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ITCZ among other features of equatorial climatology (e.g. 
the Madden Julian Oscillation) are biased in ESM 

simulations



Major modifications in E3SM Atmosphere Model (EAM)v2 to simulate at higher resolution

● Dynamical core in EAM: Higher Order Methods 
Modeling Environment (HOMME)

● New version solves non-hydrostatic equation set: 
suitable for high-res simulation (Taylor et al. 
(2020))

● This dynamical core is being reintroduced into 
CAM/CESM as part of the StormSPEED project
○ Enable scalable simulations at storm-

resolving grid spacings.



Dynamical cores solve (approximated) variants of the 
Euler equations 

(Typically in spherical coordinates in a rotating reference frame)



HOMME/EAMv2 non-hydrostatic equations:

=0 in hydrostatic models

Other approx.}



Higher-resolution simulations do not resolve ITCZ bias

● Ma et al. (2019): most high-resolution CMIP6 models continue to exhibit major ITCZ biases.

10-year averaged summer precipitation, units mm/day. 
Nominal 28 km grid spacings
Reproduced from Liu et al. 2022

E3SM Hydrostatic HOMME E3SM Non-hydrostatic HOMME Observations



High-resolution non-hydrostatic simulations in 
E3SMv2 retain equatorial biases



Removing two additional problematic 
approximations from the dynamical core may 

improve CESM's (and E3SM's) equatorial 
climatology 



Non-hydrostatic HOMME contains two additional approximations:
1) The Shallow-atmosphere (SA) approximation:

SA: No SA:

a: nominal radius of earth's surface



Non-hydrostatic HOMME contains two additional approximations:
1) The Shallow-atmosphere (SA) approximation:

SA: No SA:

a: nominal radius of earth's surface



Non-hydrostatic HOMME contains two additional approximations:
1) The Traditional (T) approximation:

T: No T:

a: nominal radius of earth's surface

D
isc

ar
d 

"m
et

ric
 te

rm
s"



Non-hydrostatic HOMME contains two additional approximations:
1) The Traditional (T) approximation:

T: No T:

a: nominal radius of earth's surface



Non-hydrostatic HOMME contains two additional approximations:
1) The Traditional (T) approximation:

a: nominal radius of earth's surface

● In rotating reference frame, this approximation 
discards terms of Coriolis force involving cosine 
of latitude 
○ So-called Non-Traditional Coriolis Terms 

(NCTs)
● SA+T must be retained/discarded together to 

maintain conservation of momentum (White et 
al., 2005)



The Non-Hydrostatic Deep-Atmosphere equations:

=0 in T approx

r = a in SA approx

=0 in hydrostatic models



The SA + T approximations are justified for large-
scale motion in the midlatitudes



In the presence of convective motion near the 
equator, are the NCTs still negligible?



Idealized studies indicate no
(e.g., Ong & Roundy (2019) and many other papers by Hing Ong)



Phase 1:
Preliminary results from Deep-Atmosphere  

HOMME/SENH



DA HOMME in the fewest changes

● All HOMME based on a Continuous-Galerkin Spectral Finite Element 
discretization of the cubed sphere (Taylor and Fournier, (2010))
○ Satisfies discrete versions of vector calc identities
○ Together with vertical coordinate: ensures mass, energy conservation 
○ Implement DA HOMME without violating these conservation properties? 

● Few steps to implement:
○ Modify a factors that appear in differential operators with factors of
○ Restore missing metric terms, NCTs from Traditional approximation
○ Modify time stepping that handles handle numerical stability restrictions in vertical.
○ Modify mass coordinate for deep atmosphere



CESM QPC6 Results:
(Produced via StormSPEED codebase)



Aquaplanet simulations couple dycore to physics, idealized ocean:

● Full-complexity atmospheric physics (in this 
case, CAM6)
○ E.g., complex microphysics, a deep convection 

parameterization, radiation, etc.

● Fluxes from lower boundary come from "data 
ocean"
○ Fully ocean-covered planet
○ No land mask, no topography
○ Idealized (e.g. zonally symmetric) Sea Surface 

Temperature pattern
Reproduced from Neale and 
Hoskins (2001)



Time-mean zonal-mean U DA Time-mean zonal-mean U SA Time-mean zonal-mean U DA - U SA

2 m/s bias on top of 20 m/s 
wind

Approximately 10% difference in tropospheric zonal wind at the 
equator
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Changes are of equal magnitude 
outside of tropics, extending to 
the poles. Little study of what

Time-mean zonal-mean U DA Time-mean zonal-mean U SA Time-mean zonal-mean U DA - U SA

Approximately 10% difference in tropospheric zonal wind



In CESM QPC6 the deep atmosphere does not improve



Very preliminary: idealized tropical cyclone is 
influenced by TA approximation?

