A prototype deep-atmosphere version of the HOMME (SENH) dynamical core.

NCAR, 05-27-2025

Owen Hughes, Christiane Jablonowski

Oksana Guba, Mark Taylor

ITCZ among other features of equatorial climatology (e.g. the Madden Julian Oscillation) are biased in ESM simulations

Major modifications in E3SM Atmosphere Model (EAM)v2 to simulate at higher resolution

- Dynamical core in EAM: Higher Order Methods Modeling Environment (HOMME)
- New version solves non-hydrostatic equation set: suitable for high-res simulation (Taylor *et al.* (2020))
- This dynamical core is being reintroduced into CAM/CESM as part of the StormSPEED project
 - Enable scalable simulations at stormresolving grid spacings.

Dynamical cores solve (approximated) variants of the Euler equations

(Typically in spherical coordinates in a rotating reference frame)

HOMME/EAMv2 non-hydrostatic equations:

u: zonal velocity v: meridional velocity w: vertical velocity ρ : density T: temperature p: pressure Other approx.

=0 in hydrostatic models

 $\frac{\mathrm{D}u}{\mathrm{D}t} - \frac{uv\tan(\varphi)}{a} + \frac{0}{a} = -\frac{1}{\rho a \cos \varphi} \frac{\partial p}{\partial \lambda} + 2\Omega v \sin(\varphi) - 0$ $\frac{\mathrm{D}v}{\mathrm{D}t} + \frac{u^2 \tan(\varphi)}{a} + \frac{0}{a} = -\frac{1}{\rho a} \frac{\partial p}{\partial \varphi} - 2\Omega u \sin(\varphi)$ $\frac{\mathrm{D}w}{\mathrm{D}t} - \frac{0}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + 0$ $\frac{\mathrm{D}\rho}{\mathrm{D}t} + \frac{\rho}{r \cos \varphi} \left[\frac{\partial u}{\partial \lambda} + \frac{\partial(v \cos \varphi)}{\partial \varphi} \right] + \frac{\rho}{a^2} \frac{\partial(a^2 w)}{\partial z} = 0$ $c_v \frac{\mathrm{D}T}{\mathrm{D}t} + p \frac{\mathrm{D}}{\mathrm{D}t} \left(\frac{1}{\rho}\right) = J$ $p = \rho R_d T$ $\frac{\mathrm{D}(\)}{\mathrm{D}t} = \frac{\partial(\)}{\partial t} + \frac{u}{a\cos\phi}\frac{\partial(\)}{\partial\lambda} + \frac{v}{a}\frac{\partial(\)}{\partial\phi} + w\frac{\partial(\)}{\partial\gamma}$ $q = q_0 \cdot 1$

Higher-resolution simulations do not resolve ITCZ bias

E3SM Hydrostatic HOMME

E3SM Non-hydrostatic HOMME

Observations

10-year averaged summer precipitation, units mm/day. Nominal 28 km grid spacings Reproduced from Liu *et al.* 2022

• Ma et al. (2019): most high-resolution CMIP6 models continue to exhibit major ITCZ biases.

High-resolution non-hydrostatic simulations in E3SMv2 retain equatorial biases

Removing two additional problematic approximations from the dynamical core may improve CESM's (and E3SM's) equatorial climatology Non-hydrostatic HOMME contains two additional approximations:1) The Shallow-atmosphere (SA) approximation:

a: nominal radius of earth's surface

Non-hydrostatic HOMME contains two additional approximations:1) The Shallow-atmosphere (SA) approximation:

a: nominal radius of earth's surface

Non-hydrostatic HOMME contains two additional approximations:1) The Traditional (T) approximation:

Non-hydrostatic HOMME contains two additional approximations:1) The Traditional (T) approximation:

Non-hydrostatic HOMME contains two additional approximations:1) The Traditional (T) approximation:

a: nominal radius of earth's surface

- In rotating reference frame, this approximation discards terms of Coriolis force involving cosine of latitude
 - So-called Non-Traditional Coriolis Terms (NCTs)
- SA+T must be retained/discarded together to maintain conservation of momentum (White *et al., 2005)*

The Non-Hydrostatic Deep-Atmosphere equations:

 $\frac{\mathrm{D}u}{\mathrm{D}t} - \frac{uv \tan(\varphi)}{r} + \frac{uw}{r} = -\frac{1}{\rho r \cos \varphi} \frac{\partial p}{\partial \lambda} + 2\Omega v \sin(\varphi) - 2\Omega w \cos(\varphi)$ u: zonal velocity $\frac{\mathrm{D}v}{\mathrm{D}t} + \frac{u^2 \tan(\varphi)}{r} + \frac{vw}{r} = -\frac{1}{\alpha r} \frac{\partial p}{\partial \varphi} - 2\Omega u \sin(\varphi)$ v: meridional velocity w: vertical velocity $\frac{\mathrm{D}w}{\mathrm{D}t} - \frac{u^2 + v^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} - g + 2\Omega u \cos(\varphi)$ ρ : density T: temperature $\frac{\mathrm{D}\rho}{\mathrm{D}t} + \frac{\rho}{r\cos\varphi} \left[\frac{\partial u}{\partial \lambda} + \frac{\partial(v\cos\varphi)}{\partial\varphi} \right] + \frac{\rho}{r^2} \frac{\partial(r^2w)}{\partial r} = 0$ p: pressure $c_v \frac{\mathrm{D}T}{\mathrm{D}t} + p \frac{\mathrm{D}}{\mathrm{D}t} \left(\frac{1}{\rho}\right) = J$ =0 in T approx $p = \rho R_d T$ r = a in SA approx $\frac{\mathrm{D}(\)}{\mathrm{D}t} = \frac{\partial(\)}{\partial t} + \frac{u}{r\cos\phi}\frac{\partial(\)}{\partial\lambda} + \frac{v}{r}\frac{\partial(\)}{\partial\phi} + w\frac{\partial(\)}{\partial r}$ =0 in hydrostatic models $g = g_0 \left(\frac{a}{a}\right)^2$

The SA + T approximations are justified for largescale motion in the midlatitudes

In the presence of convective motion near the equator, are the NCTs still negligible?

Idealized studies indicate no (e.g., Ong & Roundy (2019) and many other papers by Hing Ong)

Phase 1: Preliminary results from Deep-Atmosphere HOMME/SENH

DA HOMME in the fewest changes

- All HOMME based on a Continuous-Galerkin Spectral Finite Element discretization of the cubed sphere (Taylor and Fournier, (2010))
 - Satisfies discrete versions of vector calc identities
 - Together with vertical coordinate: ensures mass, energy conservation
 - Implement DA HOMME without violating these conservation properties?
- Few steps to implement:
 - Modify *a* factors that appear in differential operators with factors of $\hat{r} = \frac{a+z}{a}$
 - Restore missing metric terms, NCTs from Traditional approximation
 - Modify time stepping that handles handle numerical stability restrictions in vertical.
 - Modify mass coordinate for deep atmosphere

CESM QPC6 Results: (Produced via StormSPEED codebase)

Aquaplanet simulations couple dycore to physics, idealized ocean:

- Full-complexity atmospheric physics (in this case, CAM6)
 - E.g., complex microphysics, a deep convection parameterization, radiation, etc.
- Fluxes from lower boundary come from "data ocean"
 - Fully ocean-covered planet
 - No land mask, no topography
 - Idealized (e.g. zonally symmetric) Sea Surface
 Temperature pattern

Reproduced from Neale and Hoskins (2001)

