

EVALUATING SOUTHERN OCEAN HEAT UPTAKE IN HIGH- AND LOW-RESOLUTION CLIMATE MODELS

Presenter: Antony Thomas (athom152@ucr.edu) Ph.D Candidate, University of California, Riverside

In Collaboration with: **Prof. Wei Liu Associate Professor of Climate Change** University of California, Riverside

Motivation

Recent Observed Changes in the Southern Ocean

Southern Ocean within and north of the Antarctic Circumpolar Current has warmed at all depths in the upper 2,000 m.

(Gille, 2008); (Böning et al., 2008)

Southern Ocean also shows strong surface freshening south of 45°S which extends into ocean interior

(Swart et al., 2018)

Motivation

Recent Observed Changes in the Southern Ocean

Southern Ocean also exhibits poleward strengthening of westerlies

(Cai et al., 2023)

Observational studies suggest a rise in eddy kinetic energy (EKE) in the ACC since the 1990s

(Martínez-Moreno et al., 2021)

• It was found that explicitly resolved mesoscale eddies reduce subsurface ocean model warming drifts, improving the realism of water masses relative to those in standard models.

• Accurate simulation of climate change responses in the Southern Ocean was reported to be critically dependent on mesoscale eddies.

<u>Methods</u>

I. Datasets

•Period analyzed: 1958-2014

•Region: 30°S–70°S, upper 0–1800 m layer

i. Observational Datasets

Ishii et al. (2005)

IAP (Cheng et al., 2017)

EN4.2.2 (Good et al., 2013)

•All observational data interpolated to Ishii vertical levels for consistency

<u>Methods</u>

ii. Climate Model Simulations

Models used:

•HadGEM3-GC31 (UK Met Office) and CESM1.3 (NCAR/iHESP)

•Participating in: CMIP6 HighResMIP

•Simulations: control-1950 and hist-1950

•Drift correction: linear trend removed using 100-yr control-1950 simulation

HadGEM3-GC31:

Low resolution (LL):
 ORCAI (~I° ocean), N96 (~I35 km) atmosphere

High resolution (HH):
 •ORCA12 (~0.1° ocean), N512 (~25 km) atmosphere

Ocean: 75 vertical levels
Ocean components: GA7.1 atmosphere, GO6 ocean (NEMO v3.6), GSI8.1 sea ice (CICE5.1), GL7.1 land
Coupled via OASIS-MCT

CESMI.3:

Low resolution (LR):
~I° POP2 ocean, 0.25° CAM5-SE atmosphere

High resolution (HR):
~0.1° POP2 ocean, 0.25° atmosphere (same as LR)

Ocean: 62 vertical levels, max depth 6000 m
No eddy parameterization in HR – explicitly resolves mesoscale eddies
CAM5 atmosphere, CICE4 sea ice, CLM4 land, updated physics

<u>Methods</u>

iii. Spiciness-Heave Decomposition Method

I To separate temperature changes into components arising from along-isopycnal variations and vertical displacement of isopycnal surfaces

Temperature: $\mathbf{T'}|_{z} \cong \mathbf{T'}|_{n} + \mathbf{N'T}_{z}$

•Terms: T'|_n: Spiciness — changes **along** isopycnals

•N'T₇ : Heave — changes due to vertical displacement of density surfaces

•N': Depth change of neutral density surface (positive = deeper)

```
Bindoff et al. (1994); Lyu et al. (2020)
```

Temperature Trends – Observation vs HadGEM3-GC3 I

- Observation-based datasets consistently show surface cooling and subsurface warming south of 55°S, and a deep-reaching warming north of 55°S
- HadGEM3-GC3.I simulations
 show resolution-dependent
 biases, with the
 high-resolution version
 producing deeper and
 stronger warming north of
 55°S and both resolutions
 failing to capture the
 observed surface cooling
 south of 55°S

Temperature Trends – Observation vs HadGEM3-GC3 I

Observations:

Surface cooling south of 55°S is driven by negative spiciness trends

Subsurface warming north of 50°S arises from positive heave contributions

HadGEM3-GC3.1 High & Low Res: South of 55°S: Both resolutions fail to capture observed cooling Simulate spiciness-driven warming instead of cooling

North of 50°S: Warming tongue driven by heave in both versions

High-res model shows stronger and deeper heave, closer to observations

Temperature Trends – Observation vs CESMI.3

- Both CESMI.3 resolutions fail to capture observed surface cooling south of 55°S
- Underestimate warming north of 55°S in both resolutions
- High-resolution version shows a deeper warming tongue, but with weaker magnitude than both low-resolution and observations

Results

Temperature Trends – Observation vs CESMI.3

Spiciness: Overestimates warming south of 55°S (compared to observed cooling).

