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MIND THE GAP
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30 Years of Earth Systems Modeling

* A science success story

* No longer just a computer tool for a few
nerdy scientists




30 Years of Earth Systems Modeling

* A science success story

* No longer just a computer tool for a few
nerdy scientists

* Growth from modeling the atmosphere to
modeling Earth systems

* Now Iinforming a wide range of global
science and policy




Atmosphere to Earth System

* CESM began as a simulation of atmospheric physics and
chemistry: CCSM/CAM

* \Why did an atmosphere/climate model evolve into an Earth
system model?




Atmosphere to Earth System

* CESM began as a simulation of atmospheric physics and
chemistry: CCSM/CAM

* \Why did an atmosphere/climate model evolve into an Earth
system model?

* Recognition that dynamics of the atmosphere are influenced In
important ways by interactions and feedbacks with other
components of Earth’s critical zone

* Ocean surface and subsurface

* Land, including vegetation and biogeochemistry more broadly

* Land and sea ice




Incomplete and Useful Models
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* But how many here are confident that we fully understand and
model all the important processes of Earth systems?

* After more than 2 centuries of scientific study we still do not
fully understand all the processes of atmospheric circulation.

* And we cannot (or choose not to) model all the processes
we do understand

* Equally the case for ocean physical circulation and thermal
properties, or its biogeochemistry. And the same for
terrestrial biogeochemistry

* |n spite of these shortcomings, the CESM modeling
environment has still proven very useful for understanding the
past, present, and potential futures of Earth’s critical zone




CESM for Science and Policy

* Developing and running simulations has made important
contributions to scientific understanding of atmosphere
dynamics

* Even more significantly, it has demonstrated and modeled
impacts of anthropogenic GHG on current and future climate

* CESM also used to assess impacts of anthropogenic climate
change on food production, human health, urban heat, built
environment and infrastructure, human migration, to name
but a few.

* Like atmosphere, oceans, land, and ice, there are significant
feedbacks between human society and all other
components of Earth systems—but not modeled dynamically
in CESM
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THE EARTH SYSTEM IS A DYNAMICALLY COUPLED HUMAN/NATURAL SYSTEM




A Coupled Human/Natural System
EARTH'S LANDL MAMMALS &y vesHT

B HUMANS L.OUR PETS AND LIVESTOCK I \WILD ANIMALS

* Mass of humans plus domestic
animals greater than all terrestrial
vertebrates combined.

* Humans plus agro-biomass >3
billion tons. More than all other
vertebrates combined (land and
sea)

(Bar-On, et al 2018; Munroe 2014)
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A Coupled Human/Natural System

1.6 -
* Human created mass 1.4
(including all constructions) s o LB
exceeds all of the planet’s “r—_— e e
biomass = 1.0 |
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* Human produced energy 2 0.8 - :
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(Elhacham, et al 2020; Ritchie et al 2024; Schramski et al 2015)




A Coupled Human/Natural System
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* > 45% of all habitable land in crops or pasture

(Ritchie and Roser 2019; 2021)
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A Coupled Human/Natural System
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* > 45% of all habitable land in crops or pasture

* > 30% of all forests cleared in the Holocene;
more cleared and reforested

(Ritchie and Roser 2019; 2021)




A Coupled Human/Natural System

* (Coastlines engineered

(Khokhar 2017; Vitousek et al 1997; Wilkinson 2005)




A Coupled Human/Natural System

* Coastlines engineered

* > /0% of available fresh water
used for human food production

(Khokhar 2017; Vitousek et al 1997; Wilkinson 2005)




A Coupled Human/Natural System
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* (Coastlines engineered

* > /0% of available fresh water
used for human food production

* N cycled by human processes >
non-human processes

Khokhar 2017; Vitousek et al 1997: Wilkinson 2005




A Coupled Human/Natural System
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* (Coastlines engineered

* > /0% of available fresh water
used for human food production

* N cycled by human processes >
non-human processes

* Sediment transported by human
processes > non-human processes

(Khokhar 2017; Vitousek et al 1997; Wilkinson 2005)




The Human System - ESM Gap

* |f we accept CESM simulation results

* |f we accept global scientific data mww——
of the impact of 8+ billion people ! CAMS-Chem
on the atmosphere, land, and oceans High-top

WACCM®6

* |f we accept the data that people Coupler sea ce
are significantly impacted by climate

* |f we accept that human decisions and
actions respond in diverse and complex ways
to changes In their environment

--------

* \We must acknowledge that ESMs are missing a critical Earth system component and their
simulations of potential futures are significantly less reliable and useful than they could or should be