Approximately 10% difference in tropospheric zonal wind at the equator

Time-mean zonal-mean U DA

Time-mean zonal-mean U SA

Time-mean zonal-mean U DA - U SA

2 m/s bias on top of 20 m/s wind

Approximately 10% difference in tropospheric zonal wind at the equator

48

56

40

Time-mean zonal-mean U DA

Time-mean zonal-mean U SA

-16

16 24 32

Time-mean zonal-mean U DA - U SA

2 m/s bias on top of 20 m/s wind

Approximately 10% difference in tropospheric zonal wind

48

56

40

Time-mean zonal-mean U DA

Time-mean zonal-mean U SA

35000 30000 25000 15000 15000 --80 -60 -40 -20 0 20 40 60 80

16 24 32

Time-mean zonal-mean U DA - U SA

Changes are of equal magnitude outside of tropics, extending to the poles. Little study of what

In CESM QPC6 the deep atmosphere does not improve

Very preliminary: idealized tropical cyclone is influenced by TA approximation?

- Previous paper (Liang and Chan, 2005) indicate TA biases TC track, precipitation patterns.
- Reed & Jablonowski idealized tropical cyclone at ¼ º grid spacing shows different structure in DA HOMME (QPC6 physics, bc's)

Very preliminary: idealized tropical cyclone is influenced by TA approximation?

- Previous paper (Liang and Chan, 2005) indicate TA biases TC track, precipitation patterns.
- Reed & Jablonowski idealized tropical cyclone at ¼ º grid spacing shows different structure in DA HOMME (QPC6 physics, bc's)
- Position of pressure minimum after 10 days is measurably different!!

E3SM (EAM v1) Results:

Approximately 10% difference in convective precip (PRECC)

Approximately 10% difference in convective precip (PRECC)

Disappears in zonal average?

Approximately 10% difference in tropospheric zonal wind

2 m/s bias on top of 20 m/s wind

Approximately 10% difference in tropospheric zonal wind

Magnitude resembles linearized result of Ong and Roundy (2019)!

2 m/s bias on top of 20 m/s wind

> 10% difference in stratospheric zonal wind

Stratospheric changes are not well studied. 10 m/s bias

80

> 10% difference in stratospheric zonal wind

Strength stays the same, but position shifts.

Stratospheric changes are not well studied. 10 m/s bias

m/s

60

80

20.52

Summary:

- Designed a deep-atmosphere version of HOMME for E3SM,
 - could improve equatorial climatology, double ITCZ
- Porting this version of HOMME into the CAM StormSPEED codebase this summer!
- Beginning to systematically study deep-atmosphere equatorial climatology in E3SM/CESM
 - Systematic biases are observed not just in the equatorial troposphere
 - Stratospheric biases
 - Midlatitudinal biases.
- Phase 2:
 - E3SM/CESM simulations using Aquaplanets, Atmospheric Model Intercomparison Project (AMIP) simulations.
 - Global convection-permitting simulations at 3 km nominal grid spacing.

CAVEAT EMPTOR (bonus slides)

Prototype only implemented for most-used HOMME config:

• Taylor *et al*. (2020) describe versions of Non-hydrostatic shallow HOMME for several vertical coords.

Prototype only implemented for most-used HOMME config:

- Taylor *et al.* (2020) describe versions of Non-hydrostatic shallow HOMME for several vertical coords.
- Version used in E3SMv2/EAMv2 is terrain-following mass coordinate
 - Floating vertical levels

Prototype only implemented for most-used HOMME config:

- Taylor *et al*. (2020) describe versions of Non-hydrostatic shallow HOMME for several vertical coords.
- Version used in E3SMv2/EAMv2 is terrain-following mass coordinate
 - Floating vertical levels
- HOMME with this choice of vertical coordinate:
 - Shallow-Atmosphere (SA) HOMME
- Modified SA HOMME to remove SA+T approximations:
 - Deep-Atmosphere (DA) HOMME

DA HOMME in the fewest changes

- All HOMME based on a Continuous-Galerkin Spectral Finite Element discretization of the cubed sphere (Taylor and Fournier, (2010))
 - Satisfies discrete versions of vector calc identities
 - Together with vertical coordinate: ensures mass, energy conservation
 - Implement DA HOMME without violating these conservation properties?