● Previous paper (Liang and Chan, 2005) indicate TA biases TC track, 
precipitation patterns.

● Reed & Jablonowski idealized tropical cyclone at ¼ º grid spacing shows different 
structure in DA HOMME (QPC6 physics, bc's)



Very preliminary: idealized tropical cyclone is 
influenced by TA approximation?

● Previous paper (Liang and Chan, 2005) indicate TA biases TC track, 
precipitation patterns.

● Reed & Jablonowski idealized tropical cyclone at ¼ º grid spacing shows different 
structure in DA HOMME (QPC6 physics, bc's)

● Position of pressure minimum after 10 days is measurably different!!

SA HOMME DA HOMME



E3SM (EAM v1) Results:



Approximately 10% difference in convective precip (PRECC)

Time-mean PRECC DA - PRECC SA mm/day



Approximately 10% difference in convective precip (PRECC)

Time-mean PRECC DA - PRECC SA mm/day Disappears in zonal average?



Approximately 10% difference in tropospheric zonal wind

Time-mean zonal-mean U DA m/s Time-mean zonal-mean U SA m/s Time-mean zonal-mean U DA - U SA m/s

2 m/s bias on top of 20 m/s 
wind



Approximately 10% difference in tropospheric zonal wind

Time-mean zonal-mean U DA m/s Time-mean zonal-mean U SA m/s Time-mean zonal-mean U DA - U SA m/s

2 m/s bias on top of 20 m/s 
wind

Magnitude resembles linearized result of 
Ong and Roundy (2019)!



> 10% difference in stratospheric zonal wind

Time-mean zonal-mean U DA m/s Time-mean zonal-mean U SA m/s Time-mean zonal-mean U DA - U SA m/s

Stratospheric changes are not well 
studied. 10 m/s bias



> 10% difference in stratospheric zonal wind

Time-mean zonal-mean U DA m/s Time-mean zonal-mean U SA m/s Time-mean zonal-mean U DA - U SA m/s

Stratospheric changes are not well 
studied. 10 m/s bias

Strength stays the same, but position 
shifts.



Summary:

● Designed a deep-atmosphere version of HOMME for E3SM, 
○ could improve equatorial climatology, double ITCZ

● Porting this version of HOMME into the CAM StormSPEED codebase this summer!
● Beginning to systematically study deep-atmosphere equatorial climatology in 

E3SM/CESM
○ Systematic biases are observed not just in the equatorial troposphere
○ Stratospheric biases
○ Midlatitudinal biases.

● Phase 2: 
○ E3SM/CESM simulations using Aquaplanets, Atmospheric Model Intercomparison Project (AMIP) 

simulations.
○ Global convection-permitting simulations at 3 km nominal grid spacing.



CAVEAT EMPTOR (bonus slides)
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● Taylor et al. (2020) describe versions of Non-hydrostatic shallow HOMME 
for several vertical coords.
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Prototype only implemented for most-used HOMME config:

● Taylor et al. (2020) describe versions of Non-hydrostatic shallow HOMME 
for several vertical coords.

● Version used in E3SMv2/EAMv2 is terrain-following mass coordinate
○ Floating vertical levels

● HOMME with this choice of vertical coordinate:
○ Shallow-Atmosphere (SA) HOMME 

● Modified SA HOMME to remove SA+T approximations: 
○ Deep-Atmosphere (DA) HOMME



DA HOMME in the fewest changes

● All HOMME based on a Continuous-Galerkin Spectral Finite Element 
discretization of the cubed sphere (Taylor and Fournier, (2010))
○ Satisfies discrete versions of vector calc identities
○ Together with vertical coordinate: ensures mass, energy conservation 
○ Implement DA HOMME without violating these conservation properties? 



