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What is DCMIP-2025?
• Hands-on summer school (June 2-6, 2025) that highlighted the characteristics of the 

dynamical cores: CAM-Spectral Element and CAM-FV3 (both non-hydrostatic/hydrostatic), 
CAM-MPAS, upcoming LFRIC-Gungho (U.K. Met Office), plus ML emulators for GCMs

• DCMIP-2025 focused on the impact of topography on the flow field, physics-dynamics 
coupling aspects with a simple warm-rain Kessler physics scheme and idealized assessments 
of existing Machine Learning (ML) emulators

Group of about 60 
students/postdocs & early 
career scientists plus model 
mentors, NCAR Mesa Lab

 Supported by the University of 
Michigan via the: 
• NSF StormSPEED project 

(main sponsor)
• NOAA UFS-R2O project
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Overview of the DCMIP-2025 Test Case Suite
• DCMIP-2025 webpage:

https://sites.google.com/umich.edu/dcmip-2025/home
• Morning lectures on dynamical cores and GCM designs plus hands-on 

modeling sessions in the afternoons using idealized test cases
• Design of the idealized test cases driven by four science themes:

• 1: Dry mountain-generated, breaking inertia gravity waves (hydrostatic)
• 2: Dry mesoscale mountain-generated processes and vortices (hydrostatic)

• 2a: Gap flow
• 2b: Vortex shedding (von-Karman vortex streets)

• 3: Physics-dynamics coupling: Squall line test with simple rain (nonhydro)
• 4: Machine Learning (ML) testbed for pretrained weather emulators

• GraphCast (Google), Spherical FourCastNet (NVIDIA), Pangu Weather

https://sites.google.com/umich.edu/dcmip-2025/home


Theme 1: Breaking Mountain-Triggered Inertia Gravity Waves

Steep elevation 
profile

Scientific motivation: steep mountain ranges



• Topographic waves are depicted by the potential temperature contours and horizontal 
divergence (colours), 4 km mountain peak

• Impact of the vertical resolution: Δz = 200 m resolves additional wave signatures, converges

Δz = 800 m Δz = 200 m

Spectral Element (110 km) Spectral Element (110 km)

Meridional cross sections of potential temperature (contours) and horizontal divergence (colors) at 35ºN at day 3.75

Theme 1: Example Results from CAM-SE



Theme 2: Mesoscale Mountain-Generated Flows
Dry hydrostatic flows: use isothermal ICs in solid body rotation with topography 
● Case 2a: Gap flow
● Case 2b: Vortex shedding

Case 2a: Observed 
surface geopotential 
in the Gulf of 
Tehuantepec in 
Mexico

Madeira

Scientific 
motivation

Northerly winds

Case 2b: Karman 
vortex streets

Gran 
Canaria



● Normalized zonal wind perturbations at z = 300 m with westerly incoming flow hitting the 
mountain: dry SE (1º-degree, X=20) model with Δx = 5.5 km and Δz = 300 m

● Flow accelerates through the gap, gets blocked in front of the mountain barrier (in white)

with Coriolis force

Theme 2a: Gap Flow Results for CAM-SE

without Coriolis force

Coriolis forces confine the spatial extent of the flow pattern
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● Gran Canaria: modeled as a Gaussian mountain at 20∘ N on a reduced-size Earth (X=20)
● Max h0 = 1500 m, max u flow speed U = 10 m/s, isothermal T=288 K, stability N = 0.01827 s-1

● Froude number 𝐹𝐹𝐹𝐹 = 𝑈𝑈
𝑁𝑁ℎ0

≈ 0.365 (highly nonlinear regime)

● Simulations without the Coriolis force, CAM-SE (0.5-degree, X=20), Δx = 2.75 km, Δz = 300 m

Theme 2b: Vortex Street Results from CAM-SE

(Δx = 2.75 km)
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Theme 2b: 
Vortex Shedding 
Intercomparison
• No Coriolis force
• T pertubations at z = 300 m 

at day 1 from CAM-SE, CAM-
FV3, and CAM-MPAS with Δx 
= 2.75 km and Δz = 300 m 
grid spacing in the lower 
domain