Heave: Dominates warming north of 50°S, but remains too weak and shallow, leading to underestimated subsurface warming compared to observations.

Physical Mechanisms- HadGEM3-GC31

I. Surface Flux

HadGEM3-GC31 High-Resolution

•Net surface heat flux anomalies: +ve from 70°S- 35°S

•Positive anomalies are largely due to **enhanced turbulent fluxes** (latent + sensible), especially **south of 60°S** (Panel b).

•Explains the **positive spiciness trend** and **absence of observed surface cooling** in high-res simulation

•North of 60°S (ACC and beyond): Continued positive net flux driven by turbulent + radiative contributions, aligning with upper ocean warming in spiciness.

HadGEM3-GC31 Low-Resolution

•Shows weaker net heat flux anomalies south of 64°S

compared to high-res.

This is because, positive radiative fluxes are offset by stronger negative turbulent fluxes, leading to weaker surface warming and spiciness trends south of 64°S.
From 64°S to 45°S, net heat flux increases, peaking around 57°S due to turbulent fluxes.

Physical Mechanisms- CESMI.3

I. Surface Flux

CESMI.3 High-Resolution

Positive net heat flux from 68°S to 47°S, peaking at 58°S.

Radiative flux dominates south of 61°S; **turbulent** warming dominates north of 61°S.

CESMI.3 Low-Resolution

Positive net heat flux from **70°S to 30°S**, peaking near **56° S**, driven by **turbulent fluxes**.

South of 60°S, **positive radiative flux** nearly **cancelled** by **negative turbulent fluxes**.

Physical Mechanisms- HadGEM3-GC31

III. Zonal Wind Changes

High-Resolution:

•Zonal Wind Stress Anomaly:

•Dipole centered near **42°S**: positive anomaly south, negative north (Panel. a, red line).

Indicates poleward intensification of westerlies.

•Wind Stress Curl:

•Positive curl anomalies **north of 55°S**, peaking ~**9×10⁻⁹ N/m**³ at 46°S.

•Negative curl anomalies **south of 55°S** (Panel. b, red line).

Low-Resolution:

•Zonal Wind Stress Anomaly:

•Dipole centered farther south (~46°S): positive south, negative north (Panel. a, blue line).

•Wind Stress Curl:

Positive anomalies begin at ~58°S, peaking ~11×10⁻⁹ N/m³ near 48°S (Panel. b, blue dashed line).
Negative anomalies poleward of 58°S.

<u>Conclusion</u>

Subsurface warming patterns (e.g., warm tongue north of 55°S) are captured by all models, but:
High-resolution versions reproduce deeper warming tongues, due to stronger heave contributions associated with positive wind stress curl anomalies.

•Surface cooling south of 55°S is absent in all models

•All simulate **spiciness-driven surface warming** instead.

•Linked to underestimated sea ice expansion, causing excess surface heat uptake.

•Turbulent heat fluxes acts the main driver of spiciness induced surface warming; radiative fluxes play a contributing role.

•Each resolution shows region- and process-specific strengths/limitations.

•Highlights the need for improved:

- **Surface turbulent flux simulation**
- **Sea ice dynamics**
- Wind forcing representation

<u>References</u>

Böning, C.W., Dispert, A., Visbeck, M., Rintoul, S. R., & Schwarzkopf, F.U. (2008). The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864–869. https://doi.org/10.1038/ngeo362

Gille, S. T. (2008). Decadal-scale temperature trends in the Southern Hemisphere Ocean. Journal of Climate, 21(18), 4749–4765. <u>https://doi.org/10.1175/2008jcli2131.1</u>

Hewitt, H. T., Bell, M. J., Chassignet, E. P., Czaja, A., Ferreira, D., Griffies, S. M., Hyder, P., McClean, J. L., New, A. L., & Roberts, M. J. (2017). Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modelling, 120, 120–136. https://doi.org/10.1016/j.ocemod.2017.11.002

Martínez-Moreno, J., Hogg, A. McC., England, M. H., Constantinou, N. C., Kiss, A. E., & Morrison, A. K. (2021). Global changes in oceanic mesoscale currents over the satellite altimetry record. Nature Climate Change, 11(5), 397–403. https://doi.org/10.1038/s41558-021-01006-9

Swart, N. C., Gille, S. T., Fyfe, J. C., & Gillett, N. P. (2018b). Recent southern ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11(11), 836–841. <u>https://doi.org/10.1038/s41561-018-0226-1</u>

<u>Acknowledgment</u>

We acknowledge the International Laboratory for High-Resolution Earth System Prediction (iHESP) and the National Center for Atmospheric Research for providing the high-resolution CESMI.3 data, and the UK Met Office for making the Hadley Centre Global Environment Model version 3 (HadGEM3) data publicly available.