Closing the Gap: an Example
* How can we begin to bridge the gap of missing human systems in ESMs? h NCAR

* An example is the Societal Dynamics Model for Climate Interventions Operated U c AR

o Ls u

* Collaboration between NCAR, LSU, Duke University, and ASU
* CESM modeling of environmental and societal impacts of alternative CI l I (

strategies, and active stakeholder engagement UNIVERSIT Y

* Part of a collaborative NSF project: Generating Actionable Research to
Investigate Combined Climate Intervention Strategies for Stakeholder Use*

* Testing eight currently proposed strategies for decarbonization and solar
radiation management

*NSF Grant OIA2218758 @




SDM4CIl Overview

* ASU'’s role is developing a prototype modeling environment for
simulating interactions between biophysical systems and human society

* Proof-of-concept of new modeling components for simulating human
systems, that can be coupled with CESM biophysical components

* This project focuses on climate intervention (Cl) resulting from societal
decisions and actions

* But broader vision is to develop components with flexibility to model
other aspects of human systems of relevance to Earth systems




SDMA4CI GGoals

* To develop a platform where experiments on the potential environmental and social
conseqguences of feedbacks between climate impacts (including impacts of Cl) and
societal decision/actions (including Cl policies) can be systematically simulated and
modeled in ways not possible for ESMs today




SDMA4CI GGoals

* To develop a platform where experiments on the potential environmental and social
conseqguences of feedbacks between climate impacts (including impacts of Cl) and
societal decision/actions (including Cl policies) can be systematically simulated and
modeled in ways not possible for ESMs today

* How many here believe that in the near future CI
strategies will be implemented by a unified world,
In a scientifically guided, optimum way to maximize
global human well-being?




SDMA4CI GGoals

* To develop a platform where experiments on the potential environmental and social
conseqguences of feedbacks between climate impacts (including impacts of Cl) and
societal decision/actions (including Cl policies) can be systematically simulated and
modeled in ways not possible for ESMs today

* How many here believe that in the near future CI
strategies will be implemented by a unified world,
In a scientifically guided, optimum way to maximize
global human well-being?

* This is the way ESM modeling is normally carried out.

* Can be useful as an ideal outcome, but imperative
to also understand the consequences of Cl policy
In a non-unified world




SDMA4CI GGoals

* The implementation of Cl strategies will be driven by policies at national or supranational scales,
responding to significant climate-driven impacts on regional populations and sociopolitical conditions

* SDMA4CI approach developed to represent
* diverse geopolitical actors
* at different societal scales, L T

* In different geographic locations,

* experiencing societally-relevant .
impacts of climate change differently, ., .

* with varying goals and capacities
for action




SDM4CI Modeling Approach

* A gridded multi-agent formalism like Egggﬁ?ﬁggﬁigiﬁﬁii_
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SDM4CI Modeling Approach

Agent competition for the use
of capital resources

Fundamental niche 9
Individual A, %'é
. 5
Individual B, Capital space (n)
Individual C

Capital space (1) < Capital space (2)

Human behaviour
and decision making

Policy rules

and regulations/
/Monitor
change

Decision process

Deliberate Compete

Capital space

agent functional types (Arneth et al 2014)

* Multi-agent modeling enables representation of

social actors (individuals or groups) as
heterogeneous agents with different histories,
biases, contexts, and relationships with other agents

* Agents independently implement algorithms for
responding to conditions in the simulated
biophysical and societal worlds—much like CESM
grid cells.

* Because grid cell agents are located in geographic
space (e.g., countries or cities) they can experience
geographically different simulated conditions,
including climate impacts

* Agents also can act and interact across spatial scale
(e.g., international trade or finance) and not just with
adjacent grid cells




SDM4CI Modeling Approach

* Multi-agent model formalism enables simulation of potential impacts of Cl strategies in a more realistic social world
with...

* Cl policies carried out by distinct geopolitical agents, each with their own agendas, some of whom may be
working together, and others who may act independently.

* Cl decisions of each agent influenced by unigue combinations of current and past biophysical and societal
conditions—including the actions of other agents

* Agent Cl choices may or may not be influenced by information from CESM simulations of potential future
Impacts for different strategies

* SDM4CI will interface with CESM by stopping and restarting simulation at regular intervals (e.g., annually)

* During a simulation pause, each agent will read and parse simulated conditions in the biophysical world from
intermediate CESM output files and decide on a Cl action (or non-action).