A mass coordinate suitable for the deep atmosphere

• Ignore details of terrain-following η

Redefined mass coordinate DA HOMME is difficult to initialize on small planets

- New DA HOMME η coordinate has non-linear relation with SA HOMME η coordinate
- This discrepancy introduces several complications for model initialization
 - We use numerical root-finding to initialize DA HOMME for small-planet simulations.
 - Problems are negligible on earth-sized planet.
 - (this took like 5 months to debug)

How did we validate DA HOMME is correct?

• Run very simple dynamical-core-only simulations with:

- Run very simple dynamical-core-only simulations with:
 - Analytic or near-analytic reference solutions
 - Test e.g. if equations are discretized correctly

- Run very simple dynamical-core-only simulations with:
 - Analytic or near-analytic reference solutions
 - Test e.g. if equations are discretized correctly
 - Well-studied very idealized climate simulations with "climatologies" in literature
 - Tests if the model well-behaved in long simulations

- Run very simple dynamical-core-only simulations with:
 - Analytic or near-analytic reference solutions
 - Test e.g. if equations are discretized correctly
 - Well-studied very idealized climate simulations with solns in literature
 - Tests if the model well-behaved in long simulations
- Small-earth simulation
 - Reduce radius of planet dynamical core is simulating: $a = \frac{a_{\text{earth}}}{X}$
 - Increase rate of rotation to keep Coriolis magnitude comparable: $\Omega = X \Omega_{ ext{earth}}$
 - Larger difference between deep and shallow atmosphere dynamics!
 - \circ Large-earth day \rightarrow small-earth day

• Ullrich *et al.* (2014) derives baroclinically unstable atmospheric steady-states for the deep and shallow atmospheres.

- Ullrich *et al.* (2014) derives baroclinically unstable atmospheric steady-states for the deep and shallow atmospheres.
 - Deviation from initial conditions is error
 - Deviations amplify due to baroclinic instability.
 - Steady-state breaks down
 - Vertical velocity, *w* should remain identically zero, so max. magnitude of w is error proxy

- Simulations for 20 small-earth days, nominal radius $\frac{a_{\text{earth}}}{10}$
 - \circ 30 vertical levels, 1° grid spacing.

- Simulations for 20 small-earth days, nominal radius $\frac{a_{\text{earth}}}{10}$
 - 30 vertical levels, 1º grid spacing.
- Error in DA HOMME is larger
 - Possibly due to discretization of Pressure Gradient Force
- Time to steady-state breakdown (20 smallearth days) is comparable for:
 - DA HOMME initialized with a deep-atmosphere steady-state
 - SA HOMME initialized with a shallow-atmosphere steady state

Maximum vertical wind error vs time

Maintaining a deep-atmosphere steady state indicates DA HOMME solves deep-atmosphere equations well (in E3SM)

A dynamical-core-only idealized climate-like test:

- Held-Suarez (1994) forcing:
 - Relaxation of temperature to a reference profile
 - Remove velocity at low levels
 - Induces general circulation
 - Climate equilibrates after a spin-up period
- Performed simulations:
 - for 2000 small-earth days on planet with radius
 - at 2º nominal grid spacing, 30 vertical levels.
- Results approximately match HS simulations in the literature (Yessad and Wedi, 2009)
 - Equatorial bias due to NCTs!