Thank you for listening!!!

Physical Mechanisms- HadGEM3-GC31

•Observed (HadISST.2):

•Southern Hemisphere sea ice area **increased** from 1958–2014, especially post-1990s.

•Regional **sea ice concentration increased** in Ross Sea, Prydz Bay, Davis Sea, and Weddell Sea.

•Some local **decreases** in Amundsen, Bellingshausen, and western Weddell Sea.

•HadGEM3 Simulations:

•Both high- and low-res simulate decreasing sea ice area, opposite to observations.

•**Spatially**, both versions simulate **widespread sea ice loss**, especially high-res.

Observed sea ice increase limits air-sea heat exchange, helping to explain surface cooling south of 55°S.
Model sea ice decline exposes open ocean, enhancing surface warming via increased heat flux.
Hence, sea ice trend mismatch explains why models fail to capture observed surface cooling.

Physical Mechanisms- CESMI.3

•CESMI.3 Simulations:

•Both high- and low-resolution versions simulate declining sea ice area from 1958–2014.

•Spatial Sea Ice Concentration Trends:

•Widespread sea ice loss across Southern Ocean in both configurations.

I. Model Temperature bias

•North of 55°S:

•HadGEM3-GC3.1 (HH & LL) simulates higher temperatures than observations, with HH showing deeper warming due to stronger heave.

- Though surface warming is overestimated, the subsurface shows less intensity reflecting weaker spice-related cooling than observed.
 South of 55°S (especially near Antarctica):
 Both HadGEM3-GC3.1 simulations show excess warming relative to observations.
- •This warm bias is **mostly from spiciness**, indicating models simulate **too much along-isopycnal warming**.

•Heave contribution in HH aligns more closely with observations, suggesting it better captures isopycnal displacement-driven warming.

CESMI.3:

Shows smaller temperature anomalies compared to HadGEM, especially north of 55°S.
This is due to weaker heave-induced warming and underestimated spice-related cooling, especially in the low-resolution version.
The combination of reduced heave and weaker spice anomalies results in less total warming than HadGEM.

II. Model Salinity bias

HadGEM3-GC3.1 High-Resolution (HH):

Shows over-salinification of SAMW,

mainly driven by **spiciness** (along-isopycnal changes).

Near-Antarctic surface freshening is present and comes from both heave and spice contributions.

HadGEM3-GC3.1 Low-Resolution (LL):

Shows a **similar spatial pattern** to HH but with **smaller magnitude trends**. The **total salinity trend** in LL **matches observations more closely**, especially in near-Antarctic and AAIW layers.

CESMI.3:

High-resolution version aligns better with observations, especially near-Antarctica.

Low-resolution CESM shows strong salinification in the SAMW region, opposite to the observed freshening. This bias is mainly due to the spice component (along-isopycnal salinity increase).

Salinity Trends – Observation vs HadGEM3-GC3 I

Observation-based datasets

Surface freshening south of 55°S, co-located with cooling.

Clear freshening of AAIW (400-800 m, 40°-50°S).

Salinification of SAMW (0–300 m, 30°–40°S) and CDW.

HadGEM3-GC3.1 simulations

High-resolution:

Captures overall pattern but **overestimates** SAMW salinification. Underestimates surface and AAIW freshening.

Low-resolution:

Better reproduces **near-Antarctic surface freshening** (but extends too deep).

Simulates SAMW and AAIW trends more accurately.

Shows **reduced biases** across regions compared to high-res.

Salinity Trends – Observation vs HadGEM3-GC3 I

Observations:

Surface freshening south of 55°S is driven by negative spiciness and heave trends SAMW salinification arises from positive heave and spice contributions

HadGEM3-GC31 High Res: South of 55°S:

 Freshening, primarily due to heave, but is heavily compensated by spice
 North of 50°S (SAMW):

 Captures observed salinification fairly well, with positive contributions from both heave and spice

HadGEM3-GC31 Low Res: South of 55°S:

 Overestimates freshening, due to stronger heave, with spice lightly compensating

North of 50°S (SAMW):

 Simulates salinification, contributed by spiciness and heave

Salinity Trends – Observation vs CESMI.3

Observations:

Surface freshening south of 55°S is driven by negative spiciness and heave trends SAMW salinification arises from positive heave and spice contributions

CESMI.3 High Res: South of 55°S:

 Overestimates freshening, primarily due to heave, partially compensated by spice
 North of 50°S (SAMW):

 Captures observed salinification fairly well, with positive contributions from both heave and spice

CESMI.3 Low Res:

South of 55°S:

 Underestimates freshening, due to weaker heave, with spice partially compensating North of 50°S (SAMW):

Simulates freshening instead of salinification,
 driven by spiciness, not heave

