Selena Zhang CESM Workshop WAWG, June 11, 2025

Record-high Ozone in the Southern Mid-Jatitude Record-high United 2019 Sudden Stratospheric Warming

1111

0=0

00

Co-authors: Susan Solomon, Jun Zhang, Doug Kinnison

Large UTLS chemical perturbations were observed in 2020

 O_3 and CO in the austral midlatitude UTLS were record-high in early 2020 relative to the previous MLS data record (2004 to 2018)

Zhang et al., 2025

A rare sudden stratospheric warming (SSW) in September

A rare sudden stratospheric warming (SSW) in September **promoted a swing to a record-negative Southern Annular Mode...**

Australian Bureau of Meteorology

Southern Annular Mode (SAM): Negative phase (summer)

A rare sudden stratospheric warming (SSW) in September promoted a swing to a record-negative Southern Annular Mode...

which drove a severe 2019-2020 Australian bushfire season

via extreme hot and dry conditions over subtropical eastern Australia

A rare sudden stratospheric warming (SSW) in September promoted a swing to a record-negative Southern Annular Mode...

Peterson et al., 2021 which drove a severe 2019-2020 Australian bushfire season including pyrocumulonimbus clouds (pyroCbs) that injected smoke at 10+₆km

Peterson et al., 2021

The Australian New Year Super Outbreak

ANYSO injected ~1.1 Tg of smoke from 18 events into the stratosphere over the course of a week in early January 2020

Our guiding questions:

- How did the ANYSO pyroCbs affect UTLS composition and chemistry?
- Did the dynamical effects of the SSW also influence midlatitude UTLS ozone?

The tools

Atmospheric Chemistry Experiment

9

Mixing is more efficient near the tropopause than in the mid-to-upper stratosphere

Downwardvielanselate and the strand the stra

SD-WACCM simulates the 2019/20 ozone anomaly well

Simulations in SD-WACCM

"Climatology": Run from 2004 to 2018 initialized from a long historical simulation "Control": Six month run from 9/2019 to 3/2020, no added emissions "Wildfire": Six month run from 9/2019 to 3/2020, wildfire emissions added at pyroCb injection altitude

SD-WACCM is missing some chemistry in January!

Simulations in SD-WACCM

"Climatology": Run from 2004 to 2018 initialized from a long historical simulation "Control": Six month run from 9/2019 to 3/2020, no added emissions "Wildfire": Six month run from 9/2019 to 3/2020, wildfire emissions added at pyroCb injection altitude

Adding emissions in the "wildfire" simulation

- 1. Inject CO on the dates of ANYSO pyroCbs at different amounts and altitudes until the model anomaly reproduces the satellite anomaly
- 2. Add emissions of VOCs, NOx, and smoke based on literature-based emissions ratios to CO CO at 200 hPa

Species	Emission ratio to CO
СО	1
CH_4	3.0 × 10 ⁻²
C_2H_4	1.1 × 10 ⁻²
$C_2 H_6$	4.1 × 10 ^{−3}
CH ₃ OH	1.7 × 10 ⁻²
CH ₃ COCH ₃	6.6 × 10 ^{−3}
HCOOH	3.3 × 10 ^{−3}
NO_2	2.1 × 10 ^{−3}
NO	2.6 × 10 ⁻⁴

Dynamics is the dominant (80%) contributor to high ozone

Injected species react to form up to ~10 ppb of ozone in January

CO at 200 hPa

 O_3 at 200 hPa

But uncertainty in model transport cannot be ruled out

Can we separate chemical and dynamical effects from satellite data alone?

Tracer-tracer correlation analysis

- ACE–FTS measures inert and chemically active species in the same occultation
- HF is an inert stratospheric tracer; dynamics should influence O₃ and HF abundances in a similar manner

In January 2020, ozone is high and outside the range of interannual variability

30 to 50 °S, 14 km

This indicates chemical production!

Conclusions

- Anomalous 2020 southern midlatitude UTLS ozone was caused by both dynamical and chemical (exacerbated wildfire) effects of the 2019 SSW
- The dynamical effect—downward and equatorward transport of ozone-enhanced air from the polar stratosphere to the mid-latitude UTLS— is the dominant contributor (around 80%)

• Chemical production of ozone plays an important role in January following the injection of wildfire species into the UTLS

Thank you! Questions?

Zhang, S., S. Solomon, J. Zhang, and D. Kinnison (2025), GRL, 52(9).

Supplemental slides

2002 major southern SSW featured a similar anomaly

// is ≥ 3 σ + mean Solution is ≥ 2 σ + mean

O₃ data from Odin-OSIRIS features a similar anomaly pattern to the 2019 SSW

Adding emissions in the "wildfire" simulation

- 1. Inject CO on the dates of ANYSO pyrocbs at different amounts and altitudes until the model anomaly reproduces the satellite anomaly ite anomaly
- 2. Find literature based emission ratios from in-situ and satellite measurementsments
- 3. Add emissions of VOCs, NOx, and smoke based on these emissions ratios to

HF to O₃ correlation over the data record forms a climatological baseline

30 to 50 °S, 14 km

There is interannual variability in annual linear fits

30 to 50 °S, 14 km

Example: December in two different years

Separating dynamical and chemical effects

What limits ozone production in the UTLS?

HF as a tracer in WACCM

SD-WACCM Monthly HF Anomalies