

Atmosphere Model Working Group (AMWG)

Welcome!

Kevin Reed External AMWG co-chair Stony Brook University

Peter Hjort Lauritzen Internal (NCAR) AMWG co-chair

Cecile Hannay AMWG Science Liaison

Hui Wan External AMWG co-chair PNNL

June 9, 2025

Model	CCM2/3 CSM1	CAM2 CCSM2	CAM3 CCSM3	CAM4 CCSM4	CAM5 CESM1	CAM6 CESM2	CAM7 CESM3		Prognostic momentum fluxes
Release	June 1998	May 2002	June 2004	Apr 2010	June 2011	June 2017			
PBL	HB	HB	HB	HB	UW	CLUBB	CLUBB updated		Modifications primarily for
Shallow conv.	Hack	Hack	Hack	Hack	UW	CLUBB	CLUBB updated		increased boundary layer resolution
Deep conv.	ZM	ZM	ZM	ZM_mod1	ZM_mod1	ZM_mod2	ZM_mod3		Ice number limiter
Microphysics	RK	RK	RK	RK	MG1	MG2	PUMAS		Fall speed
Macrophysics	Sundqvist	Zhang	Zhang	Zhang	Park	CLUBB	CLUBB updated		
Radiation	Briegleb	Briegleb	CAMRT	CAMRT	RRTMG	RRTMG	RRTMG P		Unification CAM <-
Aerosols	Uniform	Uniform	BAM	BAM	MAM3	MAM4	MAM4 (/w strat. chem. MAM5)		>WACCM in treatment of gravity
Drag/Gravity waves	IsoOGW				NOGW/TMS	AnisoOGW/ Beljaars	Moving mountains source		waves
Dynamics	Spectral	Spectral	Spectral	FV	FV	FV	SE		New dycore
Levels	18	26	26	26	30	32	(58)/93		Increased boundary
Model top	~42km	~42km	~42km	~42km	~42km	~42km	(~42km)/~80km		layer resolution
Horiz. res	~3 degree	~3 degree	~3 degree	~1 degree	~1 degree	~1 degree	~1 degree/(~0.25 degree)		Raise model top to
Land/Ocn	LSM/NCOM	CLM2/POP	CLM3/POP	CLM4/POP2	CLM4/POP2	CLM5/POP2	CLM6/MOM6	r	esolved stratosphere

TMS – Turbulent Mtn Stress NOGW – non-orographic GW {Iso/Aniso}OGW – isotropic/anisotropic orog. GW MG – Morrison GettelmanZM – ZhangMcFarlaneUW – U. WashingtonHB – HoltslagBovilleCLUBB - Cloud Layers Unified By Binormals

RRTMGP – Rapid Radiative Transfer Model MAM – Model Aerosol Model RK – RaschKristjánsson

Table modified from Rich Neale

CAM7: zonal mean zonal winds

- Very good agreement of SH polar vortex with ERA5 (only about 3m/s difference to ERA5!)
- NH polar vortex still needs tuning

Introducing the moving mountain parameterization greatly improved SH polar vortex in CESM

CAM7: The Quasi-biennial Oscillation (QBO)

- QBO amplitude in good agreement with ERA5 below 30hPa
- QBO period too fast and westerly phase too strong

working on new low-frequency gravity wave parameterization in the tropics to mitigate the westerly bias

Martina Bramberger and Julio Bacmeister (NCAR)

CAM7: Greenland surface mass balance

Improving biases in precipitation and melting over the Greenland Ice Sheet

- Greenland is not well resolved at 1°, requiring tuning of CESM3 to bring it closer to observations (*compare red to gold*)
- As in CESM2, artificially enhance sub-grid orography along the Greenland coasts to *reduce excessive precipitation*
- Reduced excessive melting through switching to the Jordan snow conductivity scheme over ice sheets

Ice Sheet-wide precipitation and ice+snow melt

Adam Herrington (NCAR)

Community simulations: "CAM7" high resolution simulations

10-year F-cases:

- ne120/ne30 horizontal grids
- L93, L58, L32 vertical grids
- Sensitivity test with Prognostic CLUBB momentum flux replaced by diagnostic
- SST scenarios: SST and SST+4K

Some key Characteristics:

- Reasonable tropical cyclone track climatology
- Improved simulations of southern hemisphere polar vortex
- Some degradation in seasonal means (e.g., monsoon systems, double ITCZs)

Contact

More questions: Cecile Hannay (<u>hannay@ucar.edu</u>)

Monday, June 9th, 1:30 - 5pm * All times are MDT; Speakers: 10 min. talk. Please leave 2 min at the end of your slot for questions.