CESM:

- I have a prototype port of the fortran version of DA HOMME into the CAM StormSPEED repo that currently compiles
 - Have not run steady-state test yet (will do in the next day)
- Planning to run deep-vs-shallow QPC6 (default SST) in CESM this weekend.
- If all you care about is research configuration of CAM-SE with NCTs (disobeys conservation laws)
 - You can just add like 10 lines of code to CAM
- Question is: Can we use Wood and Staniforth 2003 trick for principled QHE-CAM-SE?
 - Maybe yes within dycore.
 - Modify prim_advance_mod.F90 and eos.F90. Not sure what the quasi-hydrostatic EOS looks like in CAM-SE, but likely not hard to derive.
 - Implications for spatial energy conservation. I know how it works for the HOMME Lorentz staggering. Not sure for CAM-SE.
 - We got lucky since HOMME vertical remap and ISLET transport scheme turned out not to need modification (just pass in same Δp with different interpretation). Might be different in CAM?
 - Changes to CAM physics are likely shared with the work I'll be doing on SENH.
- My degree roadmap doesn't include this work at the moment
 - That said, I care about making the SE/HOMME dycore better for the most users possible.
 - If I have the skills to do this, I'd like to make time for it.

Mild sleuthing (shoddy non-conservative method):

prim_advance_mod.F90

element_mod.F90

222 223 224 225 226	<pre>do j=1,np do i=1,np gl.ps1 = pgf_term(i,j,1) gl.ps2 = pgf_term(i,j,2)</pre>	182 183 184	real (kind=r8) :: fcor(np,np) ! Coreolis term
227 228 229 230 231 232 232	<pre>v1 = elem(ie)%state%v(i,j,1,k,n0) v2 = elem(ie)%state%v(i,j,2,k,n0) vtens1(i,j,k) = & + v2*(elem(ie)%fcor(i,j) + vort(i,j,k)) & - vtemp(i,j,1) - glnps1</pre>		cube_mod.F90
234 235 236 237 238 239 240	<pre>vtens2(i,j,k) = & &vtens2(i,j,k) & &vtens2(i,j,k) & &vtenp(i,j,2) - gtnps2 ttens(i,j,k) = - vgrad_T(i,j) + & density_inv(i,j)*omega_full(i,j,k)*inv_cp_full(i,j,k,ie) end do end do</pre>	836 837 838 840 841 842 843 844 845 845 846 847 848	<pre>rangle = rotate_grid * PI / 180r8 do j=1,np</pre>

Principled version:

- Differential operators in explicit time step routine need to be scaled by factors involving r (i.e. z + a).
 - Requires addit'l vertical scan as it is reconstructed by

$$\frac{G}{3a^2}(r^3 - r_{\rm H}^3) \equiv (Gr - Gr_{\rm H})\left(\frac{r^2 + rr_{\rm H} + r_{\rm H}^2}{3a^2}\right) = \int_{\eta}^{\eta_{\rm H}} \frac{1}{\rho} \frac{\partial \Pi}{\partial \eta'} \,\mathrm{d}\eta',$$

• (less bad than it looks, I've taken it directly from Wood 2003 and left their rather general notation)

- Energy conservation + diagnosis of Omega change.
 - \circ $\;$ Implicit change to EOS. Are invocations of EOS to compute ρ centralized in CAM-SE? If not, Uh-oh.

