

COLORADO STATE UNIVERSITY

ATMOSPHERIC SCIENCE

Distilling machine learning-based climate emulators for physical understanding

Senne Van Loon, Maria Rugenstein, & Elizabeth A. Barnes

11 June 2025 CESM Workshop

Overview ●○	Green's functions	Evaluating emulators
1	Overview	

- Machine learning-based climate emulators
 - ▶ Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales

- Machine learning-based climate emulators
 - ▶ Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5

- Machine learning-based climate emulators
 - ► Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5
- CAMulator
 - ▶ See Will Chapman @ 11:30

- Machine learning-based climate emulators
 - ► Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5
- CAMulator
 - ▶ See Will Chapman @ 11:30
- Need for evaluation (can we trust them?)

1

Green's functions

Evaluating emulators

- Machine learning-based climate emulators
 - ▶ Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5
- CAMulator
 - ▶ See Will Chapman @ 11:30
- Need for evaluation (can we trust them?)
 - ► Idealized patch experiments "Green's function" simulations

1

Green's functions

Evaluating emulators

Overview

 $\partial R / \partial SST$

- Machine learning-based climate emulators
 - ▶ Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5
- CAMulator
 - ▶ See Will Chapman @ 11:30
- Need for evaluation (can we trust them?)
 - Idealized patch experiments "Green's function" simulations
 - SST-forced simulations with localized perturbations

1

Green's functions

Evaluating emulators

Overview

 $\partial R / \partial SST$

- Machine learning-based climate emulators
 - ▶ Replace traditional climate models with ML
 - ▶ Fast & stable on long timescales
- Ai2 Climate Emulator (ACE)
 - ▶ Trained on FV3-GFS, EAM (E3SM), and ERA5
- CAMulator
 - ▶ See Will Chapman @ 11:30
- Need for evaluation (can we trust them?)
 - Idealized patch experiments "Green's function" simulations
 - SST-forced simulations with localized perturbations
 - "Distillation" model

2

Green's functions

Evaluating emulators

Ai2 Climate Emulator

Green's functions

Evaluating emulators

Ai2 Climate Emulator

Three versions, trained on:

2

Overview	Green's functions	Evaluating emulators
3	Green's function simulations	

 \Leftrightarrow **r** = G**f** General solution

Differential equation (GCM)

GFMIP; Bloch-Johnson et al. (2025)

 \Leftrightarrow *LG* = δ_{f} Response to localized forcing

 $L\mathbf{r} = \mathbf{f}$

Green's functions

Evaluating emulators

Green's function simulations

Green's functions

Evaluating emulators

Green's function simulations

Green's functions

Evaluating emulators

Green's function simulations

3

Evaluating emulators

Green's function simulations

GFMIP; Bloch-Johnson et al. (2025)

Green's functions

Evaluating emulators

Green's function simulations

Linearized response of the climate to SST forcing

Evaluating emulators

Global mean, top of the atmosphere, radiation budget

N = F + R

Global mean, top of the atmosphere, radiation budget

incoming energy - outgoing energy 🤶

Radiative imbalance

Global mean, top of the atmosphere, radiation budget

incoming energy - outgoing energy 🦛

Radiative imbalance

Global mean, top of the atmosphere, radiation budget

incoming energy - outgoing energy 🤶

Radiative imbalance

Feedback depends on pattern of surface warming

Global mean, top of the atmosphere, radiation budget

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

6

Green's functions

Evaluating emulators

6

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

Evaluating emulators

Climate emulators for scientific discovery

• Probing the "observed" climate system in a new way (e.g. ACE-ERA5)

Evaluating emulators

- Probing the "observed" climate system in a new way (e.g. ACE-ERA5)
 - ▶ Turn off forcing in the real world

Evaluating emulators

- Probing the "observed" climate system in a new way (e.g. ACE-ERA5)
 - ► Turn off forcing in the real world
- Physically realistic sensitivity map

Evaluating emulators

- Probing the "observed" climate system in a new way (e.g. ACE-ERA5)
 - ► Turn off forcing in the real world
- Physically realistic sensitivity map
- Fails to capture expected negative trend
 - ► Lack of energy conservation constraint?

Evaluating emulators

- Probing the "observed" climate system in a new way (e.g. ACE-ERA5)
 - ► Turn off forcing in the real world
- Physically realistic sensitivity map
- Fails to capture expected negative trend
 - ► Lack of energy conservation constraint?
- "True" radiation Green's function unknown
 - Direct comparison with GF simulations in GCMs (e.g., Wu et al. 2025, E3SM); CAMulator vs CAM

Green's functions as distillation model

• Climate emulators need systematic testing (e.g., Ullrich et al. 2025)

Green's functions

Evaluating emulators

- Climate emulators need systematic testing (e.g., Ullrich et al. 2025)
- "Distill" the nonlinear, statistical "black box"

Green's functions

Evaluating emulators

- Climate emulators need systematic testing (e.g., Ullrich et al. 2025)
- "Distill" the nonlinear, statistical "black box"

Green's functions

Evaluating emulators

Green's functions

Evaluating emulators

8

Green's functions

Evaluating emulators

8

Green's functions

Evaluating emulators

8

Green's functions

Evaluating emulators

