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Coupling of hydrogen-containing species
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WACCM-X Global Average Hydrogen Profile Calculated on Altitude
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Solar Minimum

Using Output from WACCM-X model simulations for perpetual solar conditions run for
Solomon et al. [2018, 2019]. Blue curves from early 1970s and red from early 2000s.

WACCM-X Upper thermospheric H increases during solar minimum & with increases in GHGs.

WACCM-X thermospheric H rises due to increases in source species for H from CH, and due to CO, cooling.
H response to GHGs is greater during solar min, consistent with greater CO, cooling during min.

WACCM-X H response to solar cycle is larger than due to increases in CO, and CH, over 30-year time period.



WACCM-X Simulations of thermospheric hydrogen
density profiles near the Pine Bluff, WI Observatory
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WACCM-X Simulations of thermospheric hydrogen
density profiles near the Pine Bluff, WI Observatory
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Two cross-over points with simulated H density higher at solar max above about 10,000
km & below about 155 km. H density higher at solar min at altitudes in between.



INTENSITY IN RAYLEIGHS

[Nossal et al.
2008, 2019]

H column emission observations by the Wisconsin H-
alpha Mapper Fabry-Perot taken from Kitt Peak, AZ
during winter and in low Galactic emission directions

Solar Maximum/Minimum Comparison

Forward Modeled Hydrogen Emission Intensity using
WACCMX thermosphere inputs to the Lyao _rt code
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Forward modeling with lyao_rt [Bishop, 1999, 2001] of H
emission using output from WACCM-X model simulations for
perpetual solar conditions run for Solomon et al. [2018,
2019]. Solar Lyman-beta excitation flux estimated using high
resolution line center measurements from SUMER
instrument on SOHO at solar min [Warren et al., 1998] and
scaling from TIMED-SEE irradiance (lasp.colorado.edu/lisird).



SIMULATED INTENSITY

H column emission intensity calculated using forward
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H-alpha column emission intensities calculated using forward modeling are higher
during solar max: contributing factors are the changing solar Lyman-beta excitation

flux & that the emission is an integrated column emission.



Merged Northern Hemisphere Mid-latitude Balmer a Column Emission Observations
Solar Cycle Comparison at 2783 km

8 1 T r
2] B .
ey
o _
© R8 130 R : : o~
g [ R8153R 1 <
c 6 NANB850R % 7 x
N N =]
> I : : 1 =
5 | % . S
) o
2 4 l % —400 %
a N % % i o Daily Solar Radio F10.7 cm flux.
? € Data were downloaded from the
5] B 7 © LASP Interactive Solar Irradiance
€ B | ™ Data Center
b U_CJ) : 9 (http://lasp.colorado.edu/lisird/dat
2+ : —{200 - a/noaa_radio_flux/
3 : 5
g | |
o r : : R
> : ;
Tt : z .
o] I S S S R A SR SR 6 [Nossal et al., JGR, 2019]
1975 1980 1985 1990 1995 2000 2005 2010

Year

column emission intensity for a midrange shadow altitude of ~2800 km; calibration w/ nebular sources
half-year bins spanning winter conditions represent many spectra and, in most cases, multiple nights.
Error bars indicate uncertainty in the relative column emission intensity

The WI Northern hemisphere data suggest an increase that has not been accounted for by
uncertainties due to experimental factors, including calibration, tropospheric scattering, cascade
fine structure excitation and Galactic emission, with the caveat that this is a limited data set.



Conclusions

Unlike the thermospheric total neutral density which decreases with CO, cooling, the thermospheric atomic H
density rises with increases in greenhouse gases.

CH, increases the source species for H and CO, cooling also contributes to an increase in H in the upper
thermosphere.

WACCM-X H density is higher at solar min. Over the three-decade WACCM-X simulation, the solar cycle has
a larger impact on thermospheric H than do historical increases in GHGs.

WACCM-X simulated response of thermospheric H to GHGs depends on solar activity with a greater H
response to GHGs during low solar activity.

H column emission intensities calculated using forward modeling with WACCM-X thermosphere inputs and
extended with the Bishop Analytic Exosphere model [1991, 2001] are greater for high solar activity
conditions, as is the case for ground-based observations, contributing to WACCM-X model validation.

Forward modeling with WACCM-X thermospheric inputs suggests that possible signatures of GHG increases
may be more apparent in in situ measurements of H in the upper thermosphere during solar min and in
ground-based remote sensing of H airglow column emissions during solar max conditions.

There is qualitative consistency between calculated H column emissions intensities and the apparent
observed increase between two solar max periods. The increase in the observed column emission intensity
is likely of larger magnitude than predicted by forward modeling with WACCM-X. Additional observations
and modeling studies are needed for attribution.



Ongoing and Future work

We welcome collaborations with people studying hydrogen-containing constituents

Investigation of how middle and upper atmospheric studies may contribute to
whole atmosphere pattern studies of hydrogen-containing species.

Forward modeling comparisons with simulation time frame & viewing geometry
closer to observations.

Merging upcoming observations from the INSpIRe FPI at PBO Wisconsin [PI
Mierkiewicz] with the Northern midlatitude H-alpha emission data set.

Comparison of Northern hemisphere H-alpha observations with solar cycle
variation in observations from Cerro Tololo, Chile.

Investigation of H variability over multiple timescales using FPI observations,
WACCM-X simulations and forward modeling.

Long term ground-based observational comparisons require careful attention

and documentation of calibration, observational viewing, and other
observational methods.

at different altitudes.
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Figure 3.1: The INSpIRe Observatory at Embry-Riddle Aeronautical University.
Photo credit: Maggie Gallant, October 2016.
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Future work: Collaboration across atmospheric regions

To what extent might thermospheric and exospheric hydrogen observations and model simulations
contribute to a whole atmosphere understanding of hydrogen containing species and serve as
diagnostics of climate change processes and mitigation efforts?

To what extent might H and other hydrogen-containing species provide vertical footprints for climate
change processes?

* One of the goals of this work is to contribute towards whole atmosphere pattern studies of climate
change impacts on hydrogen-containing species across atmospheric regions.

We welcome collaborations with people studying methane and
other hydrogen-containing constituents at different altitudes.

(nossal @physics.wisc.edu)
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