30th Annual CESM Workshop Kezhou (Melody) Lu¹ Gang Chen¹ *Collaborators:* Bowen Ge¹ Weiming Ma² ¹Univeristy of California, Los Angeles

Workshop Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

² Pacific Northwest National Laboratory Model error in T_{2m} variance:

Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

Workshop

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

Workshop Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

Workshop Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

Workshop

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

² Pacific Northwest National Laboratory

Model error in T_{2m} variance: 90°N C. ERA5 — CTRL 60°N 30°N 0° 180° 60°W 120°W 60°F 0° 120°F 180° Land-atmosphere feedbacks: 90°N e. CLM4 — CTRL (role of land) 60°N 30°N 0° 180° 120°W 60°W 60°E 0° 120°E 180° Atmospheric circulations: — CTRL (role or wind) 90°N 60°N 60°W 60°E

Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

Workshop

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

 $\overline{T'^2} \propto \frac{-1}{\alpha} \left(\partial_y \overline{T}\right)^2$

Mixing length

α

Kezhou (Melody) Lu¹ Gang Chen¹

30th Annual CESM

Workshop

<u>Collaborators:</u> Bowen Ge¹ Weiming Ma²

¹Univeristy of California, Los Angeles

² Pacific Northwest National Laboratory

Model error in T_{2m} variance: 90°N C. ERA5 — CTRL 60°N 30°N 60°W 60°F 120°W 0° 120°E 180° 180° Land-atmosphere feedbacks: 90°N e. CLM4 — CTRL (role of land) 60°N 30°N 60°W 60°E 0° 120°E 180° 180° 120°W Atmospheric circulations: CTRL (role or wind) 90°N 60°N 60°W 60°E

Changes in temperature variance influence the frequency of future extreme events under global warming

(IPCC 2001)

Changes in temperature variance influence the frequency of future extreme events under global warming

(IPCC 2001)

(Simpson et al., 2022)

(Simpson et al., 2022)

Questions to be answered: tribute to biases in simulating

Temperature variance (K²)

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

flux sensitivity to T_{2m}

Larger damping to T_{2m}

(Simpson et al., 2022)

1. How important is synoptic-scale **atmospheric circulations?**

1. How important is synoptic-scale **atmospheric circulations?**

1. How important is synoptic-scale atmospheric circulations?

Nudging winds towards ERA5 in CESM2 (FHIST compset)

Winds are nudged globally to ERA5 every six hours from bottom to top of the atmosphere

CLM5

Observational

sea ice

Observational

SST

CAM6

Goal: determine the importance of circulation

	Control:	Wind Nudging:				
le	CTRL	NudUV				
	lating T _{2m} vari	ance?				

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

Nudging winds in CESM2 and switch CLM5 to CLM4

Control:	Wind Nudging:
CTRL	NudUV

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

Nudging winds in CESM2 and switch CLM5 to CLM4

Goal: explore impact of different landatmospheric feedback on T_{2m} variance

Control:	Wind Nudging:
CTRL	NudUV
Land:	Wind Nudging + Land:

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

Nudging winds in CESM2 and switch CLM5 to CLM4

Goal: explore impact of different landatmospheric feedback on T_{2m} variance

Control:	Wind Nudging:
CTRL	NudUV
Land:	Wind Nudging + Land:
CLM4	NudUV/CLM4

••••

••••

Questions to be answered:

1. How important is synoptic-scale **atmospheric circulations?**

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

Questions to be answered:

1. How important is synoptic-scale atmospheric circulations?

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

Questions to be answered:

1. How important is synoptic-scale atmospheric circulations?

2. What is the role of **land-atmosphere feedback** in simulating T_{2m} variance?

3. Can we derive a theoretical framework to quantify contributions from **land**?

Near-surface air temperature tendency equation

. . .

$$\frac{\partial T'}{\partial t} \approx -\nu' \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} (LW' + SW' + SH' + LH')$$

$$\frac{\partial T'}{\partial t} \approx -\nu' \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} (LW' + SW' + SH' + LH')$$

$$\frac{1}{2}\frac{\partial \overline{T'^2}}{\partial t} \approx -\overline{v'T'}\frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a}((\overline{LW' + SW' + SH'})T' + \overline{LH'T'})$$

$$\frac{\partial T'}{\partial t} \approx -\nu' \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} (LW' + SW' + SH' + LH')$$

