

近海海洋环境科学国家重点实验室(厦门大学)

State Key Laboratory of Marine Environmental Science (Xiamen University)

Simulating Marine Nitrous Oxide (N₂O) and Its Offset Effect during Iron Fertilization

Shanlin Wang, Shiyao Zheng, Liyang Zhan

CESM Annual Workshop June 10, 2025

outline

Methods

Model Validation

Ocean Iron Fertilization (OIF)

Test & Results

N2O - Greenhouse Gas

Table 1. Global annual surface mean abundances (2023) and trends of key greenhouse gases from the GAW in situ observational network for GHG (WMO, 2024).

	CO ₂	CH ₄	N ₂ O
2023 global mean abundance	420.0±0.1 ppm	1934±2 ppb	336.9±0.1 ppb
2023 abundance relative to 1750ª	151%	265%	125%
2022–2023 absolute increase	2.3 ppm	11 ppb	1.1 ppb
2022–2023 relative increase	0.55%	0.57%	0.33%
Mean annual absolute increase over the past 10 years	2.4 ppm yr ⁻¹	10.7 ppb yr ⁻¹	1.07 ppb yr ⁻¹

analyses was 146 for CO_2 , 153 for CH_4 and 112 for N_2O_2 .

Fig 1. Global N_2O budget for 2007-2016: TgN/yr (Tian et al., 2020).

✓ The ocean releases about 20% of nitrous oxide (N_2O) into the atmosphere, playing a crucial role in the global climate system.

Marine N₂O Sources & Sinks

- Main features: nitrogen cycle, oxygen, microorganisms;
- ✓ **Sources**: Nitrification (main), Denitrification
- Under aerobic conditions:
 - $a \rightarrow c$
- Under hypoxic conditions:

 $\mathbf{d} \rightarrow \mathbf{e}$

- Other Sources: Denitrification by Nitrifying
 Bacteria; Dissimilatory Nitrate Reduction to
 Ammonium, DNRA.....
- ✓ Sinks: Denitrification (OMZs) \rightarrow f

N₂O Distribution & Influencing Factors

- ΔN₂O-Apparent oxygen utilization rate
 - (AOU): Linear correlation
- Temperature
- Salinity
- Atmospheric pressure
- Wind Speed.....
- NH₄⁺
- NO₃-
- NO₂⁻
- Surface primary productivity and organic matter transport

N₂O Flux—Previous Model Results

N₂O Production Parameterization in CESM2

1、P.TEMP

- The first method is adapted from Butler et al. (1989), which uses oxygen consumption method and temperature dependent correction for N₂O yield;
- P. TEMP parameterization assumes that the generation of N₂O is only related to nitrification;
- **N₂O Source** $(J^{P.TEMP}(N_2O))$, is then mathematically formulated as:

 $J^{P.TEMP}(N_2 0) = (\gamma + \theta T) J(O_2)_{consumption}$

- γ is a background yield (2.0×10⁻⁵ mol N₂O (mol O₂)⁻¹consumed), θ is the temperature dependency of γ (4.6×10⁻⁸ mol N₂O (mol O₂)⁻¹ K⁻¹), T is temperature (K), J(O₂)_{consumption} is the sum of all biological O₂ consumption terms within the model;
- γ from Buitenhuis et al. (2018). While the ratio of θ is two orders of magnitude lower than the ratio used in Butler et al.'s (1989) original simulation. The use of original value will result in a significant increase in nitrous oxide production associated with OMZs in MARBL, deviating from the assumption of nitrification dominance.

N₂O Production Parameterization in CESM2

2、P.O₂Consumption

✓ The P.OMZ parameterization, formulated after: Suntharalingam et al. (2000, 2012), assumes that the overall yield consists of a constant background yield and an oxygen-dependent yield. This gives:

 N_2 Osource = $\alpha \cdot [Oxygen \ consumption \ rate] +$

 $\beta \cdot f(O_2) \cdot [Oxygen \ consumption \ rate] \ z \leq z_e$ (euphotic depth)

- MARBL does not have a clear setting for z_e . The nitrification is light-inhibited and only occurswhere PAR is below 1 W/m². Therefore, only calculate the N_2 0 production in grids with PAR \leq 1 W/m²;
- α is a background yield, (mol N_20 (mol O_2)⁻¹ consumed); β is a yield parameter that scales the oxygendependent function; f (O_2) is a unitless oxygen-dependent step-like modulating function, as suggested by laboratory experiments (Goreau et al., 1980):