A mass coordinate suitable for the deep atmosphere

● Ignore details of terrain-following η 



Redefined mass coordinate DA HOMME is difficult to initialize on 
small planets

● New  DA HOMME η coordinate has non-linear relation with SA HOMME η  coordinate
● This discrepancy introduces several complications for model initialization

○ We use numerical root-finding to initialize DA HOMME for small-planet simulations. 
○ Problems are negligible on earth-sized planet.
○ (this took like 5 months to debug)



How did we validate DA HOMME is correct?
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Validating DA HOMME:

● Run very simple dynamical-core-only simulations with: 
○ Analytic or near-analytic reference solutions 

■ Test e.g. if equations are discretized correctly
○ Well-studied very idealized climate simulations with solns in literature 

■ Tests if the model well-behaved in long simulations

● Small-earth simulation
○ Reduce radius of planet dynamical core is simulating:

○ Increase rate of rotation to keep Coriolis magnitude comparable:

○ Larger difference between deep and shallow atmosphere dynamics!
○ Large-earth day → small-earth day



Verifying DA HOMME's ability to hold steady-state

● Ullrich et al. (2014) derives baroclinically unstable 
atmospheric steady-states  for the deep and shallow 
atmospheres. 



Verifying DA HOMME's ability to hold steady-state

● Ullrich et al. (2014) derives baroclinically unstable 
atmospheric steady-states  for the deep and shallow 
atmospheres. 
○ Deviation from initial conditions is error
○ Deviations amplify due to baroclinic instability.

■ Steady-state breaks down
○ Vertical velocity, w should remain identically zero, so max. 

magnitude of w is error proxy 



Verifying DA HOMME's ability to hold steady-state

● Simulations for 20 small-earth days, nominal 
radius 
○ 30 vertical levels, 1º grid spacing.



Verifying DA HOMME's ability to hold steady-state

● Simulations for 20 small-earth days, nominal 
radius 
○ 30 vertical levels, 1º grid spacing.

● Error in DA HOMME is larger
○ Possibly due to discretization of Pressure Gradient 

Force 
● Time to steady-state breakdown (20 small-

earth days) is comparable for:
○ DA HOMME initialized with a deep-atmosphere 

steady-state
○ SA HOMME initialized with a shallow-atmosphere 

steady state 



Maintaining a deep-atmosphere steady state indicates 
DA HOMME solves deep-atmosphere equations well 

(in E3SM)



A dynamical-core-only idealized climate-like test:

● Held-Suarez (1994) forcing:
○ Relaxation of temperature to a reference 

profile
○ Remove velocity at low levels 
○ Induces general circulation
○ Climate equilibrates after a spin-up period

● Performed simulations:
○ for 2000 small-earth days on planet with 

radius 
○ at 2º nominal grid spacing, 30 vertical levels.

● Results approximately match HS 
simulations in the literature (Yessad and 
Wedi, 2009)
○ Equatorial bias due to NCTs!



CESM:

● I have a prototype port of the fortran version of DA HOMME into the CAM StormSPEED repo that currently 
compiles

○ Have not run steady-state test yet (will do in the next day)
● Planning to run deep-vs-shallow QPC6  (default SST) in CESM this weekend.
● If all you care about is research configuration of CAM-SE with NCTs (disobeys conservation laws)

○ You can just add like 10 lines of code to CAM
● Question is: Can we use Wood and Staniforth 2003 trick for principled QHE-CAM-SE? 

○ Maybe yes within dycore.
■ Modify prim_advance_mod.F90 and eos.F90. Not sure what the quasi-hydrostatic EOS looks like in CAM-SE, but likely not hard 

to derive.
■ Implications for spatial energy conservation. I know how it works for the HOMME Lorentz staggering. Not sure for CAM-SE. 

○ We got lucky since HOMME vertical remap and ISLET transport scheme turned out not to need modification (just pass in same ∆p with 
different interpretation). Might be different in CAM?

○ Changes to CAM physics are likely shared with the work I'll be doing on SENH.
● My degree roadmap doesn't include this work at the moment

○ That said, I care about making the SE/HOMME dycore better for the most users possible. 
○ If I have the skills to do this, I'd like to make time for it.



Mild sleuthing (shoddy non-conservative method):

prim_advance_mod.F90 element_mod.F90

cube_mod.F90



Principled version:

● Differential operators in explicit time step routine need to be scaled by factors involving r 
(i.e. z + a).
○ Requires addit'l vertical scan as it is reconstructed by

○ (less bad than it looks, I've taken it directly from Wood 2003 and left their rather general notation)

● Energy conservation + diagnosis of Omega change. 
○ Implicit change to EOS. Are invocations of EOS to compute ρ centralized in CAM-SE? If not, Uh-oh.
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Why is error larger in DA HOMME? 

