

Contribution of gravity waves to the lower thermospheric winter-to-summer meridional circulation in high-resolution WACCM-X

Dai Koshin, Nicholas Pedatella, Anne Smith, and Han-Li Liu (NSF NCAR)

30th annual CESM Workshop: WAWG, June 11, 2025

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

Introduction: meridional circulation in the MLT region

<u>Upper mesosphere</u>: summer to winter

• Gravity wave forcing

Lower thermosphere: winter to summer

 There are several tracer distribution analysis (CO₂, H₂O, NO, O, O/N₂).

Middle thermosphere: summer to winter

• Ion drag, diabatic heating, pressure gradient

Orange: eastward waves/forcing Blue: westward waves/forcing

Methodology

To analyze the origin and nature of the waves driving the lower thermospheric circulation, the dynamical process through the middle atmosphere is examined.

High-resolution WACCM-X (Liu et al., 2024a; 2024b; 2025)

- Horizontal resolution: ~25 km (NE120; quarter-degree)
- Vertical resolution: ~0.7 km (0.1 scale height; 273 levels)
- One-year free-run: 13 January to 31 December
- Small-scale disturbances: waves with λ_{χ} < 2000 km

No gravity wave
parameterization

> 20TB

Result

- \bar{v}^* : southward flow at z = 110–120 km
- $\nabla \cdot \mathbf{F}$: positive (eastward forcing) in the NH, negative (westward forcing) in the SH
- → Wave-driven mechanism is considered.

Contribution of small-scale waves

Circulation	Southward (Jan–Mar, Nov–Dec)	Northward (May–Sep)
NH	Positive forcing	Negative forcing
SH	Negative forcing	Positive forcing

Phase speed decomposition

- $\overline{u'w'}$ >0 for eastward waves and $\overline{u'w'}$ <0 for westward waves \rightarrow Upward propagation
- Slow westward waves (-30 < c < 0 m/s):
 ✓ Dissipation at z = 65–90 km
- Eastward waves (50 < c <170 m/s):
 - ✓ Large forcing in the lower thermosphere
 ✓ Waves slower than U is also dominant, which cannot propagate from below.

Momentum flux as a function of the phase speed

- 1. 2D-FFT (x,t) for u and w at each latitude and altitude
- 2. Cospectrum: momentum flux at each wavenumber & frequency
- 3. Accumulate the flux along the same phase speed (10 m/s bin)

Discussion: wave generation

proportional to the vertical wave propagation

- A contrast at z = 67 km: Divergence of eastward waves (c > 0 m/s) and fast westward waves (c < -150 m/s)
- Slower westward waves (-150 < c <0 m/s) are more propagated from the stratosphere.

Horizontal distribution of $\overline{w'\Phi'}$:

- <u>Eastward wave</u> divergence is observed above the zonal wind maximum, over wide longitudes and latitudes.
- Is it possible to estimate the wave generation from the mesospheric jet structure?

Discussion: GW generation diagnosis

- $|\nabla T|$ generally increases with altitude.
- A large value is observed above the zonal wind maximum.
- The zonal variation is associated with the jet structure (strong zonal wind).

Indicating the wave generation?

Discussion: seasonal variation of wave generation pattern

Seasonal variation

- Large positive $\overline{u'w'}$ in the winter high latitudes in the **lower thermosphere**
- Large $|\nabla T|$ in the **winter mesosphere**

Monthly variation

- The distribution of the $\overline{u'w'}$ maximum varies between month.
 - ✓ January: Europe to Russia (minimum around Greenland)
 - ✓November: east Russia to Alaska
 - ✓ June: 80–180°E
 - ✓ July: 0–60°E, 150°E–160°W, 0–80°W
- The pattern of $|\nabla T|$ distribution is similar. $|\nabla T|$ indicates the wave generation region.

Conclusions

The mechanism driving lower thermospheric meridional circulation is examined.

- ✓ In the winter hemisphere, the generation of eastward gravity waves from the strong westerly jet (polar vortex) is important.
- ✓ Different features for westward waves
 - Propagate from lower heights
 - Dissipate in the upper mesosphere (→ Upper mesospheric circulation)
- ✓ Gravity wave generation in the mesosphere could be estimated from the temperature gradient.
 - → Improvement of the parameterization?
 (analogy to the frontal GW in WACCM)

Supplementaly

