Modeling urban traffic heat flux in the Community Earth System Model

Yuan Sun¹, Keith W. Oleson², Zhonghua Zheng¹

¹ The University of Manchester ² NSF National Center for Atmospheric Research

Acknowledgments:

Prof. David Topping and Dr. Thomas Bannan for providing sensor data. Transport for Greater Manchester (TfGM) for providing traffic data. Dr. Xiaodan Xu for giving comments.

Introduction: Anthropogenic Heat Flux (AHF)

Global average AHF is ~1% of greenhouse gas forcing (Flanner, 2019).

Three sources of AHF in urban areas:

Building heating & air conditioning (~15-50%)

Traffic (~15-50%)

Human metabolism (~5-8%)

Jin et al. (2019). https://doi.org/ 10.1038/s41597-019-0143-1

Gaps and Needs

Gaps and Needs

Representation and Parameterization of traffic-related processes

 $Q_{traffic}$ is traffic-induced sensible heat flux, added to the surface energy balance as a separate component from the overall Q_h (Equation 2):

$$\begin{split} R_n &= SW_{down} - SW_{up} + LW_{down} - LW_{up} \\ &= Q_h + Q_{le} + (Q_g - Q_{ac} + Q_{heat} - Q_v) - Q_{heat} - Q_w - Q_{traffic} \\ &= Q_h + Q_{le} + Q_g - Q_{ac} - Q_v - Q_w - Q_{traffic}. \end{split}$$

The model assumes the AHF coming into the climate system is from building energy consumption and urban traffic (Equation 3):

$$AHF = Q_{heat} + Q_w + Q_{traffic}$$

In the real world, traffic heat influences the ground and air instantaneously.

(2)

(3)

In the model, we simplified them as one variable Q_{traffic} , and added it to the ground first.

Q_{traffic}

$$\begin{split} Q_{traffic} &= \frac{E_{total}}{A_{improad}} \\ &= \frac{E_{vehicle} \cdot N_{lane} \cdot Flow_{vehicle}}{Speed_{vehicle} \cdot Width_{improad} \cdot 3600}, \end{split}$$

- Q_{traffic} : Traffic sensible heat flux (W/m²)
- *E*_{total}: Total traffic heat release rate (W)
- A_{improad}: Area of impervious road (m²)
- *E*_{vehicle}: Heat release rate per vehicle (W)
- *N*_{lane}: Number of vehicle lanes
- *Flow*_{vehicle}: Number of vehicles per hour per lane (vehicles/hour-lane)
- Speed_{vehicle}: Vehicle speed (m/s)
- *Width*_{improad}: Width of impervious road (m)

- Q_{traffic} : Traffic sensible heat flux (W/m²)
- E_{total} : Total traffic heat release rate (W)
- A_{improad}: Area of impervious road (m²)
- *E*_{vehicle}: Heat release rate per vehicle (W)
- *N*_{lane}: Number of vehicle lanes
- *Flow*_{vehicle}: Number of vehicles per hour per lane (vehicles/hour-lane)
- Speed_{vehicle}: Vehicle speed (m/s)
- *Width*_{improad}: Width of impervious road (m)

 $N_{\text{lane}} = 0, 1, 2, 4, 6.$ Width_{improad}: Width of impervious road. *Width*_{lane}: Lane width (3.5 m).

$$Width_{improad} = \left(\frac{H_{roof}}{HWRatio}\right) \cdot \left(1 - F_{perroad}\right),$$

*H*_{roof}: Roof height. *HWRatio*: Canyon height-to-width ratio. F_{perroad} : Fraction of pervious road.

(1) N_{lane} and Width_{improad} are two morphological parameters, calculated based on CTSM's default surface input data (i.e., H_{roof}, HWRatio, F_{perroad}).

We estimated traffic heat in a bottom-up approach rather than a top-down approach using energy inventories.

AADT: Annual average daily traffic volume. SF: Scale factor at the hour of the day.

② *E*_{vehicle} and *Flow*_{vehicle} are time-varying, considering technology development and future energy transition.

We estimated traffic heat in a bottom-up approach rather than a top-down approach using energy inventories.

Model time step

- Q_{traffic} : Traffic sensible heat flux (W/m²)
- *E*_{total}: Total traffic heat release rate (W)
- A_{improad}: Area of impervious road (m²)
- *E*_{vehicle}: Heat release rate per vehicle (W)
- *N*_{lane}: Number of vehicle lanes
- *Flow*_{vehicle}: Number of vehicles per hour per lane (vehicles/hour-lane)
- Speed_{vehicle}: Vehicle speed (m/s)
- Width_{improad}: Width of impervious road (m)

 $Speed_{vehicle}(t) = Speed \cdot SFRain_t \cdot SFSnow_t,$

Speed: Constant vehicle speed (40 km/h). SFRain: Scale factor of rain. SFSnow: Scale factor of snow.

