



Thermodynamics

- Thermodynamics

— Solves for vertical and
lateral melt & growth
rates

Photo by Alice DuVivier

N
Photo by Robbie Mallett



Thermodynamics

Top surface flux balance

(1-a)Fy, +F,, -oT* +Fy, +F,,

+k£ =- dh
1774 dt
3 snow
layers
Vertical heat transfer (conduction)
JdoI od , JdT
pc—=—k—+ QO :
ot dz oz 8 ice
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Bottom surface flux balance

JT dh
Fo_k 0T 1
o oz th Focn

k = conductivity
p = density (constant): p, =917 kg/m3; p, = 330 kg/m3



(from Light, Maykut, Grenfell, 2003)

Ice structure and heat fluxes

CESM2 and CESM3: Mushy Layer
thermodynamics scheme

e Prognostically determine temperature
and salinity profiles using mushy layer
thermodynamics

e Assume pockets/channels are brine
filled and they are in thermal
equilibrium with ice

e Assume salinity dependent freezing
temperature

e Heat capacity and conductivity are
functions of ice temperature and salinity



Delta Eddington Solar Radiation parameterization
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* Inherent optical properties
define scattering and absorption
properties for snow, sea ice, and
absorbers.

e Calculate base albedo and then
modify.

* Explicitly allows for included
absorbers (e.g. algae, carbon,
sediment) in sea ice

* Accounts for melt ponds, snow
grain sizes, etc.

* Used in CESM1 and CESM2



Melt Pond Parameterization

* Only influences radiation and has big influence on surface forcing

 Ponds evolve over time and are carried as tracers on the ice

* CESM2 pond evolution takes into account if sea ice is deformed

o
b

=

AUG Pond Fraction
G

.10 2XCO, Run

Arctic Basin Average SW flux
(pond — nopond)

] ] 1 Ll
o =) = [ T
T T T

- 1XCO, Run

12 L :
141 ‘ ’

J FMAMYJJ A S OND
Month

Holland, M. M., et al. 2012: Improved sea ice shortwave
radiation physics in CCSM4



Ice Thickness Distribution

Ice Thickness Distribution

— Sub-gridscale
parameterization

— Accounts for high spatial
heterogeneity in ice

— Discreet probability density

function

Elevation asl (m)
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Ice Thickness Distribution

* Fluxes computed by
category and merged
based on fractional area.

* Keep track of tracers (e.g.
snow depth) for each
thickness category

* Albedo example:

» 5 thickness categories

» 3 surface types: bare ice,
snow covered ice, ponded
ice

» 15 calculations per gridcell,
merged based on area

A=fractional coverage of a category



Ice Thickness Distribution

Ice thickness distribution g(x,y,h,t) evolution equation from
Thorndike et al. (1975)

0g 0
— =—— +L(g)-Ve(vg)+W(h,g,v
o (fg) + L(g) (vg) +W(h,g,v)
r T " Mechanical
Ice Growth Lateral Melt Convergence

Redistribution

Example PDF of
ice thickness (h)
in a grid cell

g(h)dh

0 ~Im ~3m h
Open First Multiyear
water  Year Ice Ice



Ice Thickness Distribution: impact of convergence

Mechanical redistribution: Transfer ice from thin part of distribution to thicker categories

e

Example PDF of
ice thickness (h)

Lost to in a grid cell
deformation

g(h)dh

0 ~Im ~3m h
Open First Multiyear
water  Year Ice lce



Ice Thickness Distribution: impact of thermodynamic growth

Lose open water, gain probability of both thin ice and thicker ice

Ice growth

Lose open water by growing ice

Gain probability here Example PDF of
ice thickness (h)
in a grid cell

g(h)dh

0 ~Im ~3m h
Open First Multiyear
water  Year Ice Ice



Sea ice models: what will be in CESM3?

