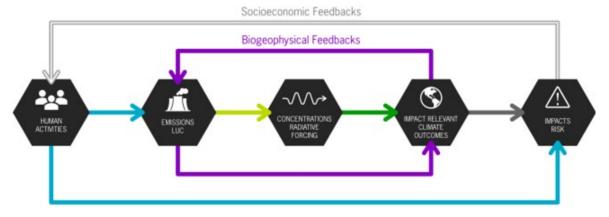
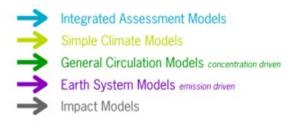
Generating large ensembles of precipitation extremes from CESM simulations using score-based diffusion models

Mengze Wang, Iris de Vries, Andre Souza, Paul O'Gorman, Raffaele Ferrari

Background & motivation

Earth system models (ESM) are only affordable for running a few scenarios

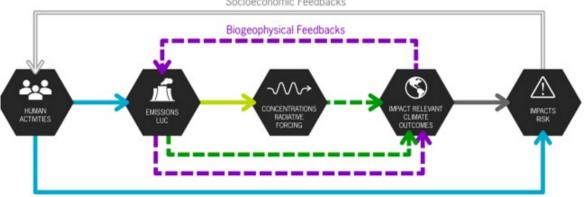




Tebaldi et al. (preprint)

Background & motivation

Emulators could increase accessibility, versatility, and fit-for-purposeness of climate



Tebaldi et al. (preprint)

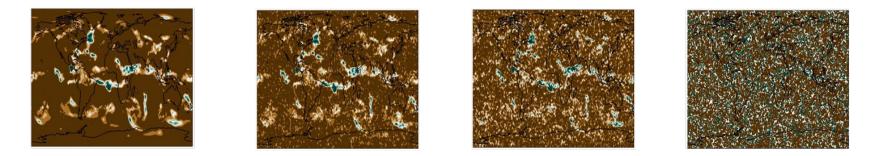
Background & motivation

Representing natural variability is key for fit-for-purposeness

- Most existing emulators focus on modeling the annual/monthly mean $\bar{\mathbf{q}} = \mathbf{f}(T_g)$ Here: emulate the **distribution** of daily variables conditioned on the scenario $p(\mathbf{q}|T_g)$

Method: score-based diffusion model

Key idea: find the transformation between $p(\mathbf{q}|T_g)$ and multivariate Gaussian distribution $\mathbf{q}(\tau = 0) \sim p_{\text{data}}(\mathbf{q}|T_g)$ Forward diffusion process $d\mathbf{q} = g(\tau)d\mathbf{W}$ $\tau \in [0, 1]$



Reverse diffusion process $\mathrm{d}\mathbf{q}=-g(au)^2\mathbf{s}(\mathbf{q}, au)\mathrm{d} au+g(au)\mathrm{d}\mathbf{W}$

The score function $\mathbf{s}(\mathbf{q}, \tau) \equiv \nabla_{\mathbf{q}} \log p_{\text{data}} (\mathbf{q}|T_g)$ is modelled using neural networks (UNet) Song et al. 2021. Bischoff & Deck 2024

Dataset

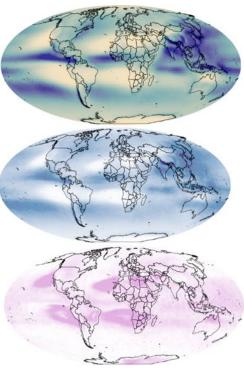
- CESM1-LR (MESACLIP, for future HR extensions)
- Emulation: daily precipitation JJA
- 1950-2100 (RCP8.5)
- Training: 1 member; Testing: 10 members (full ensemble)
- Evaluation: seasonal (JJA) maximum daily precipitation, GEV-based

Questions

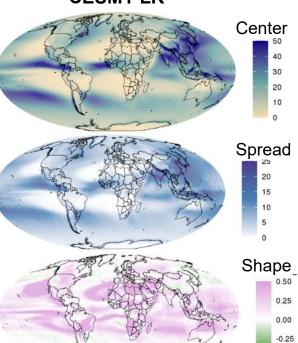
- [climate] Does the emulator reproduce the (most non-linear) part of the daily precipitation distribution → precipitation extremes?
- [weather] Does the emulator reproduce the spatial characteristics of individual extreme precipitation events?

