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AI Foundation Models

Image Classification [1]

Image Segmentation [2]

Text Summarization [3]



Simple Objective/ 
Same as Finetuning 
Objective

Data ~ 5M datapoints

Pretrain Broad → Finetune Precise



Specific Task

Task Specific Data ~ 
500 

Pretrain Broad → Finetune Precise



Data Source - ERA5 

Temporal Scale - Hourly

Multiple Downstream 
Tasks

AI Based Weather Modelling

AI Weather model skill [4]



TASK    
COMPLEXITY

DATA 
AVAILABILITY

ERROR 
BUILDUP 

AI Based S2S Forecasting - Challenges

AI based S2S forecasting is difficult compared to AI based weather forecasting 

Increased task complexity and additional constraints



ERA5

● 1980 (1940) - 2024

● 527 months

CESM2

● 1850 - 2100

● ~3000 months

Earth System Model Data to the rescue !

● 100 ensemble 
members

Total Data Points - 300,000 ! 

● 1 ensemble member

Total Data Points - 527



Our Model 

● Unet-LSTM - Spatiotemporal 

● Quantile Regression

● Training Data - CESM; 1850 - 1922

● Test Data - ERA5; 2008 - 2024

● Grid Resolution  - 0.9° x 1.25 °

● Grid - 60°S to 60°N , 180°W to 180°E

● Input - 11 variables

● Output - T2M, Precip 

● Lead Times - {0,1,2,3} months

● Metric - Anomaly R2 ↑

UnetLSTM architecture [5]



Effect of Training Data on ERA5 Test set 

Trained on ERA5 Trained on CESM2 

T2M Anomalies  

CESM data helps the model learn important large scale features such as ENSO
Lead - 0 month



Increasing Ensemble Members  

Ensemble Members →

10 25 50

T2M Anomalies

Lead - 0 month



Lead - 0  month

Ensemble Members →

10 25 50

T2M
0.14

Diminishing returns after 25 ensemble members 

Additional ensemble members contribute minimally to unlearned large scale variability

Capturing additional patterns from the noise requires a more complex model →NIVA

Increasing Ensemble Members  
T2M Anomalies

(↑
)



Effect of Data Normalization Strategies on T2M Anomalies
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Effect of Data Normalization Strategies on T2M
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Variation based on location is also substantial

Using a single mean and standard deviation per variable results in a highly skewed
distribution, making it harder for the model to learn effectively

The distribution of a variable’s values exhibits seasonal variability



Different Lead Times  
Lead Time →

1 month 2 month 3 month

Precip Anomalies

T2M Anomalies



Different Lead Times  

Model demonstrates greater skill in predicting temperature than precipitation

Predictive skill declines with lead time, but not as sharply as anticipated.

(↑
)



Key Takeaways

CESM2 data can help create the next generation of AI foundation models for S2S scale

More data is beneficial but model complexity also needs to be scaled accordingly

Performance is very sensitive the distribution of data - picking the right normalization 
scheme is important 
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Thank You ! 
Any Questions ? 



Extra Slides



Effect of Training Data 



Effect of Data Normalization Strategies on Precipitation
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Zero Shot vs Fine Tuning Precipitation (Land)
Lead Time →

1 month 2 month 3 month

Zero Shot

Fine Tuned



Fine Tuned

Zero Shot vs Fine Tuning T2M (Land)
Lead Time →

1 month 2 month 3 month

Zero Shot



Effect of Training Data 



Zero Shot vs Fine Tuning Precipitation 
Lead Time →

1 month 2 month 3 month

Zero Shot

Fine Tuned



Zero Shot vs Fine Tuning T2M
Lead Time →

1 month 2 month 3 month

Zero Shot

Fine Tuned



Values

Precip (All) 

1 month 2 month 3 month

Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned 

0.053 0.054 0.048 0.049 0.029 0.036

Precip (Land) 

1 month 2 month 3 month

Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned 

0.043 0.0375 0.035 0.032 0.021 0.0311



Values

T2M (All) 

1 month 2 month 3 month

Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned 

0.28 0.3 0.23 0.24 0.184 0.2

T2M (Land) 

1 month 2 month 3 month

Zero Shot Fine Tuned Zero Shot Fine Tuned Zero Shot Fine Tuned 

0.16 0.18 0.13 0.15 0.116 0.12
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