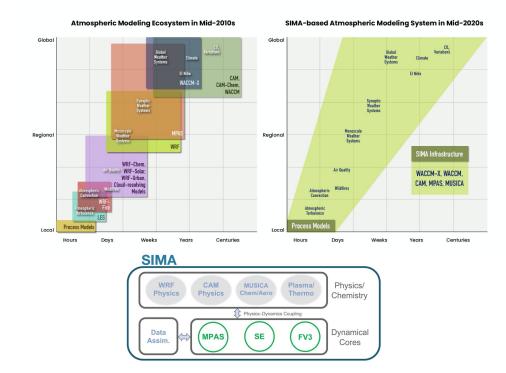
SIMA/CCPP update

2025 CESM workshop

Jesse Nusbaumer, NCAR CGD - Software Engineer

June 10, 2025

Pretty pictures


- Pretty pictures
- Important stuff

- Pretty pictures
- Important stuff
- Pretty animation

CAM-SIMA science goals

The System for Integrated Modeling of the Atmosphere (SIMA) is an attempt to expand CAM's capabilities, and create a unified modeling infrastructure for all global modeling (weather, climate, chemistry, geospace) modeling at NCAR.

• ~4.5 bya - The Earth system forms.

- ~4.5 bya The Earth system forms.
- Pre-2018 The original "singletrack" project is described and outlined.

- ~4.5 bya The Earth system forms.
- Pre-2018 The original "singletrack" project is described and outline.
- Feb. 2021 CAM-SIMA repo comes online.

- ~4.5 bya The Earth system forms.
- Pre-2018 The original "singletrack" project is described and outline.
- Feb. 2021 CAM-SIMA repo comes online.
- Fall 2023 Major science and developer leads leave for greener pastures.

- ~4.5 bya The Earth system forms.
- Pre-2018 The original "singletrack" project is described and outline.
- Feb. 2021 CAM-SIMA repo comes online.
- Fall 2023 Major science and developer leads leave for greener pastures.
- July 2024 Idealized physics schemes run with SE (and now MPAS) dycores

- ~4.5 bya The Earth system forms.
- Pre-2018 The original "singletrack" project is described and outline.
- Feb. 2021 CAM-SIMA repo comes online.
- Fall 2023 Major science and developer leads leave for greener pastures.
- July 2024 Idealized physics schemes run with SE (and now MPAS) dycores
- What is the current status?

CAM-SIMA current status

- Working on modifying CAM4, CAM7, and MMM physics schemes to be CCPP-compliant (and work in CAM-SIMA).
- Also bringing in MUSICA capabilities (MICM and TUV-x) into CAM-SIMA.
- Hope to have a "real" CAM4 simulation running by end of fiscal year, with a "real" CAM7 simulation running ~6 months after that.
- But this is a software engineering talk, so has CAM-SIMA accomplished any software engineerings?

SIMA developments - Model configuration

Creating the configure object in CAM:

my \$cfg = Build::Config->new(\$opts{'config'});

Creating the configure object in SIMA:

config = ConfigCAM(case, _LOGGER)

CAM uses ~8000 lines of Perl code in various scripts to properly configure the model and perform sanity checks. This has been entirely replaced with python code in CAM-SIMA, which provides several advantages, including:

- 1. Better integration with CIME.
- 2. More easily understood by users/developers.
- 3. More thorough testing.

SIMA has attempted to expand the documentation that exists in CAM. Eventually CAM-SIMA will include:

SIMA has attempted to expand the documentation that exists in CAM. Eventually CAM-SIMA will include:

User's guide

- 4.3.3.1. SCAM
 Configuration Options

 4.1. CAM so
- 4.3.3.2. Example: Setting up a SCAM run
- 4.3.3.3. Example: Efficient way to cycle over several SCAM IOP
- over several SCAM IO locations
 4.3.3.4. Example:
 Setting up User
- Defined IOP for SCAM

 4.4. Other CAM compsets
- 4.4.1. Superparameterized CAM
- (SPCAM)

 4.5. CAM-chem tested compsets
- 4.6. WACCM compsets
 4.6.1. Scientifically supported WACCM atmosphere compsets
- 4.6.2. Tested WACCM
- atmosphere compsets
 4.7. WACCM-X compsets

Previous topic

3. Building and Running the atmospheric model within CESM

Next topic

5. User Defined Variable Resolution Configurations

This Page

Show Source

Quick search

Go

4.1. CAM scientifically supported compsets

CAM has a number of compsets/resolutions which are supported scientifically. These compsets are detailed in the following table. A specific compset may be listed below, but unless the resolution is also listed, that compset/resolution combination is not scientifically supported. Different resolutions exhibit different behavior and as a result require different tunings. The scientifically supported designation is limited to the specific compset/resolution pairs listed in the following tables.

Scientifically supported CAM compsets

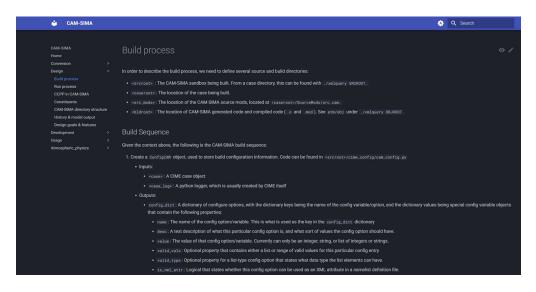
Compset Name	supported resolution	Description	Period
FHIST	f09_f09_mg17	Historical CAM6 using 1 degree finite volume dycore [Note - this is similar to the obsolete CAM5 FAMIP compset]	1979 to 2015
F2000climo	f09_f09_mg17	Climatological present day climate (year 2000) with CAM6 physics using 1 degree fv dycore	Climos over 1995- 2005 1995- 2005

