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Al Foundation Models
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MUTUAL NONDISCLOSURE AGREEMENT
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INSTRUCTIONS Summa ry

Overview
Nondisclosure agreements (also called NDAs of confidentiality have become ing] n :
important for businesses of all sizes, serving as the first line of defense in protecting inventions, trade a nondisclosure agreement allows for open dialogue between parties,

secrets, and hard work. These agreements ate used when at least one person s sharing confidential
information with someonc else, and protect the immediate and future privacy of that disclosed
information. Once signed, a nondisclosure agreement allows for open dialogue between parties, creating two key types of

an environment in which information can be discussed freely and the true objectives of the meeting or
relationship can be achieved (for example, a company may be created or a strategic partnership may be
established).|

‘There are two key types of nondisclosure agreements: unilateral and mutual. Mutual nondisclosure
agreements (like the agreement in this document) should be used when both parties will be sharing

the creation of a partnership, joint venture,

and mutual.

confidential information, as when the partics are considering the creation of a partnership, joint venture,
or merger. Unilateral nondisclosure agreements should be used when only one side will be sharing
confidential information, as when one party is secking funding for or investment in a company.

Instructions.
1. Delete this first page of instructions before using your template

2. Fields [in brackets] are placeholders for your information
3. This template is provided “as is” - please consult your own legal counsel before use.

Text Summarization[3!
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Pretrain Broad — Finetune Precise

Simple Objective/

| ooof — > Same as Finetuning
| ooo Obiecti
e jective

Data ~ bM datapoints
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Pretrain Broad — Finetune Precise

B % -
Task Specific Data ~
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Al Based Weather Modelling
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Al Weather model skill [4!



Al Based S2S Forecasting - Challenges

TASK
COMPLEXITY

l DATA
AVAILABILITY

l

ERROR
BUILDUP

§ Al based S2S forecasting is difficult compared to Al based weather forecasting

Increased task complexity and additional constraints
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Earth System Model Data to the rescue !

e 1850-2100

e ~3000 months

e 100 ensemble
members

\_/




Our Model

Unet-LSTM

ERAS SST Input I8 I 55T Output

¥ Max Pooling 2x2

'f Upsampling 2x2
—p Output

UnetLSTM architecture [®]
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Unet-LSTM - Spatiotemporal
Quantile Regression

Training Data - CESM; 1850 - 1922
Test Data - ERAD; 2008 - 2024

Grid Resolution - 0.9°x1.25°

Grid - 60°S to 60°N , 180°W to 180°E
Input - M variables

Output - T2M, Precip

Lead Times - {0,1,2,3} months
Metric - Anomaly R2 1



Effect of Training Data on ERAb Test set

T2M Anomalies
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Trained on ERAb

Trained on CESM2

[ CESM data helps the model learn important large scale features such as ENSO

Lead - 0 month
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Increasing Ensemble Members

T2M Anomalies

Ensemble Members —

10

Lead - 0 month




T2M Anomalies
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Ensemble Members

Diminishing returns after 25 ensemble members

Additional ensemble members contribute minimally to unlearned large scale variability

Capturing additional patterns from the noise requires a more complex model — NIVA
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Effect of Data Normalization Strategies on T2M Anomalies

Temporal Axis

—

Monthwise

All Time

Spatial Axis —

Global

Lead - 0 month




The distribution of a variable's values exhibits seasonal variability

Variation based on location is also substantial

Using a single mean and standard deviation per variable results in a highly skewed
distribution, making it harder for the model to learn effectively




Different Lead Times

Lead Time —
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Tmonth

2 month

3 month
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Different Lead Times

® 12M Anomalies @ Precip Anomalies
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Model demonstrates greater skill in predicting temperature than precipitation

Predictive skill declines with lead time, but not as sharply as anticipated.
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Key Takeaways

[ CESM2 data can help create the next generation of Al foundation models for S2S scale 1

Performance is very sensitive the distribution of data - picking the right normalization
scheme is important

[ More data is beneficial but model complexity also needs to be scaled accordingly 1
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Thank You !
Any Questions ?




Extra Slides




Effect of Training Data




Effect of Data Normalization Strategies on Precipitation
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Zero Shot vs Fine Tuning Precipitation (Land)
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Zero Shot vs Fine TuningT2M (Land)
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Effect of Training Data
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Zero Shot vs Fine TuningT2M
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Va

ues
Precip (All)
1 month 2 month 3 month
Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned
0.053 0.054 0.048 0.049 0.029 0.036
Precip (Land)
1 month 2 month 3 month
Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned
0.043 0.0375 0.035 0.032 0.021 0.0311




Va

ues
T2M (All)

1 month 2 month 3 month
Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned
0.28 0.3 0.23 0.24 0.184 0.2

T2M (Land)

1 month 2 month 3 month

Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned

0.16 0.18 0.13 0.15 0.116 0.12
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