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▣  The paleoWeather Project

How do weather extremes like tropical cyclones and  
atmospheric rivers behave in warm climates? 

What are the limits of habitability?
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▣  A Primer on Data Assimilation
A Bayesian Framework

P(A |B) =
P(B |A)P(A)

P(B)

prior  
P(A)

corr(prior, truth), mean=0.05

Zhu et al. (2024, GMD)
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▣  A Primer on Data Assimilation
A Bayesian Framework

P(A |B) =
P(B |A)P(A)

P(B)

prior  
P(A)

obs  
P(B|A)

Update

posterior  
P(A|B)

corr(posterior, truth), mean=0.37
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▣  A Primer on Data Assimilation

(DART Tutorial @NCAR)

P(A |B) =
P(B |A)P(A)

P(B)

A Bayesian Framework
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Raanes, Patrick N.. “Introduction to Data Assimilation and the Ensemble Kalman Filter.” (2016).
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▣  A Primer on Data Assimilation

Raanes, Patrick N.. “Introduction to Data Assimilation and the Ensemble Kalman Filter.” (2016).

Offline

Ea = Ef + K(y − HEf)
K = Cov(Ef, HEf)[Cov(HEf) + R]−1

Data-informed States

Assumption: 
A linear-Gaussian system
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▣  A Primer on Data Assimilation

Raanes, Patrick N.. “Introduction to Data Assimilation and the Ensemble Kalman Filter.” (2016).

Online A Data-informed Model
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▣  State-of-the-art: offline paleoDA
Osman et al. (2021, Nature)
The Last Glacial Maximum

Hakim et al. (2016, JGR-A)
Tardif et al. (2019, CP)
Zhu et al. (2022, Nat. Comms.)

The Last Millennium

Intro | Design | Results | Summary



▣  State-of-the-art: offline paleoDA
Osman et al. (2021, Nature)
The Last Glacial Maximum

Hakim et al. (2016, JGR-A)
Tardif et al. (2019, CP)
Zhu et al. (2022, Nat. Comms.)

The Last Millennium

The Paleocene-Eocene Thermal Maximum
Tierney et al. (2022, PNAS)

Intro | Design | Results | Summary



▣  State-of-the-art: offline paleoDA
Osman et al. (2021, Nature)
The Last Glacial Maximum

Hakim et al. (2016, JGR-A)
Tardif et al. (2019, CP)
Zhu et al. (2022, Nat. Comms.)

The Last Millennium

The Paleocene-Eocene Thermal Maximum
Tierney et al. (2022, PNAS)

A 485-million-year history Judd et al. (2024, Science)

Intro | Design | Results | Summary



▣  State-of-the-art: offline paleoDA
Osman et al. (2021, Nature)
The Last Glacial Maximum

The Pliocene Tierney et al. (2025, AGU Adv.)
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▣  Motivation for pursuing an online paleoDA solution

Online paleoDA: combining model and data 
using nonlinear-nonGaussian dynamics.

more physical multivariate & spatial relationships

Intro | Design | Results | Summary



▣  Motivation for pursuing an online paleoDA solution

Online paleoDA: combining model and data 
using nonlinear-nonGaussian dynamics.

A bonus for deep-time climate: 
assessing internal variability under 
different climatological patterns. 

For example, the ENSO variability. 

(deep-time paleo records are proxies 
for long-term mean climatology)

Gastaldello, M. E., Agnini, C., and Alegret, L (2024) 

more physical multivariate & spatial relationships
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M(θ) = X ⋅

▣  Deep-time climate: a boundary condition problem
An ideal approach: 
Parameter Estimation
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M(θ′￼, fX) = X*
A more feasible approach:



▣  A new online paleoDA approach in CESM
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Goal:  
• fit the SST proxy observations  
• a running data-informed model
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Standard 
Restoring 

(100 yrs)

Transient Tendency 
knowing the  

internal variability

Prior
Kalman  
Filtering 

(analysis step)

Target Fields 
for Restoring 

(SST)

dX(t)
dt

= −
1
τ

(X(t) − μ)

μ

M(θ′￼, fX) = X*

Goal:  
• fit the SST proxy observations  
• a running data-informed model

▣  A new online paleoDA approach in CESM



▣  An ideal test on a Pliocene case
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Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs 
Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for 
another 400 yrs

μ
Standard Restoring

The Sea Surface Temperature Field
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▣  An ideal test on a Pliocene case

Intro | Design | Results | Summary

Standard Restoring

The Meridional Overturning Circulation (MOC)
Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs 
Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for 
another 400 yrs



▣  An ideal test on a Pliocene case

Intro | Design | Results | Summary

The Internal Variability
Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs 
Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for 
another 400 yrs
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Standard 
Restoring 

(100 yrs)

Fixed-
Tendency 
Restoring 

(100+ yrs)

Transient Tendency 
knowing the  

internal variability

Fixed Tendency  
not knowing the 

internal variability 

Prior
Kalman  
Filtering 

(analysis step)

Target Fields 
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(SST)

dX(t)
dt

= −
1
τ

(X(t) − μ)

μ

dX(t)
dt

= −
1
τ
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M(θ′￼, fX) = X*

Goal:  
• fit the SST proxy observations  
• a running data-informed model 
• avoid unphysical disruptions (e.g., internal variability)

▣  A new online paleoDA approach in CESM



▣  An ideal test on a Pliocene case

Intro | Design | Results | Summary

The Internal Variability

Another test case on Miocene Climatic Optimum

Baseline: 400ppm (Feng et al., 2020) extended for another 800 yrs 
Target: 350ppm, branched from 400ppm (Feng et al., 2020) and extended for 
another 400 yrs



▣  Summary

Intro | Design | Results | Summary

‣We propose a new online paleoDA approach in CESM for deep-time 
climate reconstruction. 

‣We perform an ideal test on Pliocene climate reconstruction and get  
a data-informed model that: 

‣fits the SST proxy observations, 

‣yields dynamically consistent multivariate & spatial relationships, 

‣allows assessing internal variability under different climatological patterns, 

‣much more expensive to run compared to offline paleoDA  
(wall-time: days vs minutes). 

‣Preliminary results. Welcome comments & suggestions!
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