(Preliminary) results: Rx1d GEV parameters

Emulator

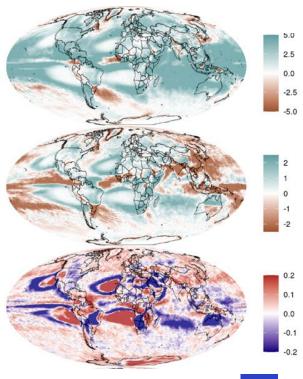


CESM1-LR



-0.50

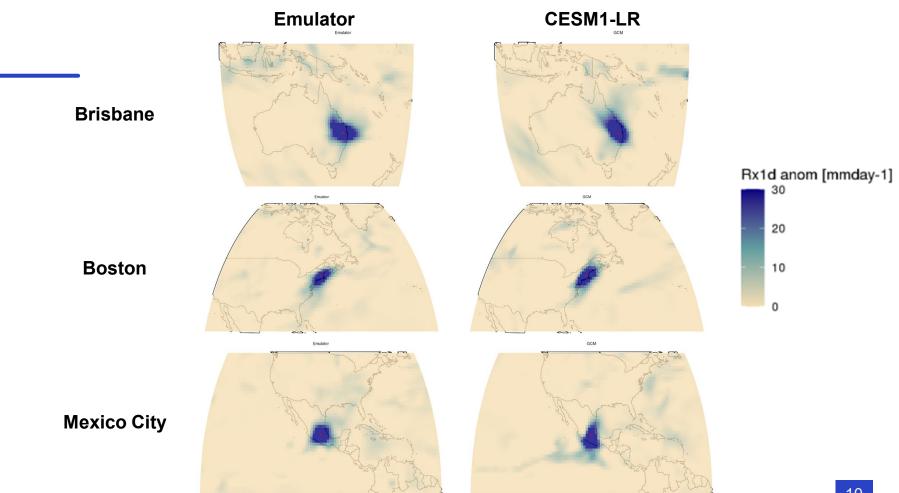
Emulator – CESM1-LR



(Preliminary) results: 1-in-20year event

Emulator **CESM1-LR** R 20yRL [mm] 75 50 25 0 **Emulator – CESM1-LR** 10 5 0 -5 -10

(Preliminary) results: spatial event characteristics Rx1d anom [mmday-1] 30 20 10 Emulator CESM1-LR Emulator CESM1-LR **Emulator** ^o CESM1-LR Emulator.15 GCM.15 Emulator.5 Emulator.25 GCM.25 Emulator.16 GCM.16 Emulator.26 GCM.26 Emulator.6 GCM.6 Emulator.17 GCM 17 Emulator.7 GCM.7 Emulator.27 GCM.27 **Brisbane Boston Mexico City** 9



Conclusions and outlook

Score-based diffusion models do (reasonably) well at

- Capturing highly non-linear daily precipitation (extreme) statistics*
- Capturing spatial characteristics of individual extremes

Towards usefulness of emulators for extremes

- Scenario interpolation/tailoring → more/different predictors
- Extrapolation to unseen events
- Multivariate (compound) extremes
- •

Conclusions and outlook

Score-based diffusion models do (reasonably) well at

- Capturing highly non-linear daily precipitation (extreme) statistics*
- Capturing spatial characteristics of individual extremes

Towards usefulness of emulators for extremes

- Scenario interpolation/tailoring → more/different predictors
- Extrapolation to unseen events
- Multivariate (compound) extremes
- •

Mengze Wang, Iris de Vries, Andre Souza, Paul O'Gorman, Raffaele Ferrari