 $f(O_2) = [O_2] / O_{max} [O_2] < O_{max}$

 $f(O_2) = e^{-k([O_2] - Omax)/Omax}$ $[O_2] > O_{max}$

N₂O Production Parameterization

2、P.O₂Consumption

✓ The P.OMZ parameterization, formulated after: Suntharalingam et al. (2000, 2012), assumes that the overall yield consists of a constant background yield and an oxygen-dependent yield. This gives:

 $\beta \cdot f(0_2) \cdot [0xygen \ consumption \ rate]$ z

 N_2 Osource = $\alpha \cdot [Oxygen consultation co$

MARBL does not have a clear setting for *z_e*. The nitrification is below 1 W/m². Therefore, only calculate the *N₂*0 production ir ³/₄
 α is a background yield, (mol *N₂*0 (mol O₂)⁻¹ consumed); β is ³/₆ dependent function; f (*O₂*) is a unitless oxygen-dependent stel laboratory experiments (Goreau et al., 1980):

$$f(O_2) = [O_2] / O_{max} [O_2] < O_{max}$$
$$f(O_2) = e^{-k([O_2] - Omax) / Omax} [O_2] > O_{max}$$

N₂O Production Parameterization

 Table 2. P.O₂ consumption parameters set

Parameter	Units	P.O ₂ consumption
[O ₂]	mmol/m ³	Model
Omax	mmol/m ³	1.0 (Goreau et al., 1980)
k	/	0.1 (Goreau et al., 1980)
α	mol N/mol O ₂	0.75e-4(Suntharalingam et al., 2012) 0.33e-5-2.26e-5 (Buitenhuis et al., 2018) 0-7e−5 (Battaglia & Joos, 2018)
β	mol N/mol O ₂	0.1e-3(Suntharalingam et al., 2012) 1.7e-3-10.18e-3(Buitenhuis et al., 2018) 5e-5-2e-3 (Battaglia & Joos, 2018)

✓ Chosen parameter set: α = 3.3e-5, β = 9.1e-4

N₂O Sea-Air Pressure Difference

- Figure 4. Comparison of dpN₂O and MEMENTO measured data results from parameterized outputs of P. TEMP and P.O₂ consumption;
- High positive dpN₂0 is observed in the equatorial and eastern tropical Pacific, northern Indian Ocean, and Agulhas Current vicinity; Negative dpN₂0 is observed in some high latitude regions of the Southern Ocean and Arctic Ocean.

N₂O Sea-Air Pressure Difference

Table 3. Standard deviation and correlation coefficient between P.TEMP/P.O2consumption and MEMENTO data.				
	P.TEMP	P.O ₂ Consumtion	MEMENTO obs.	
Standard deviation (in ppb dpN ₂ O)	5.2913	5.5664	5.4406	
Correlation coefficient with obs.	0.4525	0.4590	Ι	

N₂O Flux

- Figure 10. Comparison of simulated results of P.TEMP and P.O₂-consumption with Nevison et al. (2004);
- N₂0 flux is relatively high in the equatorial and eastern tropical Pacific, northern Indian Ocean, northwestern Pacific, northern Atlantic, and Agulhas Current (>50 mgN m²/yr); Low N₂0 flux in the subtropical circulation of the Southern Ocean, Atlantic Ocean, and Pacific Ocean, as well as in the Southern Indian Ocean (<10 mgN m²/yr).
- The hotspots of N_2 0 emissions are consistent with the areas with higher POC flux (100m) output in the model.

Iron Hypothesis

- ✓ Ocean "Iron Fertilization", especially in High Nutrient Low Chlorophyll (HNLC) sea areas, is considered a simple and efficient strategy to promote BCP and reduce atmospheric CO₂ concentration.
- ✓ However, Iron fertilization not only enhances ocean carbon sequestration, but also increases remineralization within the ocean, leading to an increase in N₂O production, which may weaken the effectiveness of CO₂ sinks (Jin & Gruber, 2003).

OIF Test Areas

- OIF areas: The Southern Ocean (significant oceanic carbon sink and the largest HNLC region);
- Different frontal zones in the Southern Ocean (SO) usually have significant differences in carbon sinks, nutrient limitations, water characteristics, etc. However, the differential response of N₂O feedback to OIF in the latitudinal region where the fronts lie seems to be ignored. This will be an important basis for determining the optimal fertilization location in the SO.

