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• Accurately representing of land processes in climate 

models is important for projecting future changes in 

near-surface temperature variability as well as extreme 

weather events



A negative feedback between longwave radiative flux and surface air 

temperature dominates local land-atmosphere interactions during winter



Synoptic-scale circulations are effectively corrected through wind nudging

The wind-nudging technique improves local wave activity (LWA) and, consequently, blockings.

Evolution of Northern 

Hemispheric mean LWA 

in 1982
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