The influence of

EARTH SCIENCES

Tethys and Central

American Seaways on

climate during the

Miocene Climatic

Optimum

<u>Hamida Ngoma Nadoya¹</u>, Clay Tabor¹ ¹Department of Earth Sciences, University of Connecticut, Storrs, USA

CESM Workshop, Paleoclimate Working Group June 11th 2025

Background

- Several gateway changes during the Miocene that could affect ocean circulation
- Central American Seaway
 (CAS): restricted flow by ~12 Ma
- Tethys Seaway (TES): closed

between 15 and 14 Ma

Burls et al., 2021

Methodology

- iCESM1
 - Fully coupled
 - 1.9° x 2.5° resolution
- Mid-Miocene boundary conditions
 - Frigola et al. (2018) topography
 - 570 ppm CO₂
- 3 gateway experiments with closed TES, closed CAS, or both
- Compare with proxy reconstructions

Surface temperature

- TES closure shows less impact
- CAS closure results in widespread warming in the SH and cooling in the NH
- Closure of both CAS and TES reduces the cooling in the NH but more warming over north equatorial Atlantic and South America

Precipitation

- TES closure shows less impact
- Drying of Arctic, North Pacific and North Africa with CAS closure
- Wetter equatorial Atlantic, eastern Pacific and Indian
- Wetter north Atlantic with CAS and TES closure

Precipitation $\delta^{18}O$

- TES closure
 less impact except in the Mediterranean region
- Closing both CAS and TES
 less signal of enriched isotopes
 over the North Atlantic and depleted over the south

Surface salinity

- Saltier Pacific, Indian and south Atlantic with TES closure
- Saltier Atlantic and Arctic with CAS closure
- Fresher Pacific with closure of both CAS and TES

Energy balance decomposition

NH cooling from CAS closure
primarily attributed to increased
surface albedo feedback from
reduction in total northward ocean
heat transport

Meridional ocean heat transport

- CAS closure reduces NH and increases SH Pacific ocean heat transport
- CAS closure increases NH and decreases SH Atlantic ocean heat transport

Meridional Overturning Circulation

• Loss of a shallow southward heat transport in South Atlantic with CAS

Comparison with proxy reconstructions

Comparison with Late Miocene Cooling

- Small differences in RMSE
- Less spatial coverage of proxies
- Will compare individual sites for biases between MCO and Late Miocene

Conclusions

- Ocean gateways can impact large scale circulation and climate
- Closure of the Tethys Seaway has smaller effect on climate than closure of the Central American Seaway
- Study supports the claim that closure of the Central American Seaway could have initiated NH glaciation (Molnar et al., 2008; Lunt et al. 2008)
- Comparison with proxies shows better agreement with the control experiment which could imply open gateways during the MCO

Acknowledgements

THANK YOU!!!!!!!!!!!

Email: hamida.nadoya@uconn.edu