To run the FHIST compset, and create a case called fhist, simply run the following commands:

```
% cd cime/scripts
% \(\triangle \) \
```

To run the F2000climo compset, and create a case called f_present_day, simply run the following commands:

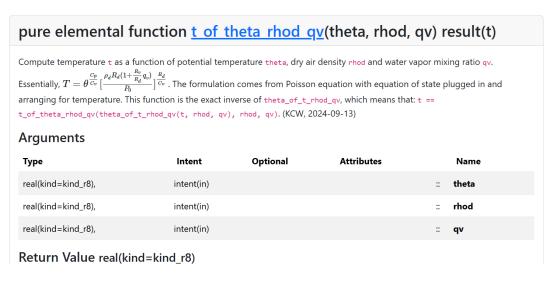
```
% cd cime/scripts
% ./create_newcase --case f_present_day --compset F2000climo --res f09_f09_mg17
% cd f_present_day
% ./case.setup
% ./case.build
% ./case.submit
```


An important reminder: On cheyenne, if you are building on a login node, you must say:

```
% qcmd -- ./case.build
```

It should be noted that a number of CAM4 and CAM5-specific compsets have been eliminated from the CAM6 release. The rationale behind this is that due to changes in code and namelist settings, a user is unable to numerically reproduce CAM4 or CAM5 runs similar to what they would get running CESM1.2. It is recommended that if a user wants to make a true CAM4 or CAM5 run, that they do so using CESM1.2 instead of CESM2.0.

SIMA has attempted to expand the documentation that exists in CAM. Eventually CAM-SIMA will include:


- User's guide
- Developer's guide

*Thanks to Courtney Peverley and Michael Waxmonsky

SIMA has attempted to expand the documentation that exists in CAM. Eventually CAM-SIMA will include:

- User's guide
- Developer's guide
- Scientific documentation

*Thanks to Kuan-Chih Wang

SIMA has attempted to expand the documentation that exists in CAM. Eventually CAM-SIMA will

include:

- User's guide
- Developer's guide
- Scientific documentation

```
pure elemental function calc_friction_velocity(taux, tauy, rrho) result(friction_velocity)
  ! https://glossary.ametsoc.org/wiki/Friction_velocity
  ! NOTE: taux,tauy come form the expansion of the Reynolds stress
  !
  ! Also found in:
  ! Stull, Roland B. An Introduction to Boundary Layer Meteorology. Springer Kluwer Acade
  ! DOI: https://doi.org/10.1007/978-94-009-3027-8
  ! Equation 2.10b, page 67
```

*Thanks to Michael Waxmonsky

SIMA developments - testing

An improvement upon CAM is that CAM-SIMA has unit testing which is run automatically via Github Actions,

these currently include:

- Python unit tests
- Python linting (pylint)
- Fortran unit tests

SIMA developments - CCPP

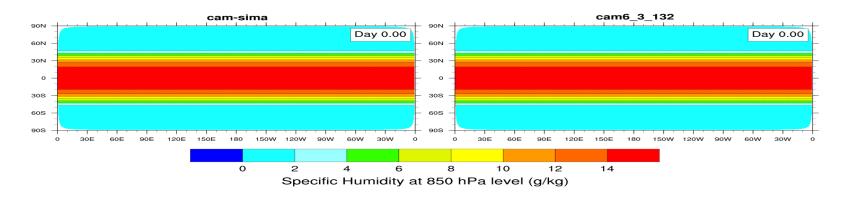
The Common Community Physics Package (CCPP) is a multi-agency effort to try and create portable and inter-operable physics schemes for use across various weather, climate, and earth system models.

SIMA developments - modularity

Original CAM scheme contains host-model specific features.

CCPP-ized scheme contains no modelspecific "use" statements or DDTs/objects

```
!> \section arg table rayleigh friction run Argument Table
!! \htmlinclude rayleigh_friction run.html
subroutine rayleigh friction run(pver, ztodt, u, v, dudt, dvdt, dsdt, errmsg, errflg)
  integer,
                   intent(in) :: pver
 real(kind_phys),
                   intent(in) :: ztodt !physics timestep
 real(kind phys),
                   intent(in) :: u(:,:)
 real(kind phys),
                   intent(in) :: v(:,:)
 real(kind_phys),
                  intent(out) :: dudt(:,:) !tendency_of_eastward_wind
                  intent(out) :: dvdt(:,:) !tendency_of_northward_wind
 real(kind_phys),
 real(kind phys),
                  intent(out) :: dsdt(:,:) !heating rate
 character(len=512), intent(out) :: errmsg
                   intent(out) :: errflg
 integer.
```


SIMA developments - configurability

The CCPP allows a CAM-SIMA user to easily change the order or create new combinations of physics schemes, called "suites".

CAM-SIMA also has the ability to change the number of vertical levels and tracers at runtime, which CAM currently cannot do without a rebuild. This also means CAM-SIMA will eventually have runtime chemistry configurability as well.

```
<?xml version="1.0" encoding="UTF-8"?>
<suite name="held_suarez_1994" version="1.0">
  <group name="physics_before_coupler">
    <scheme>held suarez 1994</scheme>
    <scheme>apply tendency of eastward wind</scheme>
    <scheme>apply tendency of northward wind</scheme>
    <scheme>apply heating rate</scheme>
    <scheme>geopotential temp</scheme>
    <scheme>sima state diagnostics</scheme>
  </group>
  <group name="physics after coupler">
    <scheme>sima tend diagnostics</scheme>
  </group>
</suite>
```

Idealized physics results - moist baroclinic wave

*Thanks to Adam Herrington

Thanks for listening!

Questions?

