

Advancing Deep-Time Climate Reconstruction with a New **Online Paleoclimate Data Assimilation Approach in CESM** An Ongoing Research of the *paleoWeather* Project

Feng Zhu¹, Dan Amrhein¹, Jiang Zhu¹, Jess Tierney², Anta-Clarisse Sarr³, Sophia Macarewich¹, Bette Otto-Bliesner¹, Chris Poulsen³, Elke Zeller², Maya Tessler², Dervla Meegan-Kumar⁴, Jane W. Baldwin⁴, and Ran Feng⁵

1. NSF NCAR 2. U Arizona 3. U Oregon 4. UC Irvine 5. U Connecticut

Jun 11, 2025 **CESM Workshop 2025**

The <u>paleoWeather</u> Project

The <u>paleoWeather</u> Project

A Bayesian Framework

$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Zhu et al. (2024, *GMD*)

Intro | Design | Results | Summary

Probabilistic Forecasting and Bayesian **Data Assimilation**

Sebastian Reich and Colin Cotter

A Bayesian Framework

Intro | Design | Results | Summary

Probabilistic Forecasting and Bayesian **Data Assimilation**

Sebastian Reich and Colin Cotter

A Bayesian Framework

posterior P(A|B)

Probabilistic Forecasting and Bayesian **Data Assimilation**

Sebastian Reich and Colin Cotter

A Bayesian Framework

Intro | Design | Results | Summary

(DART Tutorial @NCAR)

Geir Evensen Data THE ENSEMBLE KALMAN FILTER

2nd Edition

Deringer

Raanes, Patrick N.. "Introduction to Data Assimilation and the Ensemble Kalman Filter." (2016).

Intro | Design | Results | Summary

Geir Evensen Data

THE ENSEMBLE KALMAN FILTER

2nd Edition

Deringer

Raanes, Patrick N.. "Introduction to Data Assimilation and the Ensemble Kalman Filter." (2016).

Assumption: A linear-Gaussian system

operated by ucar

$$E^{a} = E^{f} + \mathbf{K}(\mathbf{K})$$
$$\mathbf{K} = \operatorname{Cov}(E^{f}, HE^{f})[\mathbf{C}]$$

 $Cov(HE^f) + R]^{-1}$

Geir Evensen Data

THE ENSEMBLE KALMAN FILTER

2nd Edition

D Springer

Intro | Design | Results | Summary

Geir Evensen Data

THE ENSEMBLE KALMAN FILTER

2nd Edition

Deringer

The Last Glacial Maximum

Osman et al. (2021, *Nature*)

The Last Glacial Maximum

Osman et al. (2021, *Nature*)

Intro | Design | Results | Summary

Tierney et al. (2022, *PNAS*)

The Paleocene-Eocene Thermal Maximum

The Last Glacial Maximum

Osman et al. (2021, *Nature*)

A 485-million-year history Judd et al. (2024, *Science*)

D p e r a t e d by U C A R

Intro | Design | Results | Summary

Tierney et al. (2022, *PNAS*)

The Paleocene-Eocene Thermal Maximum

NCAR

Motivation for pursuing an online paleoDA solution

Intro | Design | Results | Summary

Online paleoDA: combining model and data using nonlinear-nonGaussian dynamics.

more physical multivariate & spatial relationships

Motivation for pursuing an online paleoDA solution

 $\mathbf{K} = \mathbf{Cov}(E^f, HE^f)[\mathbf{Cov}(HE^f) + R]^{-1}$

A linear-Gaussian system

Intro | Design | Results | Summary

Online paleoDA: combining model and data using nonlinear-nonGaussian dynamics.

more physical multivariate & spatial relationships

- A bonus for deep-time climate: assessing internal variability under different climatological patterns.
- For example, the ENSO variability.
- (deep-time paleo records are proxies for long-term mean climatology)

Gastaldello, M. E., Agnini, C., and Alegret, L (2024)

An ideal approach: Parameter Estimation

An ideal approach: Parameter Estimation

 $M(\theta) = X$ $M(\theta') = X'$

An ideal approach: Parameter Estimation

 $M(\theta) = X$ $M(\theta') = X'$ $M(\theta^*) = X^*$

An ideal approach: **Parameter Estimation**

 $M(\theta)$ = X= X' $= X^*$ M

Intro | Design | Results | Summary

However, M is slow and expensive.

Zhu et al. (submitted to *Nat. Geosci.*)

An ideal approach: **Parameter Estimation**

 $M(\theta) = X$ $M(\theta') = X'$ $= X^*$ $M(\theta^*)$

A more feasible approach: $M(\theta', f_{\rm X}) = X^*$

Intro | Design | Results | Summary

However, M is slow and expensive.

Zhu et al. (submitted to *Nat. Geosci.*)

A new online paleoDA approach in CESM

Goal:

- fit the SST proxy observations
- a running data-informed model

A new online paleoDA approach in CESM

Goal:

- fit the SST proxy observations
- a running data-informed model

An ideal test on a Pliocene case The Sea Surface Temperature Field

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

D p e r a t e d by U C A R

An ideal test on a Pliocene case The Land Surface Temperature Field

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

operated by UCAR

An ideal test on a Pliocene case The Sea Ice Area Field

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

D p e r a t e d by U C A R

An ideal test on a Pliocene case The Total Precipitation Rate Field

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

NCAR

An ideal test on a Pliocene case The Sea Surface Salinity Field

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

An ideal test on a Pliocene case The Meridional Overturning Circulation (MOC)

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for another 400 yrs

NCAR

An ideal test on a Pliocene case The Internal Variability

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for another 400 yrs

Intro | Design | <u>Results</u> | Summary

NCAR

A new online paleoDA approach in CESM Goal:

- fit the SST proxy observations
- a running data-informed model
- avoid unphysical disruptions (e.g., internal variability)

An ideal test on a Pliocene case The Internal Variability

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs

Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for another 400 yrs

Intro | Design | <u>Results</u> | Summary

NCAR

- We propose a new online paleoDA approach in CESM for deep-time climate reconstruction.
- We perform an ideal test on Pliocene climate reconstruction and get a data-informed model that:
 - fits the SST proxy observations,
 - vields dynamically consistent multivariate & spatial relationships,
 - Illows assessing internal variability under different climatological patterns,
 - much more expensive to run compared to offline paleoDA (wall-time: days vs minutes).
- Preliminary results. Welcome comments & suggestions!

Advancing Deep-Time Climate Reconstruction with a New **Online Paleoclimate Data Assimilation Approach in CESM** An Ongoing Research of the *paleoWeather* Project

Feng Zhu¹, Dan Amrhein¹, Jiang Zhu¹, Jess Tierney², Anta-Clarisse Sarr³, Sophia Macarewich¹, Bette Otto-Bliesner¹, Chris Poulsen³, Elke Zeller², Maya Tessler², Dervla Meegan-Kumar⁴, Jane W. Baldwin⁴, and Ran Feng⁵

1. NSF NCAR 2. U Arizona 3. U Oregon 4. UC Irvine 5. U Connecticut

Jun 11, 2025 **CESM Workshop 2025**

Thank you!

(fengzhu@ucar.edu)

