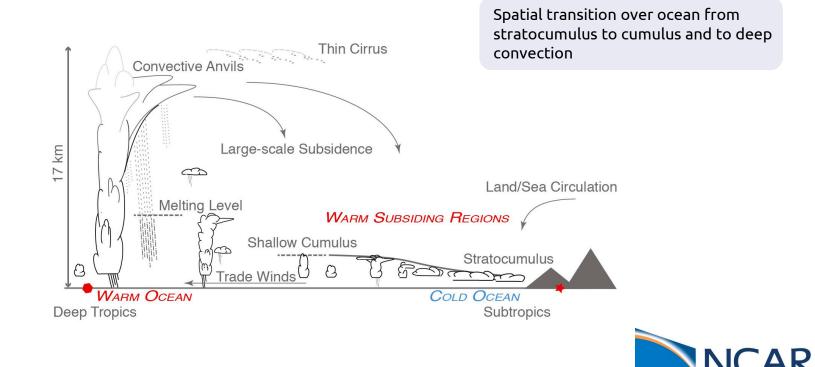
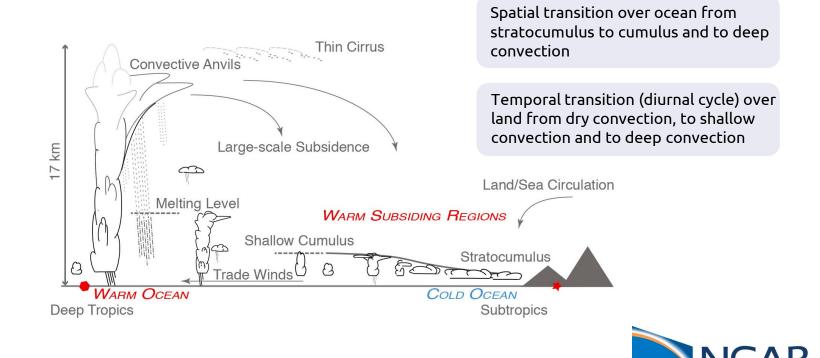
30th Annual CESM Workshop, 2025

The CLUBB+MF Approach: Results from the Unified Mixing Parameterization CPT Project

¹Adam Herrington, ^{2,3}J. Teixeira, ¹J. Bacmeister, ³X. Jiang

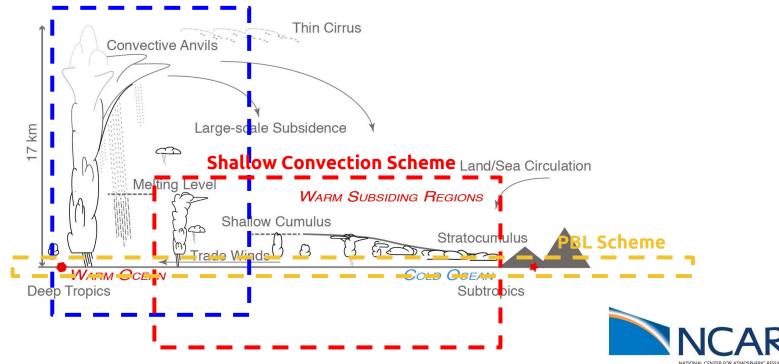

¹Climate and Global Dynamics Laboratory (CGD), NSF National Center for Atmospheric Research, Boulder, Colorado ²NASA Jet Propulsion Laboratory, Los Angeles, California ³University of California, Los Angeles, California

Fully Unified Mixing Parameterization


Convection occurs over a wide-range of scales

Fully Unified Mixing Parameterization

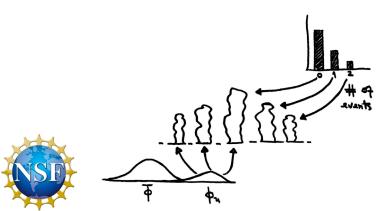
Convection occurs over a wide-range of scales



Fully Unified Mixing Parameterization

Current parameterizations are modular

Deep Convection Scheme



Eddy Diffusivity Mass Flux (EDMF)

- Eddy diffusivity represents mixing by small-scale turbulence
- □ Mass flux plumes represent mixing due to asymmetric turbulence
 - Explicit ensemble initialized by sampling PDF (derived from host model sfc fluxes)
 - Individual plumes undergo stochastic lateral entrainment
 - \Box Entrainment length-scale (L_{ϵ}) dynamic in time-space
 - Small L_ε convection
- = dry boundary layer convection, moist shallow
- \Box Medium L_{ϵ}
- = mid-level convection (trade cumulus, congestus)

 \Box Large L_{ϵ}

= deep convection

Lateral
Entrainment (Romps
^{& Kuang 2009)}
$$\varepsilon_{u_n}(\Delta z) = \frac{\varepsilon_0}{\Delta z} \mathscr{P}\left(\frac{\Delta z}{L_{\varepsilon}}\right)$$

Steady-state updraft

$$\frac{1}{2}\frac{\partial w_{u_n}^2}{\partial z} = a_w B_{u_n} - b_w \varepsilon_{u_n} w_{u_n}^2$$

<u>EDMF</u>

(Suselj, Teixeira & Chung, JAS, 2013) (Suselj, Kurowski & Teixeira, JAS 2019)

$$\overline{w'\varphi'} = -k\frac{\partial\overline{\varphi}}{\partial z} + M(\varphi_u - \overline{\varphi})$$

