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Why Al-based model?

« Gravity wave (GW) modulate thermosphere

winds, influence ionospheric dynamics
« Small-scale modeling of GW effects is essential

* High-resolution climate models can resolve
small scale waves, BUT
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From ChatGPT to climate model
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Al-foundation model

* large-scale, pre-trained models on diverse data
« Adaptive to many downstream tasks via fine-tuning
« Examples: ChatGPT, Gemini, Claude

Weather forecasting Al-foundation models

« Based on different NN architectures: graph neural network (GNNSs), vision
transformer (ViT), Fourier neural operators (FNO)

- Available training datasets _ Core techmques

« ECMWEF Reanalysis v5 (ERAS) GraphCast
* Modern-Era Retrospective analysis  jimax
for Research and Applications
version 2 (MERRA-v2)

Transformer + FNO
Pangu-weather Transformer
FourCastNet Adaptive FNO (AFNO)



Spherical Fourier Neural Operator

« Geometry-aware extension of FNO
 Code package modulus-makani developed by NVIDIA [2]
« Theory based on Bonev et al., 2023 [3]

« Captures long-range spatial correlations with rotational equivariances
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Compressible Atmospheric Model -NET

« CAM-NET developed by Dong et al., 2023 ]

« Simulate non-linear atmospheric GW dynamics

 AFNO-based model trained by Complex Geometry Compressible Atmosphere
Model (CGCAM) datasets

* Major developments (denoted in red)
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SD-WACCM-X datasets

« Extend to altitude range from earth surface to 700 km

* Nudged by external reanalysis Modern Era Retrospective-Analysis for
Research and Applications Version 2 (MERRA)-v2 [7]

* Lower atmosphere constraint up to 50 km

« Data Resolution
« Lat x Lon: 0.9 x 1.25 [deg]; Vertical: ~1 [km] to 50 [km]; Time: 3 [hrs]

» Data Partition
 Training: 10 years (2001 — 2010); Testing: 2 years (2011 - 2012); Validation: 2013
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Large Small SFNO Trainer
_,~' scale scale LT T T '\.‘
! ™ [ 1 7 Pos. N Prediction i
E R Eu’;h — . . / emb. '\“. (small, large scales) E
i i e < ! i
T i’ﬁ g _ & & : ;
B 7*' e S | wi\ @ w i [ :
T - B v : i
 EDEEERE ‘ ! ; !
Lo == p7 @ ; ! - E
: sy * : — ’—' F e —F-1 _l : i
; i i o1 . MLP ., i :
i i T MLP — ‘ ; |
; F: Spherical Harmonic Transform : :
: F~1: Inverse Spherical Harmonic Transform : : :
! k: Linear filer : - i !
i MLP: multi-layer perceptron z| T F wmox —F ] : i
i u: Encoded feature tensors Tlu +— MLP .. E 5
:. T mp | ,f |
Stage 1: Large-scale
capture (1 epoch) RS -

Stage 2: X R R ;i

: & k SENO Trainer el SENO Trainer ket !

Fine-tune K41 l ;

. * - ‘ i
i Xi+2 21 ) f :

uoI3doNpoIU|



b) Tracer fine tuning schema
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CAM-NET inference results

a) Animation of 18 epochs

meridionalwind_v
Prediction

T T
—-300 —200 —-100 0 100 200 300
Ground truth

30°s ) LT o

T T
—300 =200 —100 0 100 200 300

b) Zoom-in view
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Spectrum analysis

Normalized Spectral Energy  Normalized Spectral Energy

Normalized Spectral Energy

Energy Spectrum Comparison at 20 km
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Summary and next step

« CAM-NET predictions has good alignments with WACCM-X data
with 4 times faster than model run
« ~ 5 days training for 10 years of data
« <12 hrs for inferencing 1 year of data

« At middle atmosphere, small-scale (high wavenumber) energy is
underrepresented in predictions

* Next step

* Integrate with diffusion model for resolving small scales "]
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