● Error is larger in DA HOMME:
○ Zonally symmetric error in DA HOMME
○ Less zonally symmetric in SA HOMME
○ Root-finding means 

■ Pressure gradient≠0 in DA HOMME
■ Pressure gradient=0 in SA HOMME

● Time to steady-state breakdown remains 
same. 
○ Ongoing work on initialization should shed more 

light on this, but promising first results



ESMs struggle to simulate the Intertropical Convergence Zone (ITCZ):

Reproduced from Lutgens and Tarbuck 
(2001)



ESMs struggle to simulate the Intertropical Convergence Zone 
(ITCZ):

Reproduced from Lutgens and Tarbuck 
(2001)

Converging trade winds 
induce upward motion, 
induces precipitation



HOMME with hydrostatic approximation  cannot resolve convection

Vertical velocity not a 
prognostic variable of the 
model

Convection is parameterized.

Vertical velocity w restored as 
prognostic variable of the 
model

Convection (partly) simulated 
by the dynamical core

Appropriate for synoptic 
motions, models with 
O(100 km) resolution

Hydrostatic Non-hydrostatic

Appropriate for high-
resolution models with 
O(<30 km) resolution



E3SM + HOMME can be run with grid refinement:

● Recent efforts to scientifically validate E3SM on 
refined grids (Tang et al. 2023) 

● For our purposes we will design (or select from 
literature) a grid with approximately zonally-
symmetric refinement about the equator. 
○ Previously successfully generated a similar grid for the MPAS 

dynamical core with 30 km minimum grid spacing
○ Likely to target 7 km minimum nominal grid spacing or so for 

E3SM.
E.g. 2D refined grids can be 
generated and used for a full 3D 
atmosphere out of the box.
Reproduced from Tang et al. (2018)



Moist Held-Suarez Test: idealized ITCZ without coupling?

● Thatcher and Jablonowski (2016) developed 
analogue of the Held-Suarez test case
○ Idealized large-scale condensation, boundary mixing, and 

surface heat fluxes are added direct to the dynamical core
○ Mimics climatologies of experiments with more complex 

physics (particularly aqua-planet)

● Large scale condensation may not mimic heating 
profile of convection near the equator

● However, it does contain an ITCZ and could 
show differences in climatological "precipitation"

Time-mean zonal-mean plot of thermal forcing for 
a Moist Held-Suarez test in the CAM5 dynamical 
core. Reproduced from Thatcher and Jablonowski 
(2016).



Aqua-planet simulations allow years-long simulation of ITCZ

● Aqua-planet simulations simplify lower 
atmospheric boundary*
○ Typically a flat ocean covering the entire planet with 

prescribed SSTs.
○ Run with full-complexity physics (potentially deep 

convection)
○ Run for multiple years

● Offer potential to study wave dynamics, 
propagating convective systems

● Principal findings will relate to impacts of deep-
atmosphere on precipitation climatology
○ Cheaper to run for multiple years than e.g. AMIP *  the "aqua-planet" umbrella covers many configurations, see 

e.g. Neale and Hoskins (2000), Williamson et al. (2012), 
Blackburn et al. (2013) or others.

Prescribed surface temperature profiles for the subset of aqua-planets 
with axisymmetric SSTs described in Neale and Hoskins (2000), 
reproduced from said paper.



AMIP findings have best chance to apply to earth's climate

● Activate atmosphere and land models
● Couple to prescribed boundary conditions for ocean, sea-ice, greenhouse 

emissions, aerosols
● Can be compared to archived E3SMv1, E3SMv2 shallow AMIP runs if 

same initial conditions are run 
● High realism of this model makes findings about MJO, ITCZ most likely 

to apply to CMIP-stype simulations.
● Running on custom refined grids may present issues with boundary data!



The problem with the TA: ITCZ

● Igel and Biello (2020) found TA results in drastic biases 
in convection-permitting simulations of cumulus 
convection, Radiative-convective Equilibrium 
experiments (RCE).

● TA may induce biases at scales ranging from synoptic 
scale to individual cumulus columns.

A comparison of RCE experiments with NCTs 
present (RCEON) and absent (RCEOFF) for 
profiles of (a) mean vertical velocity where w > 
1m/s and (b) zonal velocity in convection. 
Reproduced from Igel and Biello (2020).



The problem with the TA: normal modes, wave propagation 

● Linearized studies dynamical studies find 
pronounced wave propagation errors at the 
equator due to TA. See e.g. Thuburn et al. 
(2002); Kasahara (2003a/b, 2004); Durran and 
Bretherton (2004).

● Errors from TA become worse as horizontal 
resolution increases!

● Figure right: frequency of normal modes can vary 
by a small amount in the presence of the SA+TA 
approximations
○ Unlikely to be significant

Frequency of normal modes with zonal wavenumber 1 in 
a shallow/deep rotating atmosphere.

Reproduced from Thuburn et al. 2002
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