CLUBB+MF

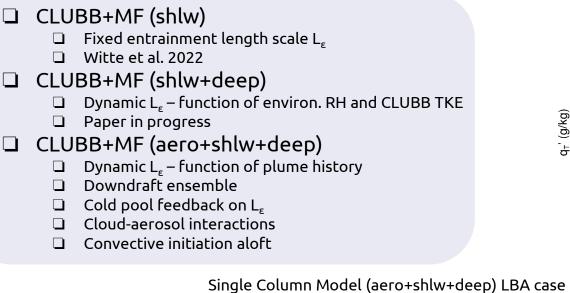
Eddy diffusivity represents mixing by small-scale turbulence Mass flux plumes represent mixing due to asymmetric turbulence Explicit ensemble initialized by sampling PDF (derived from host model sfc fluxes) Individual plumes undergo stochastic lateral entrainment Entrainment length-scale (L₂) dynamic in time-space Small L = dry boundary layer convection, moist shallow convection Medium L₂ = mid-level convection (trade cumulus, congestus) = deep convection Large L an additional difference ity with prognostic turbulence laz et al. 2002: Larson and (Rolaz 2005) event Steady-state updraft $=a_{w}B_{u}$

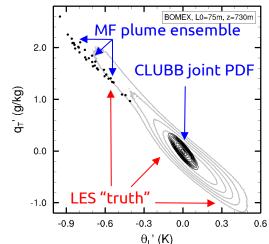
<u>EDMF</u>

(Suselj, Teixeira & Chung, JAS, 2013) (Suselj, Kurowski & Teixeira, JAS 2019)

$$\overline{w'\varphi'} = -k\frac{\partial\overline{\varphi}}{\partial z} + M(\varphi_u - \overline{\varphi})$$

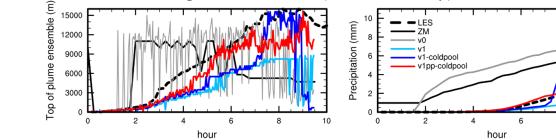
CLUBB+MF (Witte et al. 2022)


$$\overline{w'\varphi'} = \overline{w'\varphi'_{CLUBB}} + M(\varphi_u - \overline{\varphi})$$


Coupling MF to CLUBB

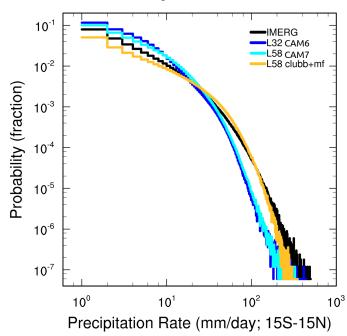
Divergence(MF) set to RHS forcing term of the 5-diagonal CLUBB matrix that solves for the turbulent fluxes

CLUBB+MF: Version History



8

10


Single Column Model (shlw)

CLUBB+MF: shlw+deep

AMIP simulations with the unified convection scheme reduces light precipitation (the drizzle problem) and increases extreme precipitation rates

1° CAM 20-year AMIP simulations

CLUBB+MF: shlw+deep

AMIP simulations with the unified convection scheme reduces light precipitation (the drizzle problem) and increases extreme precipitation rates

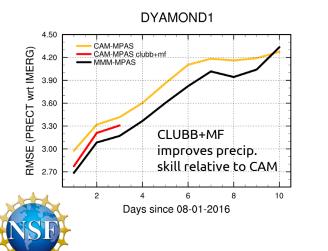
Ratio of convective to total precipitation rates more similar to IMERG (~50% in the tropics) compared to CAM (~80%)

Hovmoller Plot **GPM-DPR** CAM6 (L32) CAM7 (L58) CLUBB+MF (L58) PRECC a) GPM-DPR (b) L32 (d) L58 clubb+n 13.5 10.5 PRECL e) GPM-DPB h) L58 clubb+mt (a) L 7.5 60E 120E 180 120W 60W RATIO -GPM-DPR i) 1.32 L58 clubb+m PRECC / (PRECC+PRECL) 0.6 2014071; 0.5 0.4 0.2 0.1 60E 120E 180 120W 60W 120E 180 120W 60W 60F 120F 180 120W 60W

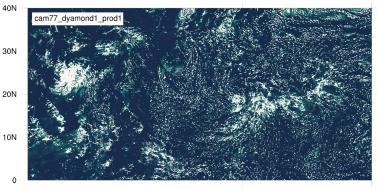
PRECC

Convective Precipitation

PRECL


Stratiform Precipitation

CLUBB+MF: aero+shlw+deep


In ~3 km models, lateral entrainment is not resolved, rather it's "parameterized" by implicit/explicit numerical diffusion. This representation of convection can only support an undilute deep mode, and therefore parameterized convection is still necessary to represent transitional regimes (e.g., shallow cumulus, mid-level congestus).

3.75 km CAM-MPAS simulations* Day: 20160802 sec: 72000 cloud water

120E

cloud water path (kg/m2)

In the control (top panel), CLUBB is the only convection scheme active (CAM's deep scheme is off)

 120E
 150E
 180

 Day: 20160802 sec: 72000
 cloud water path (kg/m2)

150E

180

Turning on CLUBB+MF (bottom panel) results in less 'patchy' deep convection and a more realistic spectrum of clouds

Click <u>here</u> for a precipitation viz

*km-scale capabilities are a joint collaboration between CESM, SIMA & EarthWorks