References

- Durran, D. R. and C. Bretherton, 2004: Comments on "The Roles of the Horizontal Component of the Earth's Angular Velocity in Nonhydrostatic Linear Models". J. Atmos. Sci., 61, 1982–1986, doi:10.1175/1520-0469(2004)061<1982:COTROT>2.0.CO;2.
- Hayashi, M. and H. Itoh, 2012: The importance of the nontraditional coriolis terms in large-scale motions in the tropics forced by prescribed cumulus heating. J. Atmos. Sci., 69, 2699–2716, doi:10.1175/JAS-D-11-0334.1.
- Igel, M. R. and J. A. Biello, 2020: The nontraditional coriolis terms and tropical convective clouds. J. Atmos. Sci., 77, 3985–3998, doi:10.1175/JAS-D-20-0024.1.
- Kasahara, A., 2003a: On the Nonhydrostatic Atmospheric Models with Inclusion of the Horizontal Component of the Earth's Angular Velocity. J. Meteor. Soc. Jap. Ser. II, 81, 935–950, doi:10.2151/jmsj.81.935.
- Kasahara, A., 2003b: The Roles of the Horizontal Component of the Earth's Angular Velocity in Nonhydrostatic Linear Models. J. Atmos. Sci., 60, 1085–1095, doi:10.1175/1520-0469(2003)60<1085:TROTHC>2.0.CO;2.
- Kasahara, A., 2004: Reply to Comments on "The roles of the Horizontal Component of the Earth's Angular Velocity in Nonhydrostatic Linear Models". J. Atmos. Sci., 61, 1987–1991, doi:10.1175/1520-0469(2004)061<1987:R>2.0.CO;2.
- Ong, H. and P. E. Roundy, 2019: Linear effects of nontraditional Coriolis terms on intertropical convergence zone forced large-scale flow. Quart. J. Roy. Meteor. Soc., 145, 2445–2453, doi:10.1002/qj.3572.
- Staniforth, A., N. Wood, and C. Girard, 2003: Energy and energy-like invariants for deep non-hydrostatic atmospheres. Quart. J. Roy. Meteor. Soc., 129, 3495–3499, doi:10.1256/qj.03.18.
- Tang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J. C., Roesler, E. L., ... & Zheng, X. (2019): Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 12(7), 2679-2706.
- Thuburn, J., N.Wood, and A. Staniforth, 2002a: Normal modes of deep atmospheres. I: Spherical geometry. Quart. J. Roy. Meteor. Soc., 128, 1771–1792, doi:10.1256/003590002320603403.
- Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth, 2014: A proposed baroclinic wave test case for deep and shallow-atmosphere dynamical cores. Quart. J. Roy. Meteor. Soc., 140, 1590–1602.
- White, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth, 2005: Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and nonhydrostatic. Quart. J. Roy. Meteor. Soc., 131, 2081–2107.

Why is error larger in DA HOMME?

- Error is larger in DA HOMME:
 - Zonally symmetric error in DA HOMME
 - Less zonally symmetric in SA HOMME

Why is error larger in DA HOMME?

- Error is larger in DA HOMME:
 - Zonally symmetric error in DA HOMME
 - Less zonally symmetric in SA HOMME
 - Root-finding means
 - Pressure gradient≠0 in DA HOMME
 - Pressure gradient=0 in SA HOMME

Why is error larger in DA HOMME?

- Error is larger in DA HOMME:
 - Zonally symmetric error in DA HOMME Ο
 - Less zonally symmetric in SA HOMME Ο
 - Root-finding means Ο
 - Pressure gradient≠0 in DA HOMME
 - Pressure gradient=0 in SA HOMME
- Time to steady-state breakdown remains same.
 - Ongoing work on initialization should shed more Ο light on this, but promising first results

ESMs struggle to simulate the Intertropical Convergence Zone (ITCZ):

Reproduced from Lutgens and Tarbuck (2001)

ESMs struggle to simulate the Intertropical Convergence Zone (ITCZ):

HOMME with hydrostatic approximation cannot resolve convection

Hydrostatic $\frac{\partial p}{\partial z} = -\rho g$

Appropriate for synoptic motions, models with O(100 km) resolution

Vertical velocity not a prognostic variable of the model

Convection is parameterized.

$$\frac{\mathrm{D}(\)}{\mathrm{D}t} = \frac{\partial(\)}{\partial t} + \frac{u}{r\cos\phi}\frac{\partial(\)}{\partial\lambda} + \frac{v}{r}\frac{\partial(\)}{\partial\phi} + w\frac{\partial(\)}{\partial r}$$

Non-hydrostatic

 $\frac{\mathrm{D}w}{\mathrm{D}t} = -\frac{1}{\rho}\frac{\partial p}{\partial r} - g$

Appropriate for highresolution models with O(<30 km) resolution

Vertical velocity *w* restored as prognostic variable of the model

Convection (partly) simulated by the dynamical core

E3SM + HOMME can be run with grid refinement:

- Recent efforts to scientifically validate E3SM on refined grids (Tang *et al.* 2023)
- For our purposes we will design (or select from literature) a grid with approximately zonally-symmetric refinement about the equator.
 - Previously successfully generated a similar grid for the MPAS dynamical core with 30 km minimum grid spacing
 - Likely to target 7 km minimum nominal grid spacing or so for E3SM.

