Kilometer-scale downscaling of CESM2 Large Ensemble simulations over CONUS

Dr. Alexander Thompson CIRES/CU Boulder NOAA Physical Sciences Laboratory - Affiliate CESM Workshop | June 11, 2025

Collaborators: Kelly Mahoney (NOAA PSL), Andreas Prein (ETH Zürich), Lulin Xue (NCAR RAL)

NOAA

MENT OF

Probable Maximum Precipitation

Modernizing estimates of extreme rainfall

- Bipartisan Infrastructure Law and PRECIP Act (2022) tasked NOAA with modernizing probable maximum precipitation (PMP) estimation
 - PMP is defined as the *maximum depth of precipitation over a given area and duration that is meteorologically possible*
- National Academies of Sciences, Engineering, and Medicine (NASEM) report released in 2024 issued shortand long-term recommendations to NOAA

Modernizing Probable Maximum Precipitation Estimation

NASEM Report on Modernizing PMP

NASEM Long-term Recommendation 5-10

- "In the long term, NOAA should adopt a model-based approach to PMP estimation that aligns with the revised PMP definition, consisting of *multi-model large ensemble kilometer-scale or finer-resolution modeling* to construct the probability distribution of precipitation for PMP estimation under different climates."
 - *Revised definition*: depth of precipitation with an extremely low annual probability of exceedance

Large ensemble of km-scale simulations

• Compile publicly available model datasets and produce our own

5- to 10-year time horizon

Requires 1000s of simulated years

shape parameter

Existing km-scale simulations

- CONUS404 Historical and Pseudo-Global Warming (PGW)
 - Uses WRF to dynamically downscale ERA5 over 1979–2022 at 4 km resolution

CONUS404: July 26, 2022

Source: Xue (2024), USGS HyTEST Seminar

Producing additional simulations

- Follow CONUS404 blueprint to dynamically downscale GCM simulations
- 4 km resolution on same Lambert Conformal grid as CONUS404

CESM2 Large Ensemble as driving data

- CESM2 run over 1850–2100 at 1° horizontal resolution globally
- 100 ensemble members \rightarrow 10 with six-hourly outputs
 - Input data to WRF requires high frequency (six-hourly) output data

10 MOAR+COSP

Source: Rodgers et al. (2021), Fig. S3

CONUS-Futures Ensemble

• Use WRF to dynamically downscale CESM2 Large Ensemble high frequency members (001–010) at 4 km over entire CONUS

CONUS-Futures Ensemble

• Use WRF to dynamically downscale CESM2 Large Ensemble high frequency members (001–010) at 4 km over entire CONUS

CONUS-Futures Simulation Design

- WRF version 4.6.1
- 4 km resolution as CONUS404 —
- Dynamically downscale CESM2 model output approximately during 2025–2064
- Bias correct input data from CESM2 (e.g., T, Q, U, V, etc.)
 - Using Bruyère et al. (2014) method \rightarrow ERA5 used as reference data

Project Timeline

- 1. Process and bias correct CESM2 output data
 - 2. Test and confirm WRF model configurations
 - Produce historical control simulation (~2010-2020)
 - 4. Downscale first CESM2 ensemble member for ~40 years
 - 5. Downscale the rest of the CESM2 ensemble members

Looking towards the future

• **Community Effort:** Produce and compile all simulations deemed "fit-for-purpose" for probable maximum precipitation

Thank you!

Contact info alex.thompson-6@colorado.edu

NOAA PMP Webpage https://www.psl.noaa.gov/precip/pmp

NOAA Boulder, David Skaggs Research Center

CONUS404 Historical Simulation

- Downscales historical reanalysis (ERA5) with weather model (WRF) over period 1980–2022
- 4km grid across CONUS
- Explicitly resolves convective processes
- Skillfully simulates extreme precipitation

Extreme precipitation in CESM2 Large Ensemble

- Decades of storms that can be downscaled with WRF
- Example from model year 2036 in ensemble member 1191.010

CESM2 Variable Name	Description	Dimensions	Units	Output Frequency	WRF Variables Created	TORR
т	Temperature	lev, lat, lon	к	6-hour	ТТ	
Q	Specific humidity	lev, lat, lon	kg kg⁻¹	6-hour	SPECHUMD	
U	Zonal (U) wind	lev, lat, lon	m s ⁻¹	6-hour	UU	
v	Meridional (V) wind	lev, lat, lon	m s ⁻¹	6-hour	VV	
Z3	Geopotential height	lev, lat, lon	m	6-hour	GHT	3D Variables
PS	Surface pressure	lat, lon	Pa	6-hour	PSFC	Atmosphere
PSL	Sea level pressure	lat, lon	Pa	6-hour	PMSL	Land
TS	Surface/skin temperature	lat, lon	к	1-day	SKINTEMP, SST, TAVGSFC	
TSOI	Soil temperature	levgrnd, lat, lon	к	1-day	ST: 000010,010040,040100,100200	
H2OSOI	Volumetric soil water	levgrnd, lat, lon	mm ³ mm ⁻³	1-month	SM: 000010,010040,040100,100200	
LANDFRAC	Fraction covered by land	lat, lon	fraction	1-month	LANDSEA	
PHIS	Surface geopotential	lat, lon	m ² s ⁻²	1-month	SOILHGT (units = m)	1

$ERA5 = \overline{ERA5} + ERA5'$ $CESM = \overline{CESM} + CESM'$

$$CESM_{biascorr} = \overline{ERA5} + CESM'$$

