CESM has more subpolar North Atlantic water mass transformation than other models

Taydra Low¹, Elizabeth Maroon¹, Stephen Yeager², Feng Zhu² ¹University of Wisconsin-Madison, ²NCAR

NOAA CPO Award #NA22OAR4310111

WARNING!!!

If you see wonky plots....I did my best with what I had since casper and scratch were both down

AMOC is largely balanced by water mass transformation (WMT) through **buoyancy** forcing

WMT = the amount of sea water transforming from one density class to another

Buoyancy forcing
processes that change the ocean density/buoyancy

Walin Framework

 $\Psi(\sigma) = WMT(\sigma)$

Desbruyéres et al. 2019

We can estimate AMOC through surface fields!

 $\Psi(\sigma) = WMT(\sigma)$ $WMT(\sigma) = WMT_{sfc}(\sigma) + WMT_{mix}(\sigma)$ $\downarrow \qquad \qquad \downarrow$ Heat and freshwater fluxes Internal mixing $\Psi(\sigma) \approx WMT_{sfc}(\sigma)$

Deconstructing surface forced WMT

 $f(x, y, t) = -\frac{\alpha}{c_p} f_{heat} + \beta f_{salt}$

Density flux

Surface Surface freshwater

flux

 $WMT_{sfc}(\sigma) = \frac{1}{\Delta\sigma} \iint \mathbf{f} dA_{\sigma}$ Density class

area

Goal:

Investigate the differences in SPNA overturning circulation between CESM2 and other FOSI models that participated in the OMIP simulations

SPNA = subpolar North Atlantic OMIP = ocean model intercomparison project FOSI = forced ocean and sea-ice

8 different observation-based WMT benchmarks

Different atmospheric forcings and surface fields (SST, SSS, fluxes) produce a spread in observational WMT

 $SPNA = LAB+IRM+NOR+SPG_SE+SPG_SW$

Low et al. in prep

1982-2009 Climatology

SPNA WMT is too strong and shifted towards heavier density classes in OMIP1 models

CESM2 has some of the strongest WMT biases in the SPNA

CESM2 WMT too strong in LAB and IRM

We find the same behavior in the OMIP2 models

OMIP2

We find the same behavior in the OMIP2 models

AMOC 45N is also stronger in CESM2 compared to other OMIP2 models

Data processed by Elizabeth Maroon and Stephen Yeager

Pinpointing locations of strong transformation

Transformation across $\sigma_2 = 36.5 \text{ (kg/m}^3\text{)}$

Key Takeaways

- Most OMIP simulations have WMT that falls outside the observational range
- Maximum transformation generally occurs at heavier density classes than observations imply
- The strong biased WMT is attributed to the Labrador and Irminger-Icelandic Seas
- Additional OMIP spread comes from the southeast subpolar gyre
- CESM2 has some of the strongest WMT and AMOC among OMIP models (because of LAB and IRM)

Questions?

Email: tlow2@wisc.edu

Extra

Ma Ala

1.8 1.2 0.6 0.0 -1.8

1.8

- 4.5 - 3.0 - 1.5 - 1.5 - 3.0 - 2.0 - 3.0 - -4.5 -6.0

Xu et al. 2016

$\Psi(\sigma)\approx WMT$

AMOC(sigma)

Putting it all together...but the mathy version 🥲

AMOC streamfunction primarily balanced by WMT

AMOC Volume WMT

$$\Psi(\phi, \sigma) + \frac{\partial V(\phi, \sigma)}{\partial t} = G(\phi, \sigma)$$
 $\Psi(\phi, \sigma) \approx G(\phi, \sigma)$

Total WMT is the sum of transformations due to surface and internal mixing processes WMT Surface Mixing $G(\phi, \sigma) = F(\phi, \sigma) + \frac{\partial D_{diff}(\phi, \sigma)}{\partial \sigma} + C(\phi, \sigma) \qquad G(\phi, \sigma) \approx F(\phi, \sigma)$ $\Psi(\phi, \sigma) \approx F(\phi, \sigma)$

Surface forced WMT is a function of

AMOC can be estimated solely from surface processes

$$\prod (\sigma'(x,y)) = \begin{cases} 1, & for |\sigma'(x,y) - \sigma| \le \frac{\Delta \sigma}{2} \\ 0, & elsewhere \end{cases}$$