α_d: sensitivity of net dry surface energy flux to air temperature

 $\alpha_d = \frac{\partial (LW' + SW' + SH')}{\partial T}$

$$\frac{1}{2} \frac{\partial T'^2}{\partial t} \approx -\overline{v'T'} \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} \left(\underbrace{(\overline{LW' + SW' + SH'})T'}_{\overline{V'T'}} + \underbrace{\overline{LH'T'}}_{\overline{V'T'}} \right)$$

$$\overline{v'T'} \approx -\mathcal{D}(x, y) \left(\frac{\partial \overline{T}}{\partial y}\right) \qquad \overline{F_a'T'} \approx \alpha_a \overline{T'^2} \qquad \overline{F_L'T'} \approx \alpha_L \overline{T'^2}$$

α_L: depends on background soil moisture, evaporative resistance, and saturated humidity

$$\alpha_L = L_v \frac{\rho_a}{r_s} \overline{m} \gamma$$

 $\mathcal{D}(x, y)$: *diffusivity* $\mathcal{D}(x, y) \sim \sigma(\Psi)$

$$\frac{\partial T'}{\partial t} \approx -\nu' \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} (LW' + SW' + SH' + LH')$$

 $(\alpha_d + \alpha_L)\overline{T'^2} \approx C_a \overline{v'T'} \frac{\partial T}{\partial v}$

 $\frac{1}{2} \frac{\partial \overline{T'^2}}{\partial t} \approx -\overline{v'T'} \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} \left(\underbrace{(LW' + SW' + SH')T'}_{v'T'} + \underbrace{(LH'T')}_{v'T'} + \underbrace{(LH'T')}_{v'T'} \right)$ $\overline{v'T'} \approx -\mathcal{D}(x, y) \left(\frac{\partial \overline{T}}{\partial y}\right) \qquad \overline{F_a'T'} \approx \alpha_a \overline{T'^2} \qquad \overline{F_L'T'} \approx \alpha_L \overline{T'^2}$

α_d: sensitivity of net dry surface energy flux to air temperature

$$\alpha_d = \frac{\partial (LW' + SW' + SH')}{\partial T}$$

α_L: depends on background soil moisture, evaporative resistance, and saturated humidity

$$\alpha_L = L_v \frac{\rho_a}{r_s} \overline{m} \gamma$$

 $\mathcal{D}(x, y)$: *diffusivity* $\mathcal{D}(x, y) \sim \sigma(\Psi)$

 $\mathcal{D}(x,y)$:

 $\mathcal{D}(x, y)$

$$\frac{\partial T'}{\partial t} \approx -\nu' \frac{\partial \overline{T}}{\partial y} + \frac{1}{C_a} (LW' + SW' + SH' + LH')$$

α_d: sensitivity of net dry surface energy flux to air temperature

$$\alpha_d = \frac{\partial (LW' + SW' + SH')}{\partial T}$$

α_L: depends on background soil moisture, evaporative resistance, and saturated humidity

$$\alpha_L = L_v \frac{\rho_a}{r_s} \overline{m} \gamma$$

From mixing length:
$$\overline{T'^2} \sim \left(\partial_y \overline{T}\right)^2 L'^2$$

(e.g., Schneider et al 2015)

$$\frac{1}{2} \frac{\partial T'^{2}}{\partial t} \approx -\overline{v'T'} \frac{\partial T}{\partial y} + \frac{1}{C_{a}} \left(\overline{(LW' + SW' + SH')T'} + \overline{(LH'T')} \right)$$

$$\overline{v'T'} \approx -\mathcal{D}(x, y) \left(\frac{\partial \overline{T}}{\partial y} \right) \qquad \overline{F_{d}'T'} \approx \alpha_{d} \overline{T'^{2}} \qquad \overline{F_{L}'T'} \approx \alpha_{L} \overline{T'^{2}}$$

$$\frac{\partial \overline{T}}{\partial y} = \left(\alpha_{d} + \alpha_{L} \right) \overline{T'^{2}} \approx C_{a} \overline{v'T'} \frac{\partial \overline{T}}{\partial y}$$

Relative contribution of mixing length and background temperature gradient

$$\overline{T'^2} \approx \left(\partial_y \overline{T}\right)^2 L'^2$$
$$\left(\partial_y \overline{\theta_s}\right)^2$$

