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Figure from Eyring, Gentine, Camp4/alls, Lawrence, Reichstein (Nature Climate Change, 2024)
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Towards a machine learning enhanced version of CESM (CESMdViLe)

LEAP Phase 1: Parameter estimation methodologies have been
developed for land (CLM) and atmosphere (CAM) model components

CLM

Iterative refocusing

Generate a perturbed parameter
ensemble

Train machine
learning emulator

Confront model with
observational data

Constrain
posterior
parameter
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Linnia Hawkins, Daniel Kennedy, Katie Dagon,

Dave Lawrence

CAM

Additive Gaussian Process Emulator
Designed for sparse state spaces:
e Additive and simple
e Parameter interaction considered

e Less likely to overfit

Current method
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(262 ensemble members)
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CAM: Additive Gaussian Process Emulator(rang et al., JAMES, accepted)

Insight: Individually insensitive parameters can be cumulatively important

Why? Some parameters are only locally/regionally sensitive

Therefore: Emulating only global climatologies may not be sufficient for all problems
Implication: May be able to both decrease local biases while still calibrating globally
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CLM PPE activities

Calibrate CLM6 for CESM3

Publish an observationally constrained perturbed parameter ensemble

Constrain / understand land carbon cycle uncertainty

For a possible future CESM3 large ensemble (emissions-driven mode), utilize carefully selected parameter

sets that span unconstrained emergent behavior in land carbon cycle and ECS or TCR
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Towards a machine learning enhanced version of CESM (CESMdViLe)

LEAP Phase 1: Demonstrate pathway and impact of ML-based parameterizations in CESM

Warm rain microphysics: Emulate cloud droplet autoconversion and accretion with NNs trained on
CAM simulations with warm rain process replaced with highly resolved bin microphysics (TAU code)
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Developing workflow to recalibrate after ML paramaterizations implemented

1. ML warm rain Daly Precipitation
microphysics — 1ot mm Default
improvement in rainfall 5, mm NLwarm rain
distribution
10 3. Using ML for auto-tuning, can we re-
210 calibrate CAM to correct the degraded
E1o-e performance, while simultaneously
1077 . - retaining the improvement in rainfall
mm/day g - ~AnD
2. But, degraded performance for other fields is likely with new
parameterization ]
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, = ,

Slide from Qingyuan Yang and Greg Elsaesser



Next-generation Earth System modeling to address urgent mitigation and adaptation needs

Earth system feedbacks and processes enhanced with machine learning @}“
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Candidate parameterizations and tools for CESM3-MLe

ML parametrization
& calibration into
g Air-sea turbulent fluxes CESM from LEAP:
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CESM-MLe Integration Team

Identified need

More productive and sustained interactions between LEAP and M2LInES projects and
CESM scientists and developers
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http://github.com/leap-stc/Integration_team

CESM-MLe Integration Team

Identified need
More productive and sustained interactions between LEAP and M2LInES projects and
CESM scientists and developers
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http://github.com/leap-stc/Integration_team

CESM-MLe Integration Team

CESM Integration Survey (selected questions)

Which physical process is your ML model targeting?

How well do your inputs/outputs align with those available in
the CESM component model?

What dataset(s) are being used for training?
How are you currently testing your ML parameterization?
How will you test in a CESM-relevant context?

What is the planned mechanism for integrating your ML
model into CESM?

Are there intermediate calculations or dependencies that
must be implemented within CESM?

Will the ML parameterization require additional tuning once
integrated into CESM?

What additional support or collaboration would help facilitate
your model’s integration into CESM?

Are there any anticipated concerns or risks regarding your
ML parameterization’s integratioainto CESM?



http://github.com/leap-stc/Integration_team

Towards a Machine-Learning enhanced CESM (CESM3MLe)

Defining Success for CESM3-MLe

® Several ML-based parameterizations into
CESM (1-2 atm, 1-2 ocn, 1-2 Ind, 1 sea ice/land ice)

® ML parameter calibration (Ind, atm)

e Reduced biases in critical fields, especially
extremes
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Push forward over next 18-24 months to test the

hypothesis that ML can help build better and more
accurate ESMs

Anticipate that there will be challenges
[ J

Sustained team interactions (e.g., Pl, ML-param developer,
experienced CESM developer, and SE)

More coordination / communication (github CESM-MLe
project management, development meetings)

ML parameterizations in out-of-
training climates

CESM model instabilities with new ML
Unanticipated interdependencies

Substantially new simulated climate that may degrade
orthogonal aspects of simulation

New tuning challenges with some tuning knobs
removed



CAMulator (CREDIT):



http://drive.google.com/file/d/1wet3lXNvDdNQoXtQVm_ATXy9kzrnnESZ/view

Looking Forward with CREDIT / CESMulator

- Coupling to a dynamic ocean / land (Chapman, Lauritzen)

- Radiative forcing experiments / CESM future climate (Chapman)
- CESMulator S2S initialized forecast system (Mayer, Chapman)
- Emulating CLM (Hawkins)

- Diffusion based postprocessing (CISL + CGD)

- Near Real Time forecasts (CISL + CGD)

- Ensemble Capabilities (CISL + CGD)

(An) idea is to include CAMulator along with
CREDIT platform within the CESM3 release as
a supported research tool
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Next-generation Earth System modeling
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One possible focal path for CESM over next several
years is to push towards a CESM3-HR-MLe
configuration along with a CESMulator of it to generate
a novel and impactful next generation LE
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