Figure 7. a. Fronts determined by Orsi et al. (1995), who used water quality standards. b: Daily snapshot of SSH gradients obtained from AVISO satellite altimetry products (color) on the grid (January 11, 2010). The dashed black line represents the position of the front or jets determined by the SSH gradient threshold.

Model Setup and Experimental Design

Table 4. CESM-N₂O model iron fertilization test setup.

Experiment s	Sub- Antarctic Zone (SAZ)	Polar Frontal Zone (PFZ)	Antarctic- Southern Zone (ASZ)	SOFeX- S (kg/m²/s)
Control	×	×	×	0
Teet 1				1.62037
lest i	N	N	N	×10 ⁻¹¹
Test 2	V			1.62037
	·	·	,	×10 ⁻¹¹
	40° S-	50° S-	60° S-	4 00007
Tost 3	45° S	55° S	65° S	1.62037
10310	140° W-	140° W-	140° W-	×10 ⁻¹¹
	145°W	145°W	145°W	

- In the the fifth spin-up (model year 245), we introduce the parameterization for N₂O production and iron is added to the Southern Ocean in the 281st year of the simulation.
 - The SO is divided into three distinct zones: the Subantarctic Zone (SAZ), the Polar Frontal Zone (PFZ), and the Antarctic-Southern Zone (ASZ). The boundaries of these regions are defined based on the frontal positions identified by Wainer & Gent (2019) using strong sea surface height (SSH) gradients from CESM-LME data.
 - **Test 1**: which simulated large-scale, long-term OIF, continues for 25 years. **Test 2**: a short-term iron fertilization experiment for one month and one year. **Test 3**: the influence of the area scales of OIF on the feedback effect of N_2O is also tested.

Test 1: long-term, large-scale fertilization experiments

$Iron \uparrow NPP \uparrow pCO_2 \downarrow POC_flux_100m \uparrow pN_2O \uparrow Offset Effect$

 Table 5. Mean annual change of the key

biogeochemical variables in Test 1.

	∆S_N₂O (Tg N/yr)	∆pN₂O (ppb)	∆pCO₂ (ppm)	∆POC_ FLUX_ 100m (mg C /m²/day)	∆DIC (µmol/L)	∆Chla _tot (mg/m³)	∆PP (mgC /m²/day)
SAZ	0.2010	2.9	-17.8816	48.5363	-4.5691	0.3841	165.9121
PFZ	0.2081	5.1	-20.4576	88.9511	-2.53	0.8623	272.0656
ASZ	0.1365	10.3	-29.0020	89.4247	- 18.4588	1.1167	273.5460

Note. Positive values indicate increase relative to control group and negative values indicate decrease relative to control group.

N₂O Offsetting Effects

 Table 6. Magnitude of N₂O Offsetting Effect (%).

	Test 1	Test 2	Test 3
	offset effect (%)	offset effect (%)	offset effect (%)
SAZ	11.07%	12.13% 12.27%	12.46% 8.65%
PFZ	17.78%	9.56% 10.94%	11.31% 13.66%
ASZ	25.43%	5.40% 15.69%	6.57% 10.05%

Note. Test 1/2/3 calculates the cumulative temporal integral of the fertilization-induced change of radiation feedback offset .

- Offset Effect: Convert the absorption of CO₂ and the emission of N₂O into CO₂ (units: t) equivalents (ΔCO₂-eq), and calculate the net radiation benefit through the GWP100 (Global Warming Potential over 100 years) ratio (N₂O being 265:1, IPCC, AR6):
- Net climate benefits (CO₂-eq) = ΔC_CO₂- (ΔN_N₂O × GWP100_N₂O)
- %= $[(\Delta N_2 O \times GWP_N_2 O) / \Delta C_C O_2] \times 100\%$
- Table 6. Model simulations indicate that regional OIF experiments in the SO enhance the production of the greenhouse gas N₂O, thereby partially offsetting the carbon sequestration benefits of iron fertilization.
- The estimated range of the offset effect varies from
 5.4% to 25.43%, primarily depending on the fertilization location, timing, and spatial extent.

Conclusion

1. The negative feedback of Nitrous Oxide (N_2O) should be taken into account when considering the efficiency of iron fertilization (OIF)

2, The Polar Front Zone (PFZ) may be a compromise choice under the balance of fertilization efficiency and N₂O negative feedback

3 Medium scale area fertilization proves optimal as it can balance small-scale high-cost efficiency with the strong N₂O feedback from large-scale strategy

Thank you!

Comments and Questions?