

Persistently active El Niño-Southern Oscillation since the Mesozoic

Xiang Li^{a,b,1}, Shineng Hu^{b,1}, Yongyun Hu^{a,c,*}, Wenju Cai^{d,e,f,g}, Yishuai Jin^{d,g}, Zhengyao Lu^h, Jiaqi Guo^a, Jiawenjing Lan^a, Qifan Lin^a, Shuai Yuan^a, Jian Zhang^a, Qiang Wei^a, Yonggang Liu^{a,c}, Jun Yang^{a,c}, Ji Nie^{a,c}

^aLaboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China; ^bDivision of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA; ^cInstitute of Ocean Research, Peking University, Beijing, China; ^dFrontiers Science Center for Deep Ocean Multispheres and Earth System, Physical Oceanography Laboratory, and Sanya Oceanographic Institution, Ocean University of China, Qingdao, China; ^eState Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; ^fState Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; ^gLaoshan¹ Laboratory, Qingdao, China; ^hDepartment of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

El Niño-Southern Oscillation in geological periods

- Past climates (different climate mean states, changes in the Pacific width, ...) provide a wide range of testbed for ENSO theories.
- Variations in ENSO could have consequential impacts on climate change in the geological past. RESEARCH

MASS EXTINCTIONS

Mega El Niño instigated the end-Permian mass extinction

Yadong Sun^{1,2}*†, Alexander Farnsworth^{3,4}†, Michael M. Joachimski², Paul B. Wignall⁵, Leopold Krystyn⁶, David P. G. Bond⁷, Domenico C. G. Ravidà⁸, Paul J. Valdes^{3,4}

- The geological history of ENSO remains intricate.
- ENSO variability may have been a salient feature of the Earth's climate system for tens of millions of years.

The evolution of the Pacific Ocean in the past 250 million years

- Due to tectonic dynamics, modern global oceans are originated from the huge Panthalassa Ocean 250 Myr ago.
- Panthalassa is also referred to as the
 Paleo-Pacific or Proto-Pacific because the
 Pacific Ocean is a direct continuation of
 Panthalassa.

Questions:

In the past 250 million years,

- How does the equatorial Pacific ocean-atmosphere mean state change?
- Does ENSO remain active?

26 time-slice climate simulations for the past 250 million years using CESMI.2.2

Model and experimental set-ups	
Model	CESMI.2.2, fully-coupled, T31g37
Paleogeography	Scotese and Wright (2018)
Atmospheric CO ₂	Inferred from the GMST by Scotese (2015)
Solar irradiance	Linearly increasing following Gough (1981)

Active ENSO during the past 250 million years

No obvious relation between ENSO amplitude and temperature

150 Ma.

6

Linear stability captures 57% of the variations in ENSO amplitude

Zonal advective feedback and thermocline feedback are dominant factors

Zonal advective feedback (ZA) $\mu_{a}\beta_{u}\left(-\frac{\partial \overline{T}}{\partial x}\right)_{E}$ $[\tau_{x}] = \mu_{a}\langle T\rangle_{E}$ $\langle u\rangle_{E} = \beta_{u}[\tau_{x}] + \beta_{uh}\langle h\rangle_{w}$

Thermocline feedback (TH)

 $\mu_{a} \beta_{h} \langle \frac{H(\bar{w})\bar{w}}{H_{m}} a_{h} \rangle_{E}$ $[\tau_{x}] = \mu_{a} \langle T \rangle_{E}$ $\langle h \rangle_{E} - \langle h \rangle_{w} = \beta_{h} \tau_{x}$ $\langle H(\bar{w}) T_{sub} \rangle_{E} = a_{h} \langle h \rangle_{E}$

Zonal advective feedback and thermocline feedback are dominant factors

Zonal advective feedback (ZA) $\mu_a \beta_u \langle -\frac{\partial \overline{T}}{\partial r} \rangle_E$ $\langle \boldsymbol{u} \rangle_F = \boldsymbol{\beta}_{\boldsymbol{u}}[\boldsymbol{\tau}_r] + \boldsymbol{\beta}_{\boldsymbol{u}\boldsymbol{h}} \langle \boldsymbol{h} \rangle_{\boldsymbol{w}}$ β_u : response of surface zonal current

to wind forcing

Thermocline feedback (TH) $\mu_a \beta_h \langle \frac{H(\overline{w})\overline{w}}{H_m} a_h \rangle_E$ $\langle \boldsymbol{h} \rangle_{E} - \langle \boldsymbol{h} \rangle_{w} = \boldsymbol{\beta}_{h} [\boldsymbol{\tau}_{r}]$

 β_h : response of zonal slope of the equatorial thermocline to wind forcing

The changes in β_{μ} is linked with that of β_{h} .

A local maximum response of positive thermocline anomaly (D')in the eastern equatorial Pacific to an eastward equatorial surface wind forcing (i.e., β_h

Linear reduced-gravity model in an equatorial β -plane framework (Hirst, 1986; Wang and Weisberg, 1994)

An eastward response of u'_{g} and thus u'to the eastward surface wind forcing (β_u)

Zonal current anomalies (u') consist of geostrophic (u'_{q}) and Ekman (u'_{e}) current anomalies, and u'_{e} is one order of magnitude smaller than u'_{a} (Jin, 1997; Jin and An, 1999; Su et al., 2010; Chen et al., 2019).

Modulation of ENSO amplitude by background thermocline depth

 β_h : response of zonal slope of the equatorial thermocline to wind forcing

Modulation of ENSO amplitude by atmospheric noise

Atmospheric noise and the Bjerknes linear stability are almost completely uncorrelated with each other.

ENSO amplitude = $a \cdot BJ + b \cdot noise + c$ $a = 0.31 \,^{\circ}\text{C} \cdot yr, b = 1.10 \,^{\circ}\text{C} \cdot (10^{-2} N m^{-2})^{-1}, c = 0.10 \,^{\circ}\text{C}$

The BJ index and atmospheric noise together can explain about **76%** of the variations in ENSO amplitude.

Summary

- A series of 26 coupled time-slice climate simulations forced by paleogeography, atmospheric CO₂ concentrations, and solar radiation for t... past 250 Myr are performed, using CESM1.2.2, and analyzed in this study.
- Climate simulations show that ENSO has been a leading mode of tropical sea surface temperature variability in the past 250 Myr but with substantial variations in amplitude across geological periods.
- Our results uncover the geological history of ENSO from a modeling perspective.
- Our findings support the importance of changing ocean vertical thermal structure and atmospheric noise in influencing projected future ENSO change and its uncertainty.

Thanks!

X. Li, S. Hu, Y. Hu, W. Cai, Y. Jin, Z. Lu, J. Guo, J. Lan, Q. Lin, S. Yuan, J. Zhang, Q. Wei, Y. Liu, J. Yang, J. Nie, Persistently active El Niño–Southern Oscillation since the Mesozoic, Proc. Natl. Acad. Sci. U.S.A. 121 (45) e2404758121, https://doi.org/10.1073/pnas.2404758121 (2024).