

Recent updates on representing large volcanic eruptions in WACCM

Daniele Visioni ^{1,2} (<u>dv224@cornell.edu</u>), Ilaria Quaglia², Simone Tilmes²

¹Department of Earth and Atmospheric Sciences, Cornell University; ²ACOM NCAR-NSF,

CESM meeting 11 June 2025

Why?

- Large volcanic eruptions are one of the best "acid tests" for climate models (Hansen, 1992)

Figures from Soden et al. 2002

- Large volcanic eruptions are one of the best "acid tests" for climate models (Hansen, 1992)
- They represent one of the best cases of stratosphericsurface coupling, including dynamics, chemistry, microphysics, climate sensitivity

- Large volcanic eruptions are one of the best "acid tests" for climate models (Hansen, 1992)
- They represent one of the best cases of stratosphericsurface coupling, including dynamics, chemistry, microphysics, climate sensitivity
- Studying them can provide insight into the potential impacts of climate intervention strategies

What are the challenges?

Quaglia et al. (2023)

Uncertainties over height/magnitude of injection

What are the challenges?

• Available observations often poor/saturated

Visioni, Quaglia et al. (in prep.)

What has been done in CESM before?

Volcanic Radiative Forcing From 1979 to 2015

 $ERF = ERF_{ari} + ERF_{aci} + dLW_{ERF_a}$

Figures from Schmidt et al. (2018)

What has been done in CESM before?

from Davis, Visioni et al. (2023), updated. Thanks to Thomas Aubrey for UKESM data

The importance of microphysics

The importance of microphysics

- Normally simulations done with MAM4
- New inclusion in
 CESM2 of CARMA
 (sectional microphysics)
 may improve accuracy
 of simulations

- First simulations of historical period (1980-2014) in CARMA (AMIP-style) x3, 2°
- Includes 29 "small-tomoderate" volcanic eruptions with stratospheric SO₂ of different magnitude
- 15k vs 2k pe-h/yr

Quaglia, Tilmes, Visioni et al. (in prep.)

- We look at quiescent vs Pinatubo vs "small" volcanic eruptions periods
- Indications that small volcanic eruptions reduce r_{eff} rather than increase already in the literature

- We look at quiescent vs
 Pinatubo vs "small"
 volcanic eruptions
 periods
- Indications that small volcanic eruptions reduce r_{eff} rather than increase already in the literature

lacksquare

Indication that
"efficacy" is different
except for large
volcanic eruptions (i.e.
where strat response is
tuned to Pinatubo)

Indication that "efficacy" is different except for large volcanic eruptions (i.e. where strat response is tuned to Pinatubo)

Good match in the TOA RF in both cases

Further analyses with double radiation call show higher direct aerosol forcing in MAM than CARMA

Conclusions

- CARMA is a more resolved, more computationally expensive method to capture aerosol evolution

Conclusions

- CARMA is a more resolved, more computationally expensive method to capture aerosol evolution
- Some indications that it performs marginally "better" over a set of metrics

13

- CARMA is a more resolved, more computationally expensive method to capture aerosol evolution
- Some indications that it performs marginally "better" over a set of metrics
- Next steps will hopefully include understanding impact on Stratospheric Aerosol Injection (SAI) simulations