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Implementing a Neural Network 
scheme for deep convection in CAM6 

and testing it in a hierarchy of 
idealized configurations



Motivation for the development of a new convection 
scheme 

● Convection is central to vertical transport but unresolved at typical grid scales in 
global climate models. Most atmospheric models use finely tuned schemes to 
represent subgrid-scale convection, yet these schemes remain a major source of 
model uncertainty (e.g. Arakawa 2004; Randall et al., 2003).

● Physically-based parameterizations struggle to capture the complexity of 
convection, due to the wide range of interacting scales and large number of 
physical processes involved (e.g. Slingo and Palmer, 2011; Yano and Plant, 2012; Bony et al., 2015).

● Recent advances in computing power, algorithm performance, and data availability 
makes learning subgrid convection from data directly more feasible and promising 
than ever (e.g. Gentine et al., 2018; Rasp et al.; 2018).



Challenges in the development of convection scheme

● ML approaches typically seek to either create a new scheme using a fully 
empirical learning model (e.g. O'Gorman and Dwyer, 2018; Yuval et al., 2022), or to use an 
existing scheme and tune its parameter (e.g. Kumar et al., 2024); each approach comes 
with distinct advantages and limitations (e.g. Eyring et al., 2024).

● Training and assessing success of any new scheme is complicated due to 
overlapping and interdependent processes from multiple schemes (e.g., 
cloudiness is influenced by deep convection, microphysics, shallow convection, 
boundary layer mixing); this can easily obfuscate efficient learning or performance 
assessment. 



What we want to achieve

(1) produce a data-driven scheme that captures key processes in cumulus 
convection 

(2) port it to CESM with minimal tuning or alteration 

(3) show that it reduces known biases in climatology and climate variability, 
in a hierarchy of model configurations



Training of a NN convection scheme in SAM
     NN architecture and training are described in details in Yuval, O'Gorman, Hill, 2021 

(Geophys. Res. Lett.)

A neural network (5 layers × 128 nodes), “YOG”, is trained to predict vertical subgrid 
fluxes of dry energy and moisture, as well as microphysical tendencies, from local 
profiles of temperature (T) and humidity (qT). 

Training data is a high-resolution aquaplanet simulation with SAM v6.3, forced by Qobs 
SSTs and prescribed radiative forcing.
 
Training is done by 

(a) coarse-graining high-resolution (~4 km) output onto a 96 km grid, 
(b) defining convective fluxes and tendencies,
(c) optimizing NN to predict convective fluxes and tendencies from T and qT profiles.

NN scheme is only applied/applicable to ocean areas. 



Schematic of the NN network (SAM)
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Schematic of NN implementation in CAM6

1/ Convert CAM input variables to SAM variables & grid 
● Convert dry mixing ratios (qv,qc,qi) from moist mixing ratios (rv,rc,ri)
● Compute static energy (HL) from temperature (T) and mixing ratios (qc,qi)  
● Regrid temperature (T), dry mixing ratios (qT), and static energy (HL) from CAM 

to SAM vertical grid

2/ Run Neural Network (NN) forward (on SAM grid)
● Compute tendencies F(T,qT) => (HL)

adv, (qT)adv, (qT)sed, (qT)mic, (qT)phase

● Update (HL, qT) from initial values and above tendencies
● Diagnose precipitation from moisture tendencies (qT)mic.

3/ Convert NN output to CAM output variables & grid
 Convert (HL, qT) back to (T, rv, rc, ri) using CAM thermodynamic functions

4/ Compute convective tendencies(*) (𝛿T, 𝛿rv, 𝛿rc, 𝛿ri) from initial / updated values 
(*): same tendencies as output by other convective schemes like ZM



Changing YOG moist physics scheme to be a deep 
convection scheme
● YOG is added to CAM6 source code and replaces the ZM deep convection scheme 

(Zhang & McFarlane 1995 -  Atmos. Ocean). Other CAM6 schemes are active (e.g. 
CLUBB for boundary layer turbulence and shallow convection, MG for cloud 
microphysics, etc.).

● Compared to Yuval et al., 2021, weights were trained to output subgrid-scale 
microphysical conversion of condensate while grid-scale conversion is handled by the 
MG (cloud microphysics) scheme.

● YOG is activated within convecting air columns, as identified by the vertical extent of 
the subgrid scale vertical energy flux, and is turned off elsewhere.



Assessing YOG in hierarchy of CAM6 configuration
A. Single column CAM (TOGA-COARE forcings)

● compare directly with observation 👍 
● large-scale fields are forced and not adjusting 👎 
● only one location and time period is tested 👎

B. Aquaplanet CAM (fixed annual-mean ‘Qobs’ SST)
● test YOG over all climate regions 👍 
● unable to compare directly with observation 👎 
● no land feedback 👎 

C. Full CAM (time-varying historical SST)
● compare with global observations  👍 
● harder to understand source of bias 👎
● need to turn-off YOG over land 👎



Which metrics to evaluate YOG scheme performance?

Some key metrics biased by traditional convection schemes, which we seek to improve 
with YOG:

● Climatological bias (e.g. lapse rate, relative humidity, cloud fraction, radiative 
forcing). 

● Precipitation intensity distribution (e.g. drizzle vs. extremes) and diurnal cycle

● Dynamical variability on synoptic to subseasonal timescales (e.g. tropical waves).

Ideally, YOG should represent above features better than ZM, when compared to 
observations, and at a similar computational cost or less.



A. Single Column CAM6 (TOGA-COARE forcing)



Precipitation bias are comparable in YOG and ZM

R2(OBS, YOG) = 0.78

R2(OBS, ZM) = 0.77

YOG OBS ZM 



A. Full CAM6 in aquaplanet configuration
B. Aquaplanet CAM6 (fixed annual-mean ‘Qobs’ SST)



YOG reproduces mean hydrology 
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YOG reproduces cloud climatology
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YOG improves drizzle/extreme biases



A. Full CAM6 in aquaplanet configuration

B. CAM6 in aquaplanet configuration 
C. Full CAM6 (time-varying historical SST)

NB: Convection scheme turned off over land 



Precipitation is reasonably well-distributed spatially, 
although it is overestimated in specific areas.



Promising results for precipitation, even if mean intensity 
is excessive

Probability distribution of precipitationTime and zonal-mean precipitation



Summary

Using 3 idealized configuration in CAM6 (Single column with TOGA forcing, aquaplanet 
with Qobs SST, land-ocean with YOG off over land), we find that a NN scheme (YOG) 
can simulate deep convection reasonably well.

Pending work:

● Understand why the convective scheme is overly active in the tropics and address 
the resulting over-precipitation bias.

● Evaluate improvement of the hydrological cycle and cloudiness, on diurnal to 
seasonal timescales, and tropical waves.

● Modify scheme to be active over land (G. Mooers at MIT leads this effort).



Supplementary Material



Schematic of the NN network (SAM)
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Still significant biases to resolve in cloud cover
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