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New seasonal hindcast ensembles with L32 and L83

Using CESM2

Following the same protocol as SMYLE
Except using ERAS for atmospheric initialization

Here I'll focus on the Nov 1stinitialization

Compare skill between L83 and L32

* CAMY7 will have a 93 level grid with additional levels in the boundary layer, which is left unchanged in the grid used here
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Skill metrics

In all the analysis presented, a lead dependent climatology will be removed (model is de-drifted)
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2B BN y=1970 y=1970

year day space



Skill metrics

In all the analysis presented, a lead dependent climatology will be removed (model is de-drifted)

Model
anomalies

y=2020

Z M(y,d, x)/N

y=1970

M'(y,d,x) =M(y,d,x) —
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year day space

Observed
anomalies

\ y=2020
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Anomaly correlation coefficient
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Yy=1970 M (0, £, X)° Xy_ 1970 0' (0, t, %)

1 = perfect correlation
0 = no correlation
Low or negative values are bad




Skill metrics

In all the analysis presented, a lead dependent climatology will be removed (model is de-drifted)

Model
anomalies

y=2020
M'(y,d,x) = M(y,d,x) — Z M(y,d, x)/N
2N BN y=1970

year day space

Observed
anomalies

\ y=2020
0'(y,d,x)=0(y,d,x) — O(y,d,x)/N
y=1970

Anomaly correlation coefficient

YYZZo M (y,t,x)0' (¥, t, x)
ACC(t,x) = y=17

y=2020 » g1 2 v'Y=2020 // 2
Yy=1970 M (0, £, X)° Xy_ 1970 0' (0, t, %)

1 = perfect correlation
0 = no correlation
Low or negative values are bad

Mean squared skill score
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The Quasi-Biennial Oscillation (QBO)

1 QBO Westerly—Easterly
|

. An oscillation in the equatorial zonal mean zonal wind in the stratosphere with
a period of approximately 28 months

=
(=]

If there is predictability on seasonal timescales, it'll come from slowly varying
| | boundary conditions for the troposphere that are predictable on these
100 = timescales. The QBO is one such boundary condition...

Pressure (hPa)

...if it has an impact on the troposphere that is sufficiently large to impact
prediction skill.
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QBO skill (November initialization)
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QBO skill (November initialization)
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QBO skill (November initialization)
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Westerly and Easterly QBO composites
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Westerly and Easterly QBO composites

Westerly QBO, L32
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Westerly and Easterly QBO composites
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

QBO Westerly—Easterly
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect) . QBO Westerly—Easterly
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect)
Holton and Tan (1980)

* North Atlantic Oscillation (NAO)
Marshall and Scaife (2009), Gray et al (2018)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect) . QBO Westerly—Easterly
Holton and Tan (1980) l't .-'I
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect)
Holton and Tan (1980)

* North Atlantic Oscillation (NAO)
Marshall and Scaife (2009), Gray et al (2018)

» Madden-Julian Oscillation (MJO)
Yoo and Son (2016)

» Tropical Precipitation
Gray et al (1992), Collimore et al (2003)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect)
Holton and Tan (1980)

* North Atlantic Oscillation (NAO)
Marshall and Scaife (2009), Gray et al (2018)

» Madden-Julian Oscillation (MJO)
Yoo and Son (2016)

» Tropical Precipitation
Gray et al (1992), Collimore et al (2003)

« Tropical Easterly Jet
Liet al. (2022)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect)
Holton and Tan (1980)

* North Atlantic Oscillation (NAO)
Marshall and Scaife (2009), Gray et al (2018)

» Madden-Julian Oscillation (MJO)
Yoo and Son (2016)

» Tropical Precipitation
Gray et al (1992), Collimore et al (2003)

« Tropical Easterly Jet
Liet al. (2022)

» Sub-tropical jet in the Pacific sector
e.g. Garfinkel and Hartmann (2011)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

Northern Hemisphere Polar vortex (Holton-Tan effect)
Holton and Tan (1980)

o Nerth-Adantie-OseiationtNAS)>  No skillimprovement

Marshall and Scaife (2009), Gray et al (2018)

Madden-Julian Oscillation (MJO)
Yoo and Son (2016)

« —TreptealPrecipitation- No skill improvement
Gray et al (1992), Collimore et al (2003)
» —Fropiteat-EasteriyJdet- No skill improvement

Liet al. (2022)

» Sub-tropical jet in the Pacific sector
e.g. Garfinkel and Hartmann (2011)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

* Northern Hemisphere Polar vortex (Holton-Tan effect) . QBO Westerly—Easterly
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The Holton -Tan Effect

QBO Westerly minus Easterly

Holton and Tan (1980)

During westerly QBO, the NH polar
vortex is stronger than during
easterly QBO.
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DJF zonal mean zonal wind skill, November Initialization
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Pressure (hPa)

DJF zonal mean zonal wind skill, November Initialization

L32, DJF (Nov init)
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DJF zonal mean zonal wind skill, November Initialization

. L32, DJF (Nov init) . L83, DJF{Nuvumt) . L83-L32
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The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
0.8 - and 60N zonal mean zonal wind at 10 hPa
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——————————— +«—— ERA5
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0.2 A / L32 ensemble mean

00 '/ Bootstrapped 95%

0.2- —l— 4 confidence interval on
the ensemble mean

Correlation
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The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
0.8 - and 60N zonal mean zonal wind at 10 hPa
0.6 -
——————————— +«—— ERA5
0.4

0.2 A / L32 ensemble mean

00 '/ Bootstrapped 95%

0.2- —l— 4 confidence interval on
the ensemble mean

Correlation

The initialized predictions give us an opportunity to quantify the uncertainty in single