* Then SDM4CI will aggregate actions of all agents to generate forcing files that change CESM parameters at restart




SDMA4CI ARCHITECTURE: INITIAL 2 YRS DEVELOPMENT

* Coded in Python Climate Impacts Agent-Based Model
i Preprocessing 5 5 Model Parameters ; |

* Modular architecture Model Context

% LOose Coupllng USIng NetCDF in " index EcamRleIACtors

5 " States Union

* Designed with CESM in mind, g index g Impacts Store

but potential to be used with any W ;
S ﬂ |I || Decision Strategy

ESM that ... Impact Processor =1 =|| ====ll : .

* can be stopped and restarted [l e ’ :

* uses NetCDF (or other) files gy e s Exampte Actor Actions

for I/0 and forcings | |
: : Forcing File : e jo.ir! Rte::i:ls-

* Also exploring the potential to ernal Data Y Investment i coalition | I (RESCERERH N

SDMA4CI with ESM emulators st s - Geneses estar ot

model based on actor decisions




SDMA4CI AGENTS FOR CI

Agent

Coalition

Geopolitical Cooperation Leave

Environment Decision Agent

* Each geopolitical agent each time step Techno- Coalition

Economic
* Agent = group of cells at CAM or CLM pe

resolution that correspond to a
geopolitical entity (e.g., nation state)

o, SN
Cl decisions

population

Geopolitical

* Parses CESM output for impacts to Agent
corresponding cells

* Parses information about other

i Initiate
geopolitical agents

Cl

* (Generates Cl decisions/actions other

parameters

* Cl actions of all agents combined into
forcing file for CESM

socioeconomic parameters

Environmental

Impact Proxies Cl forcing file

CESM integration



SDM4Cl Prototype Development: 1
Cl and 1 Impact

* |nitial development using SAl for Cl investment and
extreme heat for societally significant impacts

* SAIl forcing approach already well developed and
Python controller scripts for dynamically
interacting with CESM for SAIl already exist (e.g.,
ARISE)

* SAl can have near term impacts, with potential
for considerable benefits & considerable risks
that vary geographically

* Makes simulation of SAl implementation in more
realistic societal simulation especially useful




SDM4Cl Prototype Development: 1
Cl and 1 Impact

* |nitial development with extreme heat for perceived climate
Impacts

* Likely to have growing impact in near future

* Can be directly affected by SAl

* Using heat index based on work of J.Vanos (Vanos, et al
2023), calculated from CESM output

* Livabllity (ability to carry out activities outside

* Survivability (risk of heat stroke

* Combined into single heat impact metric




SDMA4CI: Extreme Heat

CAM output
1950-1980 reference period

Reference Period Heat Stress
Metrics (Pre-computed)

Daily Relative
. Humidity
DETNY - DETVANT T
Temperature BB Speed

CLM data
Yearly Heat .
Stress Metric Agent-level

Population Proportion

Yearly Heat Stress - Ref. Heat Stress Mean
Ref. Heat Stress Max

Calculate whole-body human heat exchange model
(Vanos, et al. 2023) for each grid cell each day
into an estimate of heat impacts on humans

* Pop. Proportion

Sum all days Mean of all cells
for 1 year for for each agent
each grid cell for 1 year

Daily Heat
Stress Metric

Agent-level Perceived
Mean Heat L — Climate Risk

Stress Index for Ci
Decision




SDMA4CI: Agent Decision Algorithm Alternatives

Deterministic probability with decay: P(Invest) is the probability of investing in Cl strategy

1

P(Invest;) = d * (1 — w) = P(Invest,_;) + (w e ) investment probability for each ClI strategy

* d: decay factor for last year’s investment probability * w: weight given to current year’s impacts vs last * PCI: perceived climate risk = f(heat stress, other, ...)

year’s investment probability « a,, a,: parameters for logistic function (modulating

Bayesian updating of climate risk beliefs

1 1 . i
P(L— H | PCI;) = B e Ty P(H— L | PCI;))=d+ (1 —d) * e prior probabilities
Belief, = <1 — P(H — L | PCIt)) * Belief, .+ P(L — H| PCIt) * (1 — Belief, )) posterior probabilities
P(Investt) —Belief =B, . p0+ <1 — Belief t) P Investment probability for each Cl strategy

* L — H: climate risk lower in prior time step than * b, by, Cy, C4: parameters for logistic functions * Pinvest-nigh: Probability of investment in SAI if actor
current time step (modulating mid-point and sensitivity) perceives climate risk to be high

* H = L: climate risk higher in prior time step than - Belief: posterior probability of belief that the current o Piestiow: Probability of investment in SAI if actor
current time step state is high perceives climate risk to be low

LLM Impersonation (="Al")

"You represent the government of [geopolitical actor] and the year is [Y]. Your goal is to minimize the impacts of climate
Example Prompt: change on your territory, as measured by the following impact indices: [describe each index and how it is calculated]. Your

options are to invest or not in SAIl, considering its costs and the eventual political costs that such a decision can bring
among the [actor's] population. Given this year's impact indices, do you decide to invest in SAI? Provide a complete
explanation of your decision."




