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There is high uncertainty in long-term changes in the large-scale circulation and 
the surface response: lack of understanding and model-observation discrepancies.

Images from https://climate.copernicus.eu/, https://www.labxchange.org/,
Fischer et al (2014). Models agree on forced response pattern of precipitation and temperature extremes, Geophys. Res. Lett.
Shaw et al (2024). Emerging climate change signals in atmospheric circulation. AGU Adv.
Simpson et al (2025). Confronting Earth System Model trends with observations. Sci. Adv.
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Motivation: Uncertain large-scale circulation changes

https://climate.copernicus.eu/copernicus-2024-first-year-exceed-15degc-above-pre-industrial-level
https://www.labxchange.org/


● A way to “simplify” the representation of 
large-scale dynamics

● Significant impacts on the surface
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Introduction: Weather regimes
Large-scale atmospheric flow configurations
that are persistent (last around 5 days) and 
recurrent.

Lee et al (2023). A New Year-Round Weather Regime Classification for North America. J. Climate
Michelangeli et al (1995). "Weather regimes: Recurrence and quasi stationarity." Journal of Atmospheric Sciences 52.8 
Image from: https://www.tropicaltidbits.com
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How are weather regime characteristics changing long-term?

https://www.tropicaltidbits.com


Introduction: Weather regimes
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Lee et al (2023). A New Year-Round Weather Regime Classification for North America. J. Climate
Michelangeli et al (1995). "Weather regimes: Recurrence and quasi stationarity." Journal of Atmospheric Sciences 52.8 

Steps for daily classification:

● Computing 500 hPa geopotential 
height anomalies, detrending 
(regionally) and standardizing

● Extracting principal components
● k-means clustering (unsupervised ML)
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Results: Changes during winter-spring

Pérez-Carrasquilla et al (2025, in prep). Human-driven increase in North American Pacific Trough intensifies winter and spring heat extremes.

Present = 1994-2023; Past = 1948-1977

ERA5 (gray), JRA3Q (red), NCEP/NCAR (blue)
Black bars: uncertainty bootstrapping years within each 30-year 

period

Winter-spring Pacific Trough 
frequency has increased from 

12% to 19%
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Results for winter-
spring

Results: Pacific Trough characteristics



Extremely hot days > TX90p w.r.t. 1961-1990
Extremely warm spells = 6 consecutive days > 

TX90p
Fires from MODIS 2004-2023
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Results for winter-
spring

Results: Pacific Trough characteristics
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Impact on extremes

Results: Pacific Trough increase
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Contradictory signals over time, consistent 
with the literature for the Aleutian low

Results: Pacific Trough increase



➔ How well is this change represented by ESMs?

➔ Could the changes be explained by internal variability or 

some specific forcing?
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The observed increase is outside 
modeled internal variability 

Models show an increase but 
in the future, not the past.
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Coupled climate models: CESM2-LE and E3SMv2-LE

Differences between all periods of 76 years within pre-
industrial simulations.

Results: Changes in ESMs
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CESM2 and E3SMv2 single forcing experiments

The observed Pacific Trough increase is only possible in models due to increasing 
GHGs. Aerosols forcing produces the opposite increasing trend.

Results: Changes in ESMs - Single forcing experiments

Under largely increased CO2 conditions, the PT frequency increase, as well as the 
associated surface response, are of similar magnitude to observations.



Correlations of DJFMAM averages (1950-2023).

ERA5 and Kaplan v2
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Pacific SSTs control a large part of the variability in 
PT frequency

Results: Physical drivers
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Results: Physical drivers - SST-forced experiments

Even with forced SSTs, the observed changes do 
not fit within the ensembles



➔ The Pacific Trough frequency has increased (likely outside internal variability) 
likely due to GHGs and is modulated by Pacific SSTs variability, with relevant 
impacts for surface hot extremes

➔ Since the recent decrease in Pacific Trough frequency seems to be related to 
the La Niña-like warming trend, future increases depend on the potential 
onset of the El Niño-like response to GHGs

➔ More research is needed on the role of aerosols
? Do high-resolution (MESACLIP) simulations improve the trends 
representation?
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Conclusions

Pérez-Carrasquilla et al (2025, in prep). Human-driven increase in North American Pacific Trough intensifies winter and spring heat extremes.
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Impact on extremes: PT 
explains a large part of 
the variability

Results: Pacific Trough increase



Correlations of DJFMAM averages (1950-2023).

ERA5 and ERSSTv5
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The reason behind Pacific SST trends is still an open question: 
If the current La Niña-like response to anthropogenic forcing stops 

and we go to an El Niño-like state, PT frequency would increase 
again.

Results: Physical drivers



Under largely increased CO2 conditions, the PT frequency increase, as well as the 
associated surface response, are of similar magnitude to observations.

Future = 2071-2100 
Present = 1994-2023

30

First 200 years of abrupt CO2 increase run vs. pre-
industrial

Pérez-Carrasquilla et al (2025, in prep). Human-driven increase in North American Pacific Trough intensifies winter and spring heat extremes.

Results: Changes in ESMs - Increased CO2
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