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changes in the gyre circulation, SSH gradient and near-surface surface 
circulation, accounting for skilful prediction of SPNA upper ocean heat 
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thickness (Yeager, 2020), propagating at depth towards the mid-Atlantic 
ridge, where these anomalies accumulate and drive predictable decadal 
changes in the gyre circulation, SSH gradient and near-surface surface 
circulation, accounting for skilful prediction of SPNA upper ocean heat 
content
 Does this mechanism hold in other CMIP6 decadal prediction systems?
 Do models with high AMOC predictability show high SPNA upper ocean heat 
content prediction skill?
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 Determine subpolar North Atlantic upper ocean heat content (SPNA UOHC) 
predictive skill in CMIP6 decadal prediction systems
 Determine whether high SPNA UOHC skill can be linked to predictable AMOC 
variations
 To do this:
 Compute AMOC at 45°N
 Compute SPNA UOHC skill in CMIP6 DCPP simulations
 EOF decomposition of AMOC – is UOHC skill linked to modes of AMOC 
variability?
 Do models with stronger biases in North Atlantic have lower UOHC skill?

 Use all models with available data



SPNA UOHC prediction skill varies greatly across models

CESM2-DP leads 5-9 years CanESM5 leads 5–9 years

Anomaly correlation (computed with EN4)
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SPNA UOHC prediction skill leads 5-9

HadGEM3 (0.39)

MIROC6 (0.3)

CESM1-LR-DP (0.51) CMCC (0.5)
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EC-Earth3-CC (0.37)
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SPNA UOHC prediction skill varies greatly across models

CanESM5 (-0.05)
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Broad range of MOC structures
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UOHC anomaly correlation leads 5-9
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 Determine link between leading EOFs and SPNA UOHC
 Conclusively determine whether large biases in some models outside of SPNA 
control SPNA UOHC predictability
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