E.g. 2D refined grids can be generated and used for a full 3D atmosphere out of the box. Reproduced from Tang*et al.* (2018)

Moist Held-Suarez Test: idealized ITCZ without coupling?

- Thatcher and Jablonowski (2016) developed analogue of the Held-Suarez test case
 - Idealized large-scale condensation, boundary mixing, and surface heat fluxes are added direct to the dynamical core
 - Mimics climatologies of experiments with more complex physics (particularly aqua-planet)
- Large scale condensation may not mimic heating profile of convection near the equator
- However, it does contain an ITCZ and could show differences in climatological "precipitation"

Time-mean zonal-mean plot of thermal forcing for a Moist Held-Suarez test in the CAM5 dynamical core. Reproduced from Thatcher and Jablonowski (2016).

Aqua-planet simulations allow years-long simulation of ITCZ

- Aqua-planet simulations simplify lower atmospheric boundary*
 - Typically a flat ocean covering the entire planet with prescribed SSTs.
 - Run with full-complexity physics (potentially deep convection)
 - Run for multiple years
- Offer potential to study wave dynamics, propagating convective systems
- Principal findings will relate to impacts of deepatmosphere on precipitation climatology
 - Cheaper to run for multiple years than e.g. AMIP

Prescribed surface temperature profiles for the subset of aqua-planets with axisymmetric SSTs described in Neale and Hoskins (2000), reproduced from said paper.

^{*} the "aqua-planet" umbrella covers many configurations, see e.g. Neale and Hoskins (2000), Williamson *et al.* (2012), Blackburn *et al.* (2013) or others.

AMIP findings have best chance to apply to earth's climate

- Activate atmosphere and land models
- Couple to prescribed boundary conditions for ocean, sea-ice, greenhouse emissions, aerosols
- Can be compared to archived E3SMv1, E3SMv2 shallow AMIP runs if same initial conditions are run
- High realism of this model makes findings about MJO, ITCZ most likely to apply to CMIP-stype simulations.
- Running on custom refined grids may present issues with boundary data!

The problem with the TA: ITCZ

- Igel and Biello (2020) found TA results in drastic biases in convection-permitting simulations of cumulus convection, Radiative-convective Equilibrium experiments (RCE).
- TA may induce biases at scales ranging from synoptic scale to individual cumulus columns.

A comparison of RCE experiments with NCTs present (RCE_{ON}) and absent (RCE_{OFF}) for profiles of (a) mean vertical velocity where w > 1m/s and (b) zonal velocity in convection. Reproduced from Igel and Biello (2020).

The problem with the TA: normal modes, wave propagation

- Linearized studies dynamical studies find pronounced wave propagation errors at the equator due to TA. See e.g. Thuburn *et al.* (2002); Kasahara (2003a/b, 2004); Durran and Bretherton (2004).
- Errors from TA become worse as horizontal resolution increases!
- Figure right: frequency of normal modes can vary by a small amount in the presence of the SA+TA approximations
 - Unlikely to be significant

Frequency of normal modes with zonal wavenumber 1 in a shallow/deep rotating atmosphere.