L32 member samples (like the obs)



The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
0.8 - and 60N zonal mean zonal wind at 10 hPa
0.6 -
——————————— +«—— ERA5
0.4

0.2 A / L32 ensemble mean

00 '/ Bootstrapped 95%

0.2- —l— 4 confidence interval on
the ensemble mean

Correlation

The initialized predictions give us an opportunity to quantify the uncertainty in single

L32 member samples (like the obs)



The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
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The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
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The Holton -Tan Effect

January of the November initialization

January Correlation between 5S-5N zonal mean zonal wind at 50hPa
0.8 - and 60N zonal mean zonal wind at 10 hPa
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The Holton -Tan Effect

If the ensemble mean of L83 has a correlation between the QBO and the polar vortex that’s similar to obs,
and we’re predicting the QBO well, why don’t we see an increase in skill?
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The Holton -Tan Effect

If the ensemble mean of L83 has a correlation between the QBO and the polar vortex that’s similar to obs,
and we’re predicting the QBO well, why don’t we see an increase in skill?

January January
os{  [memm———————
0.6 -
0.6 -
B T —— +—— ERA5 g
s % Y 0.4
— =
T 5o o
c T i | |
S 0.0 . QDE E Signal-to-noise
or problem in the
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0.0 model*
0.4
L83 132 L83

Polar vortex = a H{p)x QBO



Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:

Madden-Julian Oscillation (MJO)
Yoo and Son (2016)
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QBO-MJO connection

Following the analysis of Yoo and Son (2016)

DJF standard deviation of MJO
filtered OLR ( zonal wavenumbers 1-
5, periods 20-100 days)
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QBO-MJO connection

Following the analysis of Yoo and Son (2016)

DJF standard deviation of MJO
filtered OLR ( zonal wavenumbers 1-
5, periods 20-100 days)
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Now that we can predict the QBO, how does that impact skill in other things?

Focusing on features that have been argued in prior literature to be connected to the QBO:
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Connections between the QBO and the westerlies in the Pacific sector

WQBO—-EQEBO, ERAS

DJFM ERAS upper tropospheric zonal wind averaged (400
hPa to 100 hPa average).

QBO Westerly — QBO Easterly
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Skill of upper tropospheric zonal wind in the Pacific sector

: : | | —
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
ACC or MSSS




Skill of upper tropospheric zonal wind in the Pacific sector

-0.75  -0.50 —0.25 0.00
ACC or MS55




Composites of QBO westerly minus QBO easterly

WQBO-EQBO, L83




Composites of QBO westerly minus QBO easterly
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Signal -to-noise issues in the Pacific teleconnection?
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Pattern correlation
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Signal -to-noise issues in the Pacific teleconnection?
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Signal -to-noise issues in the Pacific teleconnection?

Pattern correlation
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Is that regression coefficient greater than you can get with single member timeseries from the L83 ensemble?
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Signal -to-noise issues in the Pacific teleconnection?
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Signal -to-noise issues in the Pacific teleconnection?

Pattern regression onto the ensemble mean
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Signal -to-noise issues in the Pacific teleconnection?
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Conclusions

« Two new seasonal hindcast ensembles with CESM2 will become available soon (L32 and L83)
(3 initialization dates: Nov 15t, Sept 1t, Feb 1st, 1970-2020)

L83 has much improved skill in the prediction of the QBO compared to L32

Unfortunately this doesn’t lead to substantial improvements in skill in many other features.

There are, however, indications potential signal-to-noise issues in the model. The observed
connection between the QBO and the NH polar vortex and circulation in the Pacific sector may be
stronger than what the model represents = there may be more skill to be gained.

This dataset can be used to probe the impact of vertical resolution on hindcast skill further

It can also be used to try to understand why we don’t capture the QBO-MJO connection, since it
has a good representation of the QBO.
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Pattern correlation with the ensemble mean
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Pattern correlation with the ensemble mean
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Signal -to-noise issues in the Pacific teleconnection?
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Experimental Design

 Initialization dates: Nov 18, Feb 1st, Sept 1st, 1970-2020
* Ocean and sea ice initialized from forced ocean and sea ice (FOSI) simulation (same as CESM2 SMYLE)
* Land initialized from TRENDY simulations, offline land forced with CRU-JRAvV2 (same as CESM2 SMYLE)

» Atmosphere initialized from ERAS (different from CESM2 SMYLE which used JRA55)

Because of this, we ran a new L32 ensemble as well initialized with
JRASS5. Can be used in combination with the original CESM2
SMYLE to augment ensemble size or to explore the impact of
initializing from this different reanalysis.
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Experimental Design

 Initialization dates: Nov 18, Feb 1st, Sept 1st, 1970-2020
* Ocean and sea ice initialized from forced ocean and sea ice (FOSI) simulation (same as CESM2 SMYLE)
* Land initialized from TRENDY simulations, offline land forced with CRU-JRAvV2 (same as CESM2 SMYLE)

» Atmosphere initialized from ERAS (different from CESM2 SMYLE which used JRA55)
« 20 members each

» L83 predictions are 6 months long. L32 predictions are 12 months long.

Here, we’ll compare the prediction skill between the L32 ensemble and the L83 ensemble,
with a particular focus of the impact of the Quasi-Biennial Oscillation (QBO) which is much
better represented in L83
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Signal-to-noise paradox in the NAO?

NAO Skill vs Ensemble Size
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NAO Skill vs Ensemble Size
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NAO Skill vs Ensemble Size
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The Holton -Tan Effect
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