Time	Торіс	Speakers
01:30	CAM7 development update	Peter
		Lauritzen
01:36	Use of tuning diagnostics to understand CAM behavior	Vincent
		Larson
01:48	Cyclones at Quarter-Degree Resolution: Updated CAM with	Ben Stephens
	Prognostic Vs. Diagnostic Momentum Fluxes Compared to CAM5 and CAM6	
02:00	The CLUBB+MF Approach: Results from the Unified Mixing	Adam
	Parameterization CPT Project	Herrington
02:12	Aerosol Effects on Ice Clouds in a CAM6 Perturbed Parameter	Brandon
	Ensemble	Duran
		(remote)
02:24	The impact of model resolution on climate in NorESM3	Ada
		Gjermundsen
		(remote)
02:36	Enhancing CAM Microphysics: BOSS Warm Rain and Unified Ice	Trude
	Options in PUMAS	Eidhammer
02:48	Development of High-resolution Taiwan Earth System Model	Wei-Liang
		Lee
		(remote)
03:00	Break	

03:30	Using an Aqua-planet Model to Understand Future Changes in the	Aaron
	Quasi-Biennial Oscillation	Johnson
03:42	Insights from the 2025 Dynamical Core Model Intercomparison	Christiane
	Project (DCMIP-2025)	Jablonowski
03:54	QBO, gravity wave, and deep convection responses to surface	Lan Luan
	warming in GFDL AM5 simulations	
04:06	EarthWorks Update	Dave Randall
04:18	Linear stability of divergence and vorticity damping on gnomonic	Timothy
	cubed-sphere grids.	Andrews
04:30	Deep-atmosphere dynamics in Aquaplanets: an E3SM/CESM	Owen Hughes
	intercomparison	-

04:30	Deep-atmosphere dynamics in Aquaplanets: an E3SM/CESM	Owen Hughes
	intercomparison	
04:42	Mitigation of the double-ITCZ bias by inclusion of the	Hing Ong
	nontraditional Coriolis terms	
04:54	Discussion	
5:00	Adjourn	

No posters

Group photo

Extra slides

Tropical Cyclone tracks (2000-2010)

- Action in these basins is shifted west and south w/resp to what it was in CAM5
- Recurvature is better simulated in CAM7
- Implies landfall/impact statistics might be better in CAM7
- TC counts too high: ~160% of obs

CAM5 ¼-degree

Thanks to: Ben Stephens, Cecile Hannay (CGD) Colin Zarzycki (PSU)

On-going work:

- Exploring sensitivity to convective time scale
- NH focused variable resolution domain (1/3 cost)
- Recent results in excellent agreement w/ NH TC counts ~50/year

Ben Stephens, Cecile Hannay (NCAR) and Colin Zarzycki (PSU)

Ultra high resolution CAM7

DYAMOND = DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains Provides a framework for the intercomparison of global storm-resolving models (Stevens et al., 2019)

DYAMOND1 (summer) 40-day run starting on 1 August 2016

- Completed
- □ Bug in diagnostic pressure field, add'l sponge layer diffusion
- DYAMOND2 (winter) 40-day run starting on 20 January 2020
 - □ 30 of 40 days completed
 - □ Snow depth bug in CLM
- DYAMOND3 (annual) 1-year run starting on 1 March 2020
 - D NSC allocation awarded (A. Herrington, Y. Tian, H. Li, D. Leung, P. Lauritzen, F. Judt)
 - Plan to start in the winter, after an extensive tuning & calibration phase

Adam Herrington (CGD, NCAR) Brian Dobbins (CGD, NCAR)

CESM3 km-scale configuration:

- □ dx = 3.75 km CAM-MPAS (58 vertical levels)
- □ dx = 3.75 km CLM6
- □ dx = 3.75 km data ocean and sea-ice

Adam Herrington (NCAR)

Ultra high resolution CAM7

Using *CLUBB+MF in 3.75 km CAM-MPAS improves transitional cumulus regimes

- CLUBB is the only convection scheme active (shallow convection)
- Running with CLUBB+MF results in less 'patchy' deep convection and a more realistic spectrum of clouds

*CLUBB+MF is CLUBB augmented with an ensemble of stochastic mass flux plumes (Suselj et al. 2019; Witte et al. 2022)

Adam Herrington (CGD, NCAR) Brian Dobbins (CGD, NCAR)

0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0

Adam Herrington (NCAR)