SDMA4CI: SAl & Extreme Heat Index

Year: 2035 Year: 2035
NN
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Effects of SAl injection choice by one agent on Effects of SAl injection choices by different agents on
extreme heat index for rest of world for 10 years™ extreme heat index for rest of world for 10 years

(*Data provided by D. Visioni, Cornell University [see Richter et al 2022])




SDMACI: PROTOTYPE

Climate Intervention Model

x 6 geOpOIItlcal agents eaCh metabolic_equiv_of task stress v Current Step: 0
time step over 2 decades Visualized Base Layer
MET stress_index
* Assess extreme heat =
i m paCtS plasma v

Focused Actor

* Decide whether or not to
invest in SAI

EU v

* QOutline color indicates
aggregate heat stress and
probability of investing in
SAI




Expanding SDM4CI Prototype

* Planned to include other extreme impacts in agent
decisions beyond heat, e.q.:

* Extreme drought with crop/livestock failures and
food insecurity

* Extreme storms and floods
* Wildfires
* Sea level rise

* Other Cl strategies like direct air capture or ocean de-
acidification

* |n the future, an SDM-like platform could alter other
CESM parameters like GHG emissions in response to
societal decisions




Bridging the Gap: Human Systems In
Earth System Modeling

* More imperative than ever to represent human systems in ESMs

* Anthropogenic changes to Earth systems now generating a growing
range of extreme events with significant impacts to survival and well-
being of large numbers of people: extreme weather, sea level rise,
wildfires, agricultural failure, and more

* At same time, global society is becoming less unified as it is becoming
more connected globally. Potential for rapid and unexpected cascades
of societal transformation.

* Growing potential for Cl actions by independent global actors seeking
relief from climate change impacts

* ESM community needs to recognize that this is a serious issue for useful
Earth system modeling (e.g., Beckage et al 2020).
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* More imperative than ever to represent human systems in ESMs

* Anthropogenic changes to Earth systems now generating a growing
range of extreme events with significant impacts to survival and well-
being of large numbers of people: extreme weather, sea level rise,
wildfires, agricultural failure, and more

* At same time, global society is becoming less unified as it is becoming
more connected globally. Potential for rapid and unexpected cascades
of societal transformation.

* Growing potential for Cl actions by independent global actors seeking
relief from climate change impacts

* ESM community needs to recognize that this is a serious issue for useful
Earth system modeling (e.g., Beckage et al 2020).




Bridging the Gap: Human Systems In
Earth System Modeling

* \We need a concerted, collaborative effort for developing representations of
human system dynamics within ESMs, building on initial work like SDM4CiI

* ASU cannot do this alone. At the end of funds in current NSF grant for this work

* |n spite of critical need for developing human systems modeling in ESMs,
resources for doing so are rapidly disappearing

* But even with significant funds, expanding an SDM4CI prototype to simulate
more Cl strategies and additional human system dynamics will take a large
scale effort.

* CESM 3 builds on 6 decades developing and improving GCMs




Bridging the Gap: Human Systems In
Farth System Modeling s = =

* Many other research groups are working independently on similar
concepts and code (e.g, Calvin & Bond-Lamberty 2018; Collins, et al

2018; Magliocca & Ellis 2016; Robinson, et al 2018; Thornton, et al
2017; Verberg, et al 2016)

* With a framework for greater collaboration and coordination, these
research groups could accomplish much more

* CESM working groups provide recognized research umbrellas to
promote this kind of coordination and knowledge sharing needed for P ———>  Outcomes b | inheritances

r o
Agent Decision

(e.g. climate, soils,
species, populations)

developing and using critical components of ESMs L A et [ Sococuturasysem -\ T
| g i e E  fe.culure, confic : E Cultural 1
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Bridging the Gap: Human Systems In
Earth System Modeling

* The SDWG cannot be revived, based in NCAR as it was in
2011.

* A new working group framework within the ESM community
IS heeded more than ever to support the collaborative
science needed for developing human systems components
for Earth systems modeling

* CESM is the world’s foremost ESM platform and modeling
community

* | want to close by challenging the CESM community to lead
the way in organizing a framework for global collaboration to

bridge the human systems gap in Earth systems modeling
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