1. Dynamics
2. Thermodynamics
3. lce thickness distribution

4. Floe size distribution qm» '-;ﬁl?
A} A l

5. Updated f ! Eo 1
narameterizations /@/X = |
. Melt ponds g

. Snow



Floe Size Distribution

£ NN

NASA Operation IceBridge (10/29/17)

4

MODIS satellite (7/27/19)



Floe Size Distribution

Joint floe size(r) & ice thickness(h) distribution
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Melt Ponds

Ponds are too extensive...
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Melt Ponds

CICE: level ponds CICE: sealvl ponds (new)

Pond area, depth, and pressure
head depend on linear
hypsometry.

Pond area and depth grow by ey ﬁ Drainage reduces both depth

Ponds are perched above the ice 7
surface and exponentially decay.

fixed ratio. Drainage only and area based on hypsometry
reduces depth.
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Redistribution:
- Compaction by wind
- Loss to leads

~

Short wave
___ radiation .
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Thank you! — Questions?

Please get in touch!

duvivier@ucar.edu
dbailey@ucar.edu

From: ChatGPT

“Sea Ice party”



CESM2 Sea Ice Validation

The following slides provide some major results and references for polar climate
and sea ice in the Arctic and Antarctic for CESM2.



CESM2 Historical (1979-2014) Arctic Sea Ice Extent
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https://doi.org/10.1029/2019JC015934 CESM2 with WACCM®6 vs. CAMG6 have different Arctic sea

ice mean state due to treatment of aerosols. Antarctic
impacts were minimal.



CESM2 Historical (2001-2005) Arctic Sea Ice Thickness

Spring - FM
0

WACCM6

DuVivier et al. 2020
https://doi.org/10.1029/2019JC015934

90E

CESM2 with WACCM®6 vs. CAMG6 both
have reasonable ice thickness distribution
spatial patterns, but are too thin compared
to observations from lceSat1



CESM2 Historical Arctic Sea Ice Show

Webster et al. 2020
https://doi.org/10.1029/2020JC016308

Snow depth (m)

CESM2 with WACCMG6 vs. CAM6
both have reasonable snow on
sea ice thickness distributions,
but snow depth is too little
compared to NASA Operation
IceBridge observations.



CESM2 Arctic Sea Ice Extent Projections
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CESM2 with WACCM®6 vs. CAMG6
have similar ice-free dates and
these are independent of
scenario.



CESM2 Arctic Sea Ice — Melt ponds

Albedo
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CESM2 Ponds are too extensive,
but not deep enough.

- Compensating biases lead to
reasonable albedo.
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CESM2 — Mushy thermodynamics

BL99

Thickness (m)
Thickness (m)

MUSHY — BL99 MUSHY — BL99

CESM2 tested with MUSHY (new) and BL99
thermodynamics shows that MUSHY leads to
thicker and more extensive sea ice. Impacts are

Bailey et al. 20220 larger in the Arctic.

https://doi.org/10.1029/2020MS002154



CESM2 Antarctic Sea Ice
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CESM2 Antarctic Sea Ice — growth processes are changing
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CESM2 mass budget has shifted —

growth along the coast is more frazil
dominated and there is more snow

Singh et al. 2020 ice formation.
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CESM2 Antarctic Sea Ice — growth processes are changing

a) Congelation ice growth b) Frazil ice growth ¢) Snow-ice growth

cm/day
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CESM2 mass budget has shifted due to
MUSHY (new) thermodynamics
parameterization. These process shifts do not
lead to significant mean state differences.
There are impacts on the AABW formation

rates though.

DuVivier et al. 2021
https://doi.org/10.1029/2021GL094287



CESM2 - Polynyas

CESM2 captures Antarctic polynyas
in similar locations as observed, but
the choice of threshold variable
(concentration vs. thickness) is
significant on the results and should
be carefully assessed.

Landrum et al. 2025
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https://doi.org/10.5194/egusphere-2024-3490