Mode type	Meridional Vertical e mode mode		Frequency, shallow atmosphere, constant g	Frequency, deep atmosphere, constant g	Frequency, deep atmosphere, variable g
Acoustic	0	0 (external)	$\begin{array}{c} 5.45667 \times 10^{-5} \\ -1.32896 \times 10^{-4} \end{array}$	$\begin{array}{c} 5.44156 \times 10^{-5} \\ -1.32748 \times 10^{-4} \end{array}$	$\begin{array}{c} 5.44145 \times 10^{-5} \\ -1.32747 \times 10^{-4} \end{array}$
Acoustic	2	0 (external)	$\begin{array}{c} 2.87183 \times 10^{-4} \\ -2.92754 \times 10^{-4} \end{array}$	$\begin{array}{c} 2.86538 \times 10^{-4} \\ -2.92117 \times 10^{-4} \end{array}$	$\begin{array}{c} 2.86533 \times 10^{-4} \\ -2.92112 \times 10^{-4} \end{array}$
Acoustic	0	2	$\begin{array}{c} 3.27377 \times 10^{-2} \\ -3.27377 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.27234 \times 10^{-2} \\ -3.27235 \times 10^{-2} \end{array}$	$\begin{array}{c} 3.25373 \times 10^{-2} \\ -3.25374 \times 10^{-2} \end{array}$
Gravity	0 (Kelvin)	2	3.14113×10^{-5}	3.12593×10^{-5}	3.10370×10^{-5}
Gravity	2	2	$\begin{array}{r} 1.87932 \times 10^{-4} \\ -1.95262 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.87105 \times 10^{-4} \\ -1.94349 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.86170 \times 10^{-4} \\ -1.93459 \times 10^{-4} \end{array}$
Rossby	0	0 (external)	-1.45975×10^{-5}	-1.45721×10^{-5}	-1.45719×10^{-5}
Rossby	2	0 (external)	-3.06824×10^{-6}	-3.06671×10^{-6}	-3.06671×10^{-6}
Rossby	0	2	-9.58848×10^{-6}	-9.52404×10^{-6}	-9.46493×10^{-6}

All modes are symmetric about the equator with zonal wave number m = 1. Where two values are shown these are for an eastward- and westward-propagating pair of modes.

Reproduced from Thuburn et al. 2002

HOMME's funky EOS:

Shallow mass coordinate:

$$\pi(\eta) = \int_{z}^{\infty} g_{0}\rho \,\mathrm{d}z \left(= \int_{\eta(z)}^{0} g_{0}\rho \frac{\partial z}{\partial \eta} \,\mathrm{d}\eta \right) \longrightarrow \frac{\partial \pi}{\partial \eta} = -g_{0}\rho \frac{\partial z}{\partial \eta}$$

Deep mass coordinate:

$$\pi(\eta) = \int_{z}^{\infty} g_{0} \hat{r}^{2} \rho \, \mathrm{d}z \left(= \int_{\eta(z)}^{0} g_{0} \hat{r}^{2} \rho \frac{\partial z}{\partial \eta} \, \mathrm{d}\eta \right) \longrightarrow \frac{\partial \pi}{\partial \eta} = -g_{0} \rho \hat{r}^{2} \frac{\partial z}{\partial \eta}$$

HOMME's funky EOS:

Shallow mass coordinate:

$$\frac{\partial \pi}{\partial \eta} = g_0 \rho \frac{\partial z}{\partial \eta} \qquad \longrightarrow \qquad p = \left(\frac{\frac{\partial \pi}{\partial z}}{-g_0 \frac{\partial z}{\partial \eta}}\right) R_d T_v \implies g_0 \frac{\partial z}{\partial \eta} = -\frac{R_d T_v}{p} \frac{\partial \pi}{\partial \eta}$$

Deep mass coordinate:

$$\frac{\partial \pi}{\partial \eta} = g_0 \rho \hat{r}^2 \frac{\partial z}{\partial \eta} \qquad \longrightarrow \qquad p = \left(\frac{\frac{\partial \pi}{\partial z}}{-g_0 \hat{r}^2 \frac{\partial z}{\partial \eta}}\right) R_d T_v \implies g_0 \hat{r}^2 \frac{\partial z}{\partial \eta} = -\frac{R_d T_v}{p} \frac{\partial \pi}{\partial \eta}$$