 $\begin{array}{l} \text{K} & \text{Rakha et al. (2012)} \\ & \text{SFSnow(t)} = \begin{cases} 0.96, & 0 < Snow_t \leq 0.000353 \\ 0.92, & 0.000353 < Snow_t \leq 0.000706 \\ 0.91, & 0.000706 < Snow_t \leq 0.00353 \\ 0.87, & Snow_t > 0.00353 \\ 1.0, & Snow_t = 0 \end{cases} \\ \text{Liu et al. (2017) } \left(1.0 - 60 \cdot Rain_t, & 0 < Rain_t \leq 0.00083 \right) \end{array}$

SFRain(t) =
$$\begin{cases} 1.0 - (90 \cdot Rain_t + 0.0425), & Rain_t > 0.00083\\ 1.0, & Rain_t = 0 \end{cases}$$

③ Speed_{vehicle} accounts for the secondary impacts of weather conditions.

We estimated traffic heat in a bottom-up approach rather than a top-down approach using energy inventories.

Model Modification

Model Modification

Fig. Workflow of incorporating urban traffic modeling in the Community Terrestrial Systems Model (CTSM).

Case Study 1: Capitole of Toulouse, France (FR-Capitole), 2004

Understanding traffic capacity of urban networks. (2019). https://doi.org/10.1038/s41598-019-51539-5 European Automotive Manufacturers Association. (2021). Vehicles in use, Europe 2021.

Case Study 2: Manchester, UK (UK-Manchester), 2022

European Automotive Manufacturers Association. (2024). Vehicles on European Roads 2024.

Traffic rush in the afternoon

Improved Turbulent Heat Flux at FR-Capitole

- Q_{traffic} narrowed the underestimation of sensible heat flux, particularly in summer and during the day.
- Q_{traffic} is partitioned for sensible heat and latent heat. So both energy and moisture are influenced.

Improved 2 m Air Temperature and Relative Humidity at UK-Manchester

- Higher ΔT_{air} in winter than in summer
- Higher ΔT_{air} at night than during the day

- More RH reduction in winter than in summer
- More RH reduction at night than during the day

Better AHF? Hard to say.

Data source	Method	Sectors	FR-Capitole	UK-Manchester
CNTL simulation	Bottom-up	H H	6.45 for 2004	9.99 for 2022
TRAF simulation	Bottom-up		27.91 for 2004	25.68 for 2022
AH4GUC for the 2010s	Top-down		41.78	21.4
Jin et al. (2019) for 2015	Top-down		19.6	29.9
AH-DMSP for 2010	Nighttin	ne light data	0.1	0.6

- AH4GUC: Varquez et al. (2021). Global 1-km present and future hourly anthropogenic heat flux.
- Jin et al. (2019). A new global gridded anthropogenic heat flux dataset with high spatial resolution and longterm time series.
- AH-DMSP: Yang et al. (2017). A new global anthropogenic heat estimation based on high-resolution nighttime light data.

Temperature Responses to Traffic Heat

Densely built-up areas were more likely to experience greater traffic-induced temperature increases than sparsely built-up areas.

FR-Capitole

- Narrow canyon
- Less pervious road
- More buildings

V

UK-Manchester

- Wide canyon
- More pervious road
- Less buildings

Traffic-Induced Urban Warming Effects

Similar traffic volume, different temperature increases.

Vehicle-related factors on Q_{traffic}:

- Traffic volume
- Vehicle types (i.e., gasoline, diesel, hybrid, electric)
- Traffic diurnal cycle

Urban surface factors on Q_{traffic} absorption:

- Densely or sparsely built-up
- Narrow or wide canyon
- Pervious road (evaporation)

Sensitivity to Q_{traffic}:

• Background climate (i.e., temperate, tropical, polar, arid

Site name	FR-Capitole	UK-Manchester	
Annual mean Q _{traffic} (W/m²)	22.23	16.27	
Ground temperature increase (°C)	0.64	0.38	
2 m air temperature increase (°C)	0.4	0.25	
Indoor temperature increase (°C)	0.27	0.05	
AADT (vehicles/day-lane)	4404	4697	
Vehicle type	40.6% gasoline and 59.6% diesel	59.4% gasoline, 34.7% diesel, 4.9% hybrid, and 1% electric	
Traffic rush hour	08:00	16:00	
Canyon height-to-width ratio	1.32	0.75	
Fraction of roof	0.62	0.35	
Fraction of pervious road out of total canyon floor	0.26	0.69	
T_BUILDING_MIN (°C)	11.95	16.95	
Background climate	Temperate	Temperate	

Future Direction

- Time-varying traffic volume
- Time-varying vehicle type

Global simulations

- (Coupled simulation) Atmospheric response to traffic-related AHF
- Urban heat mitigation under energy transition scenarios (moving from ICEVs to EVs)
- Intercomparsion with existing inventorybased global AHF dataset

Single-point simulations

 Model validation at more urban sites such as the Urban-PLUMBER, with different traffic and climate conditions

Thanks! Any questions or comments?