Relative contribution of mixing length and background temperature gradient $\overline{T'^2} \approx \left(\partial_y \overline{\theta_s}\right)^2 L'^2 \xrightarrow{\text{Fractional}}_{\text{changes}} \quad \frac{\Delta \overline{T'^2}}{\overline{T'^2}} \approx \frac{\Delta \left(\partial_y \overline{\theta_s}\right)^2}{\left(\partial_y \overline{\theta_s}\right)^2} + \frac{\Delta L'^2}{L'^2}$

Land-atmosphere feedback dominates fractional changes in L'^2 and $\overline{T'^2}$ $\overline{T'^2} \approx \underbrace{-C_a \mathcal{D}(\partial_y \overline{\theta_s})^2}_{\alpha_d + \alpha_L} \xrightarrow{L'^2} \approx \frac{-C_a \mathcal{D}}{\alpha_d + \alpha_L}$

D: *eddy diffusivity*

D: *eddy diffusivity*

2										
-80	-64	-48	-32	-16	0	16	32	48	64	80
				Frac	tional changes	[%]				

-80	-64	-48	-32	-16	Ó	16	32	48	64	80
Fractional changes [%]										

Email me : melodylu@atmos.ucla.edu

- Correcting synoptic circulation bias does not address model bias in simulating near-surface temperature variance
- Land-atmosphere feedbacks damp the near-surface temperature variance and constrain the mixing length
- Accurately representing of land processes in climate models is important for projecting future changes in near-surface temperature variability as well as extreme weather events

Email me : melodylu@atmos.ucla.edu

A negative feedback between longwave radiative flux and surface air temperature dominates local land-atmosphere interactions during winter

Synoptic-scale circulations are effectively corrected through wind nudging

The wind-nudging technique improves local wave activity (LWA) and, consequently, blockings.

Evolution of Northern Hemispheric mean LWA in 1982

Eddy mixing theory

(Credit: Wikipedia)

Eddy mixing theory

(Credit: Wikipedia)

(e.g., Schneider et al 2015)

Eddy mixing theory

Taylor expansion:

$$\theta' = \theta(y + L') - \theta(y) \approx -\frac{\partial \overline{\theta}}{\partial y}L' + \frac{1}{2}\frac{\partial^2 \overline{\theta}}{\partial y^2}L'^2 + \cdots$$

(Credit: Wikipedia)

Eddy mixing theory

Taylor expansion:

$$\theta' = \theta(y + L') - \theta(y) \approx -\frac{\partial \bar{\theta}}{\partial y}L' + \frac{1}{2}\frac{\partial^2 \bar{\theta}}{\partial y^2}L'^2 + \cdots$$

First order term
dominates
$$\overline{\theta'^2} \approx \left(\frac{\partial \bar{\theta}}{\partial y}\right)^2 L'^2$$

(e.g., Schneider et al 2015) θ : low-level potential temperature

(Credit: Wikipedia)

12

Cold

Eddy mixing theory

Taylor expansion:

$$\theta' = \theta(y + L') - \theta(y) \approx -\frac{\partial \bar{\theta}}{\partial y}L' + \frac{1}{2}\frac{\partial^2 \bar{\theta}}{\partial y^2}L'^2 + \cdots$$

First order term
dominates
$$\overline{\theta'^2} \approx \left(\frac{\partial \bar{\theta}}{\partial y}\right)^2 L'^2 \qquad \qquad \frac{\Delta \overline{\theta'^2}}{\overline{\theta'^2}} \approx \frac{\Delta (\partial_y \bar{\theta})^2}{(\partial_y \bar{\theta})^2} + \frac{\Delta L}{L'}$$

(Credit: Wikipedia)

Eddy mixing theory

Taylor expansion:

$$\theta' = \theta(y + L') - \theta(y) \approx -\frac{\partial \bar{\theta}}{\partial y}L' + \frac{1}{2}\frac{\partial^2 \bar{\theta}}{\partial y^2}L'^2 + \cdots$$

First order term
dominates
$$\overline{\theta'^2} \approx \left(\frac{\partial \bar{\theta}}{\partial y}\right)^2 L'^2 \qquad \qquad \frac{\Delta \overline{\theta'^2}}{\overline{\theta'^2}} \approx \frac{\Delta (\partial_y \bar{\theta})^2}{(\partial_y \bar{\theta})^2} + \frac{\Delta L}{L'}$$

