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Modernizing estimates of extreme rainfall @

- e Bipartisan Infrastructure Law and PRECIP Act (2022) T
5 tasked NOAA with modernizing probable maximum B
e - . . . odernizin
= precipitation (PMP) estimation Frtabe asimum
Tl ety recipitation Estimation
o
g o PMP is defined as the maximum depth of precipitation over a given

area and duration that is meteorologically possible

~ o National Academies of Sciences, Engineering, and
= Medicine (NASEM) report released in 2024 issued short-

and long-term recommendations to NOAA NASEM Report on
Modernizing PMP




g NASEM Long-term Recommendation 5-10 @

. . o “Inthe long term, NOAA should adopt a model-based approach
i to PMP estimation that aligns with the revised PMP definition,

- consisting of multi-model large ensemble
kilometer-scale or finer-resolution modeling to

2 =
5 construct the probability distribution of precipitation for PMP
= estimation under different climates.”
g Revised definition: depth of precipitation with an extremely low annual
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Large ensemble of km-scale simulations @

. o Compile publicly available model datasets and produce our own
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Existing km-scale simulations

&

e CONUS404 Historical and Pseudo-Global Warming (PGW)
o Uses WRF to dynamically downscale ERA5 over 1979-2022 at 4 km resolution
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Producing additional simulations @

'g’?,d e Follow CONUS404 blueprint to dynamically downscale GCM simulations

e 4 km resolution on same Lambert Conformal grid as CONUS404

PMP in the

future!
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CESM2 Large Ensemble as driving data @

%gq e CESM2 run over 1850-2100 at 1° horizontal resolution globally
£
ﬁg e 100 ensemble members — 10 with six-hourly outputs

W o Input data to WRF requires high frequency (six-hourly) output data

10 MOAR+COSP
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CONUS-Futures Ensemble

~ = e Use WREF to dynamically downscale CESM2 Large Ensemble
high frequency members (001-010) at 4 km over entire CONUS
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; CONUS-Futures Ensemble @
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% e Use WRF to dynamically downscale CESM2 Large Ensemble
s g2 high frequency members (001-010) at 4 km over entire CONUS
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CONUS-Futures Simulation Design
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WRF version 4.6.1

4 km resolution as CONUS404

Dynamically downscale CESM2 model
output approximately during 2025-2064

Bias correct input data from CESM2
(e.g., T,Q, U,V, etc.)

o Using Bruyére et al. (2014) method — ERA5
used as reference data
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1.

Project Timeline
Process and bias correct CESM2 output data
2. Test and confirm WRF model configurations

3. Produce historical control simulation
(~2010-2020)

4. Downscale first CESM2 ensemble
member for ~40 years

5. Downscale the rest of the CESM2
ensemble members
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- in progress




g Looking towards the future @

. e Community Effort: Produce and compile all simulations
L # o “ee ” . N .
ot deemed “fit-for-purpose” for probable maximum precipitation
o
5 ) .
2% © (©
e LY \N B U\-\')
ariak S CONUS PG c ONUSF
= v

- & ©

P ]

Z

=

1'-':;\ Ia_)

_ 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070




Thank you!

NOAA PMP Webpage

Contact info
https://www.psl.noaa.gov/precip/pmp

alex.thompson-6@colorado.edu
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NOAA Boulder, David Skaggs Reséérch Center
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e« CONUS404 Historical Simulation

sf?a o Downscales historical reanalysis (ERA5)

% ga with weather model (WRF) over period
T 19802022

'”- o 4km grid across CONUS

o Explicitly resolves convective processes

= o  Skillfully simulates extreme precipitation

Hourly Precipitation on 2017- 08 26 tlme 00 UTC [mm]
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; Extreme precipitation in CESM2 Large Ensemble @

ey

“.« e Decades of storms that can be downscaled with WRF

e Example from model year 2036 in ensemble member 1191.010

CESM2 downscaled to 4km with WRF
Hourly Precipitation on 2036-09-23 13UTC




CESM2 Variable Description Dimensions Units Output WREF Variables Created
Name Frequency
T Temperature lev, lat, lon K 6-hour TT
Q Specific humidity lev, lat, lon kg kg™ 6-hour SPECHUMD
U Zonal (U) wind lev, lat, lon m s’ 6-hour uu
VvV Meridional (V) wind lev, lat, lon m s’ 6-hour VV
Z3 Geopotential height lev, lat, lon m 6-hour GHT
PS Surface pressure lat, lon Pa 6-hour PSFC
PSL Sea level pressure lat, lon Pa 6-hour PMSL
TS Surface/skin temperature lat, lon K 1-day SKINTEMP, SST, TAVGSFC
TSOI Soil temperature levgrnd, lat, lon K 1-day ST: 000010,010040,040100,100200
H20SO0I Volumetric soil water levgrnd, lat, lon mm?3 mm-3 1-month SM: 000010,010040,040100,100200
LANDFRAC Fraction covered by land lat, lon fraction 1-month LANDSEA
PHIS Surface geopotential lat, lon m? g2 1-month SOILHGT (units = m)
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g Bruyere et al. (2014) Bias Correction Method @
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