

Observation-oriented CCN modification over the Southern Ocean using the CAM6

Qing Niu^{1,2,3}, Christina McCluskey³, Greg McFarquhar^{1,2}, Danny Leung³, Simone Tilmes³, Susannah Burrows⁴

2025.06.10

Introduction: Radiation Bias and Southern Ocean (SO)

Southern Ocean Clouds are:

- Essential to global radiation
- But are poorly understood
- Limited available observations
- Model parameters are NH-oriented

Simulated Antarctic Clouds "bright" enough? Multi-model mean - CERES-EBAF

Fig 1. Bias of **surface incoming shortwave radiation** between mean of Coupled Model Intercomparison Project phase 6 (**CMIP6**) models and the **CERES-EBAF** satellite product during **Austral summertime**^[1].

Introduction: Observation of Natural Marine Cloud Brightening

Fig 2. Geographic distribution of the high-Nd-quartile cloud scenes during **Austral summertime**, Mace et al., (2021)

- Seasonal cycle in cloud droplet number concentration (Nd)
- Along the MIZ
- Seasonal increases in CCN and biological activity

Introduction: Activation of cloud droplets in CAM6 – Abdul-Razzak and Ghan (2000)

b) the Maximum supersaturation (SS_{max})

$$\frac{dS}{dt} = Q_1 \frac{dz}{dt} - Q_2 \frac{d\chi}{dt}$$

- + : cooling in adiabatic ascent (f1)
- : condensation of water vapour on droplets (f2)

	Sea Salt	Sulfate	Secondary organic Aerosols (SOA)	Primary organic matter (POA)
Hygroscopicity kappa	1.16	0.507	0.14	0.1

SO clouds: Aerosol-limited OR updraft limited regime

Introduction: SO clouds are Aerosol-limited

Sobol's index

$$S_j = \frac{V[E[Y|X_j]]}{V[Y]}$$

partial variance of the response that can be

UKESM1

ECHAM6.3-HAM2.3

- 0.8

0.6

0.4 N S [N 4.0

- 0.2

0.0

attributed to model inputs S_i : Updraft velocity (σ_w) *S_i*: Accumulation Mode Number 1.0 1.0 90 Present Day Period (PD) Latitude 0.8 60 60 -30 5 [σw] 9'0 S [σw] bit 30 0 0 -30-30 -60-60 0.2 -90-120120 -9060 180 -180-60 120 / 60 180 -180-120-60 0 00 Longitude Longitude

U of Exeter, Daniel Partridge et al. (in prep)

Introduction: High $N_{70\text{-}100}$ cause high N_{CCN} over summer SSO

<u>Niu et al. 2024 JGR-A</u> (doi 10.1029/2023JD040396)

Observed polar-ward:

- increased N₇₀₋₁₀₀
- decreased N₇₀₀₋₁₀₀₀
- \Rightarrow lead to increased N $_{\rm CCN}$ over the summer SSO

Fig 3. Latitudinal dependence of Accumulation-mode-aerosol (70 nm < D < 1000 nm) number concentration (Ac) from Ultra High Sensitivity Aerosol Spectrometer (UHSAS), particles with 70 nm < D < 100 nm, and 700 nm < D < 1000 nm

Methods

0.9° latitude x 1.25° longitude (~100 x 100 km at 50oS)
32 levels to ~1 hPa (100–1200 m vertical resolution)
30 minute time step (10 min sub–step)
Specified dynamics (nudged) U, V, T (MERRA–2, 24–hr)

Cloud Microphysics	MG2	Two Moment	Gettelman et al. (2019)
Aerosols	MAM4	Modal	Liu et al. (2016)
Boundary Layer, Shallow Convection, Cloud Macrophysics	CLUBB	High-order Moments	Bogenschutz et al. (2012), Golaz et al., 2002
Radiation	RRTMG	Correlated-k	Mlawer et al. (1997)
Surface emission	CMIP6 climatological profiles in 2000		Feng et al., (2020)
Sea Ice	CICE5	Monthly mean climatology	Hunke et al., (2015)

Co-location Method

Introduction: CAM6 CCN Bias

<u>Niu et al. 2025 JGR-A:</u> (doi 10.1029/2024JD042734)

- A. CAM6 missing small sulfates
- B. Sometimes overestimate sea salts

To do list:

Fig 4. Latitudinal N_{Ac} comparison, CAM6 in solid and MARCUS in dashed line for N_{At} , $N_{Iarge Ac}$, $N_{small Ac}$, N_{Ac}

A. Tuning down sea-salt emission scheme over the SO

Daniel C. O. Thornton & Sarah D. Brooks

 $U_{10}^{3.41}$ parametrization

(Monahan & Muircheartaigh, 1980; Gong, 1997, 2003; Clarke et al., 2006)

Reduced sensitivity of sea-salt emission flux to $U_{10}^{2.8}$

(Revell et al., 2019; Hartery et al., 2020; Kang et al., 2022)

B. Tuning up sulfates

DMS (dimethyl sulfide)

$$\mathsf{DMS}\to\mathsf{SO}_2\to\mathsf{SO}_4$$

A. Tuning down sea-salt emission scheme over the SO

- Largely improve the N_{CCN} between 45°S -55°S (grey and red)
 X Not for south of 55°S
- \Rightarrow maybe caused by substantial SO₄ south of 55°S

A. Sea salt case in Nov 2017

• Oct 30-Nov 9, 2017

• 42.5°S-60°S

• $U_{10}^{3.41} \rightarrow U_{10}^{2.8}$ solved the overestimation of N_{CCN}

Base run

B. sulfates↑ + A. sea salts↓

B. Sulfate case

- 500 Jan 17-29, 2018 Base Run 250
- 45 °S 68 °S

DMS * N improves the $\mathsf{N}_{\mathsf{CCN}}$

Base run

B. sulfates \uparrow + A. sea salts \downarrow

Take home message

- 1. MARCUS Seasonal + Regional \rightarrow sea salt scenario + sulfate scenario
- 2. Both modifications improved the N_{CCN} over the SO
- 3. Sea salt emission power law can be regional dependent
- 4. Low bias of N_{CCN} in the summer SSO related to lack of **S**

Potential improve if:

- 1. Fully coupled ocean + atmosphere + chemistry
- 2. Adding aqueous-phase reactions of DMS oxidation intermediates (e.g. DMSO, MSIA, HPMTF); adding species such as MSA, BrO, MeSH
- 3. DMS climatology emission \rightarrow current flux
- 4. Oxidation ratios of reactions..

Next Step:

- Lifetime of Ac sea salt and sulfates
- Influence from synoptic uplift and descend
- The following influence on clouds

Acknowledgement:

- Naser Mahfouz PNNL
- Jack Chen CGD
- Simone Tilmes ACOM
- Trude Eidhammer RAL
- Yunqian Zhu NOAA
- Jesse, Isla, Cecile, Brian...

Institutions

- 1. University of Oklahoma (OU)
- 2. Cooperative Institute for Severe and High-Impact Weather Research and Operation (CIWRO)
- 3. NSF National Center for Atmospheric Research (NCAR)
- 4. Pacific Northwest National Laboratory (PNNL)

Questions and Comments?