Can SMYLE Beat My First Best Guess of the PDO?

Accounting for Inter-model Correlation when Testing for Model Skill Differences

Evan Meeker¹

Elizabeth Maroon¹, Anna-Lena Deppenmeier², LuAnne Thompson³, Daniel Vimont¹, Stephen Yeager⁴

¹Department of Atmospheric and Oceanic Sciences, University of Wisconsin Madison ²Department of Earth, Ocean and Ecological Sciences, University of Liverpool ³School of Oceanography, University of Washington Seattle ⁴National Center for Atmospheric Research, Boulder, Colorado Work supported by the National Science Foundation under Grant OCE-2022740 and the National Defense Science and Engineering Graduate Fellowship

SMYLE Pacific Decadal Oscillation (PDO) predictions have seasonality

Meeker et al. (in revision at GRL)

SMYLE Pacific Decadal Oscillation (PDO) predictions have seasonality

Meeker et al. (in revision at GRL)

First-order Auto-Regressive Model (AR1):

First-order Auto-Regressive Model (AR1):

$$P_{t} = \alpha P_{t-1} + \eta_{t}$$

First-order Auto-Regressive Model (AR1):

$$P_{t} = \alpha P_{t-1} + \eta_{t}$$

SMYLE skill is better. But is it *significantly* better?

SMYLE uncertainty using standard confidence intervals

SMYLE & AR1 uncertainty using standard confidence intervals

SMYLE & AR1 uncertainty using standard confidence intervals

Problem: SMYLE and AR1 predictions are *not independent* because they are verified against the *same observations*.

SMYLE & AR1 uncertainty using standard confidence intervals

Problem: SMYLE and AR1 predictions are *not independent* because they are verified against the *same observations*.

Solution: Use a significance test which *explicitly* accounts for *inter-model correlation*.

Significance test explicitly accounting for inter-model correlation

 r_{ay} : correlation between model A and observations r_{by} : correlation between model B and observations r_{ab} : correlation between model A and model B n: number of samples

$$T_{2} = (r_{by} - r_{ay}) \sqrt{\frac{(n-1)(1+r_{ab})}{2\left(\frac{n-1}{n-3}\right)R + \frac{1}{4}(r_{ay} + r_{by})^{2}(1-r_{ab})^{3}}}$$
(7)

(Has a Student's *t* distribution with n - 3 degrees of freedom)

$$R = (1 - r_{ay}^2 - r_{by}^2 - r_{ab}^2) + (2r_{ay}r_{by}r_{ab}), \qquad (6)$$

(Determinant of 3x3 Correlation Matrix)

Siegert et al., 2017

Significance test explicitly accounting for inter-model correlation

- Original: Hotelling (1940)
- Modified: Williams (1959)
- Suggested for psychological studies: Steiger (1980)
- Suggested for weather and climate prediction: Siegert et al. (2017)

 r_{ay} : correlation between model A and observations r_{by} : correlation between model B and observations r_{ab} : correlation between model A and model B n: number of samples

$$T_{2} = (r_{by} - r_{ay}) \sqrt{\frac{(n-1)(1+r_{ab})}{2\left(\frac{n-1}{n-3}\right)R + \frac{1}{4}(r_{ay} + r_{by})^{2}(1-r_{ab})^{3}}}$$
(7)

(Has a Student's *t* distribution with n - 3 degrees of freedom)

$$R = (1 - r_{ay}^2 - r_{by}^2 - r_{ab}^2) + (2r_{ay}r_{by}r_{ab}), \qquad (6)$$

(Determinant of 3x3 Correlation Matrix)

"Steiger" test outperforms standard test for correlated models

Modified from Siegert et al. (2017)

Applying the test to SMYLE and AR1 PDO predictions

- 1. Calculate r_{ay} , r_{by} , and r_{ab}
- 2. Calculate T_2
- 3. Find T_{crit} for your significance level and number of samples (e.g., $\alpha = 0.95$, n = 50)
- 4. If $T_2 > |T_{crit}|$, reject H_0

 r_{ay} : correlation between model A and observations r_{by} : correlation between model B and observations r_{ab} : correlation between model A and model B n: number of samples

$$T_{2} = (r_{by} - r_{ay}) \sqrt{\frac{(n-1)(1+r_{ab})}{2\left(\frac{n-1}{n-3}\right)R + \frac{1}{4}(r_{ay} + r_{by})^{2}(1-r_{ab})^{3}}}$$
(7)

(Has a Student's *t* distribution with n - 3 degrees of freedom)

$$R = (1 - r_{ay}^2 - r_{by}^2 - r_{ab}^2) + (2r_{ay}r_{by}r_{ab}), \qquad (6)$$

(Determinant of 3x3 Correlation Matrix)

SMYLE significantly outperforms AR1 from leads 4-13

• significant

○ not significant

SMYLE FEB has the longest lasting statistical significance SMYLE NOV is insignificant (or significantly *worse*) at all leads

- significant
- \bigcirc not significant

SMYLE NOV struggles to predict the PDO

Conclusions

Inter-model correlation must be accounted for when comparing model prediction skill. (see *Siegert et al., 2017*)

SMYLE PDO prediction skill *out-performs* AR1 predictions for **FEB** initialization from leads 4-13

NOV initialization does not significantly outperform AR1 at any lead time.

Full results to be published in GRL pending second review: Meeker et al., *Seasonality of Pacific Decadal Oscillation Prediction Skill*

References

- Meeker, E., Maroon, E., Deppenmeier, A. L., Thompson, L., Vimont, D., & Yeager, S. G. (in revision). Seasonality of Pacific Decadal Oscillation Prediction Skill. *Geophysical Research Letters*, TBD.
- Hotelling, H. (1940). The selection of variates for use in prediction with some comments on the general problem of nuisance parameters, *Ann. Math. Statist.*, 11, 271-283.
- Siegert, S., Bellprat, O., Ménégoz, M., Stephenson, D. B., & Doblas-Reyes, F. J. (2017). Detecting Improvements in Forecast Correlation Skill: Statistical Testing and Power Analysis. Monthly Weather Review, 145(2), 437–450. <u>https://doi.org/10.1175/MWR-D-16-0037.1</u>
- Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251. https://doi.org/10.1037/0033-2909.87.2.245
- Williams, E. J. (1959). The comparison of regression variables. J. Roy. Stat. Soc. B, 21 (2), 396–399. http://www.jstor.org/stable/2983809.
- Yeager, S. G., Rosenbloom, N., Glanville, A. A., Wu, X., Simpson, I., Li, H., Molina, M. J., Krumhardt, K., Mogen, S., Lindsay, K., Lombardozzi, D., Wieder, W., Kim, W. M., Richter, J. H., Long, M., Danabasoglu, G., Bailey, D., Holland, M., Lovenduski, N., ... King, T. (2022). The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2. *Geoscientific Model Development*, 15(16), 6451–6493. <u>https://doi.org/10.5194/gmd-15-6451-2022</u>

Questions?

$$P_t = \alpha P_{t-1} + \sigma \eta_t$$

06/11/25

AR1+ENSO

Perfect-ENSO

Bookkeeping: ACC & AR1

- Anomaly Correlation Coefficient (ACC)
 - How well do predictions for a given lead correlate with observations?
 - Doesn't account for magnitude of error

Bookkeeping: ACC & AR1

$$P_t = \alpha P_{t-1} + \sigma \eta_t$$

 $\alpha_{PDO}=0.91$

06/11/25