Various Types of Latent Heating Structures and the role of Western Boundary Current over the Kuroshio-Oyashio Extension Region

Dong Wan "Lewis" Kim¹, Young-Oh Kwon¹, Claude Frankignoul^{1,2}, Clara Deser³, Gokhan Danabasoglu³, Adam Herrigton³, Sunyong Kim¹

¹ Woods Hole Oceanographic Institution, USA

² Sorbonne University, France

³ US NSF National Center for Atmospheric Research, USA

Air-sea interaction and the role of SST anomaly

- How does SST interact with the atmospheric weather pattern over the western boundary current region?
 - Kuroshio-Oyashio Extension (KOE) region
 - Focus on the diabatic latent heating
 - Conduit for SST to impact atmosphere
 - Largescale condensational vs. convective heating
 - Model resolution dependent

• Seo et. al. 2023

• Comprehensive understanding of the air-sea interaction will improve the predictability of the downstream weather pattern

Experiment overview

- Variable Resolution CAM6
 - High resolution over the target region
 - ~ 1/8deg North Pacific / ~1deg rest of globe
 - Effectively resolve moist process that are important for diabatic latent heating
 - Simulation period : Nov-Jan (3months)
 - 3-hourly output
 - Initial Condition: Nov 1st of ERA5
 - 1979-2021 (43 ensembles / 1 simulation set)
 - Boundary condition:
 - GLORYS12 reanalysis (1/12 deg)
 - <u>Control</u>: monthly climatology of SST/SIC
 - <u>Warm</u>: SST anomaly representing northward shift of the SST frontal system

Weather timescale compos

- Heating index composite
 - Select days when two different latent heatings over the SST forcing region are enhanced
 - Diagnose the relevant weather patterns
 - From CTRL simulation
 - Large-scale and convective heating occur together
 - Large-scale and convective heating occur alone
 - From WARM simulation
 - Repeat the above procedure
 - Compare the composite difference to identify how SST anomaly plays a role

Composite structure (CTRL)

- Overlapping Largescale events:
 - Baroclinic circulation
 structure
 - Strong low-level cyclone
 - Extratropical cyclone-like structure
 - Large-scale heating on the warm-side of the cyclone

 Convective heating on the cold side of the cyclone

(J) Z300 at lag day (

-100 0 100 Z300 [m]

(k) Convective_Q at lag day 0

Composite structure (CTRL)

- Large-scale heating-only event
 - Baroclinic, but
 anticyclonic circulation
 - Large-scale heating with southerly moist wind

- No low-level cyclone development
- No convective heating

100	1 0 0
-100	

(h) Largescale_Q at lag day 0

-3 0 : Largescale_Q [K/day]

(g) Convective_Q at lag day 1

Composite structure (CTRL)

- Convective heating-only events
 - Barotropic cyclonic circulation
 - Large-scale heating is spread into the North Pacific

 Convective heating enhancement following the northerly wind of the cyclonic circulation

(j) Z300 at lag day 0

-100	0	100
	Z300 [m]	

Convective_Q [K/day]

CTRL summary

- Three different synoptic weather patterns that induces strong latent heating enhancement over the western boundary current region
- Latent heating enhancement depends on the circulation structure

CTRL summary

- Three different synoptic weather patterns that induces strong latent heating enhancement over the western boundary current region
- Latent heating enhancement depends on the circulation structure
- How would they respond to the SST an

Response to the SST forcing

- Large-scale heating-only case
 - SST likely provided more moisture and updraft that leads to enhancement of latent heating
 - Enhancement of anticyclonic circulation
 - Enhanced latent heating -> important factor for maintenance of blocking-like anticyclone (Pfahl et al. 2015)
- Resemblance to the seasonal mean response pattern
 - Seasonal mean response to the SST forcing: prominent North Pacific anticyclone
 - Changes in a particular weather system -> influences seasonal mean response
 - Other latent heating event didn't much change with the SST

Summary from the structure of two events

- Different types of weather event over the North Pacific western boundary current region
- Each pattern responds differently with underlying SST anomaly forcing
- Identifying dynamically important synoptic weather patterns help to understand complicated climate response to the SST anomaly

END

Supplementary figures

lag -1 / CLIM_CTRL lag -1 / CLIM_WARMx5

lag 0 / CLIM_CTRL

lag 1 / CLIM_CTRL

lag 2 / CLIM_CTRL

lag 3 / CLIM_CTRL

lag 0 / CLIM_WARMx5

lag 1 / CLIM_WARMx5

lag 0 / WARMx5-CTRL

lag 1 / WARMx5-CTRL

lag 2 / WARMx5-CTRL

lag 3 / WARMx5-CTRL

lag 3 / CLIM_WARMx5