• Circulation patterns show 
sensitivities to the 
• vertical grid spacing
• diffusion settings
• asymmetries in the 

horizontal grids



● T perturbation at 300 m, no Coriolis force, C192 resolution with X=20 (Δx = 2.75 km)
● New insights: Noise developed towards the end of the simulation

Theme 2b: Vortex Street Results from LFRIC



• Squall Line: A linearly-organized zone 
of convection with enhanced winds 
and precipitation

• Test of the physics-dynamics interplay
• Built upon the analytic Klemp et al. 

(2015) supercell initial conditions with 
different low-level zonal wind shear  
and 7-9 warm bubbles as triggers

Theme 3: Squall Line Test Case



Theme 3: Kessler Microphysics with Radar Reflectivity

• Use Kessler physics: a simple, warm 
rain water microphysics scheme

• Additional radar reflectivity (Z) output 
variable which measures precipitation 
rates.

• Often measured by weather 
radars to track precipitating 
systems like squall lines

• We use the Marshall-Palmer 
relationship between rain rate and Z 
measured in a logarithmic scale (dBZ)

Snapshots at 2.5 km with SEne30 (Δx = 1.85 km) using 40 vertical 
levels (L40) with Δz = 500 m, 9 warm bubbles are used as triggers

bow 
echo



Theme 3: Squall Line Circulation Intercomparisons

cubed-sphere 
grid imprinting

Radar reflectivity at 2.5 km
t = 3-hour simulations

• 1-degree horizontal 
resolution on a small Earth 
with X=60 
(Δx = 1.85 km)

• Δz = 500 m vertical spacing

MPAS

FV3SE

Asymmetries 
due to theMPAS 
hexagonal grid



● Use the NVIDIA’s Earth2MIP portal https://github.com/NVIDIA/earth2mip with a 
focus on Google’s GraphCast and NVIDIA’s Spherical FourCastNet emulators

● Idea: provide a pretrained neural networks (trained on ERA5 realistic data with 
topography, seasonal and diurnal cycles, etc.) with an out-of-sample idealized 
initial condition
● Steady-state conditions (baroclinic wave initial state without a perturbation)
● Baroclinic wave and tropical cyclone seed embedded in a smooth 

background flow (e.g. seasonal means derived from ERA5) 
● Steady-state conditions and baroclinic wave seed embedded using an 

idealized background flow (Bouvier et al., 2023) 
● Questions to ask: Can the emulators develop the expected flow fields?
● What are the conservation properties? 

Theme 4: Idealized Machine Learning Testbed

https://github.com/NVIDIA/earth2mip


Model: fcnv2_sm (73 channel)

Emulation results from Joshua Elms (Indiana University) with FourCastNet: steady-state initial condition (baroclinic wave)

Observation: Steady-state initial conditions break right away in the pretrained FourCastNet emulator, try new approach 



The DCMIP-2025 summer school (June 2-6, 2025, held at the NCAR Mesa Lab)
● defined new test cases for dynamical cores and utilized the Hakim and Masaman (2024) 

test case ideas for ML GCM emulators
● investigated the characteristics of 3 CAM dynamical cores, LFRIC-Gungho, and 3 ML 

emulators (embedded in NVIDIA’s Earth2MIP) via idealized test cases
● taught a group of about 50 students, postdocs, and early-career scientists how dynamical 

core and GCMs are built
● let the students explore variants of the test cases and the impact of resolution and 

dissipation on the fluid flows
● revealed some unknown instabilities in the LFRIC’s Gungho dynamical core
● included an exploratory ML element to explore the physical realism of emulators
● test results will be explored further for scientific purposes
● Showcases the results on the webpage: https://sites.google.com/umich.edu/dcmip-2025 

Summary

https://sites.google.com/umich.edu/dcmip-2025
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