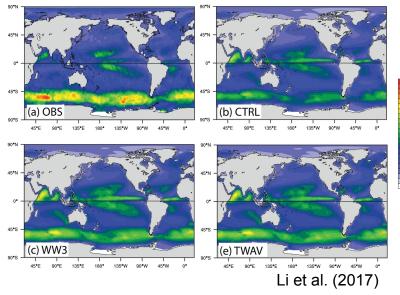
TheoryWaves in CESM3

Paul Hall, Baylor Fox-Kemper (Brown University)

10 June 2025 Ocean Model Working Group Meeting



Theory Waves (Li et al, 2016, 2017)

- Approximation of Langmuir turbulence enhancement factor (ε) based on Stokes drift profile from an empirical wave spectrum
- Reproduces much of the effect of Langmuir mixing at a fraction of the computational cost of prognostic wave models
- Wind-sea only (no swell)
- Input: U_{10} , τ_a , and $H_{\rm BL}$
- Output: ε , u^{s}_{SL} , La_{SL} , v^{s} , $k_{Phil'}$, h_{mo} , f_{p} , f_{m}

Li, Q., Fox-Kemper, B., Breivik, Ø., Webb, A., 2017. Statistical models of global Langmuir mixing. Ocean Model. 113, 95-114.

Summer Mean MLD (m)

 $u_0^{\rm S} \approx 0.016 U_{10}$, $V^{\rm S} \approx 2.67 \times 10^{-5} g U_{10}^3$ $k_{\rm p} pprox 0.176 rac{u_0^{\rm S}}{V^{\rm S}},$ $k_{\rm p}^* = 2.56k_{\rm p},$ $H_{\rm SI} = H_{\rm BI}/5$ $T_1(k,z)=\mathrm{e}^{2kz},$ $T_2(k,z) = \sqrt{2\pi k|z|} \operatorname{erfc}\left(\sqrt{2k|z|}\right),$

Li, Q., Fox-Kemper, B., Breivik, Ø., Webb, A., 2017. Statistical models of global Langmuir mixing. Ocean Model. 113, 95-114.

$$\begin{split} u_{\rm SL}^{\rm S} &\approx u_0^{\rm S} \bigg\{ 0.715 \\ &+ \bigg(\frac{0.151}{k_{\rm p} H_{\rm SL}} - 0.840 \bigg) [1 - T_1(k_{\rm p}, H_{\rm SL})] \\ &- \bigg(0.840 + \frac{0.0591}{k_{\rm p} H_{\rm SL}} \bigg) T_2(k_{\rm p}, H_{\rm SL}) \\ &+ \bigg(\frac{0.0632}{k_{\rm p}^* H_{\rm SL}} + 0.125 \bigg) \Big[1 - T_1(k_{\rm p}^*, H_{\rm SL}) \Big] \\ &+ \bigg(0.125 + \frac{0.0946}{k_{\rm p}^* H_{\rm SL}} \bigg) T_2(k_{\rm p}^*, H_{\rm SL}) \bigg\}, \end{split}$$

$$La_{\rm SL} = \sqrt{\frac{u^*}{u_{\rm SL}^{\rm S}}}, \\ \mathcal{E} &= \sqrt{1 + (1.5La_{\rm SL})^{-2} + (5.4La_{\rm SL})^{-4}}. \end{split}$$

Goal

Implement TheoryWaves as a component within CESM

- low-cost alternative to WaveWatchIII
- useful in cases where it is important to account for Langmuir mixing

Approach

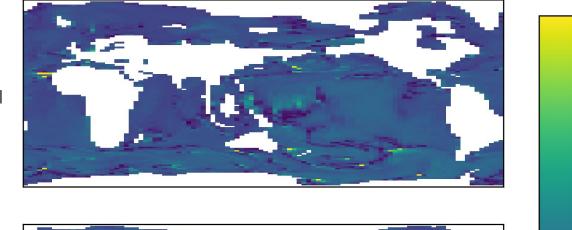
Drop-in replacement for WaveWatchIII component in CESM

- built using dev/unified_0.0.13 tag of WW3
- To use, just point to ww3 submodule in CESM .gitmodule file to TW interface repo
- wind stress from coupler (Fwxx_taux and Fwxx_tauy)
- Fill values passed to coupler/history files if variable is not calculated
 - wave elevation spectrum, partitioned Stokes drift

Test Case

CESM tag: cesm3_0_alpha06b

Compset (g):


2000_DATM%JRA-1p4-2018_SLND_CICE_MOM6_DROF%JRA-1p4-2018_SGLC_WW3_SESP Grid: TL319_t232_wg37

Wave Method: EFACTOR

Langmuir Turbulence VT2 Method: VR12 (van Roekel et al., 2012, Li et al., 2016)

Duration: 20 years

Langmuir Multiplier (LAMULT)

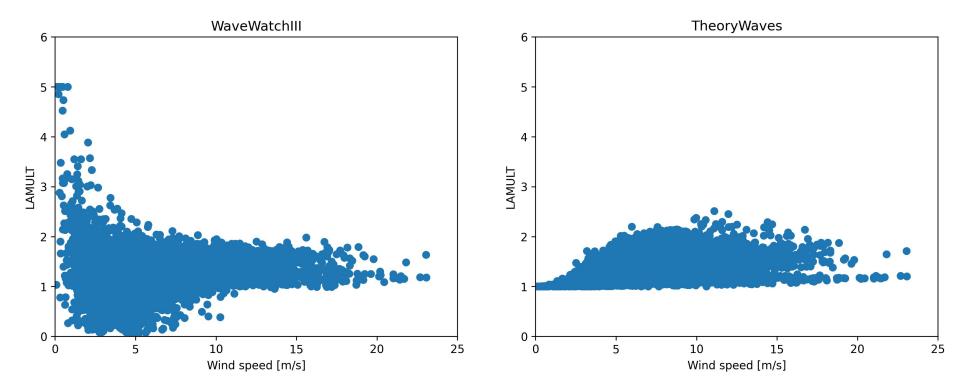
WaveWatchIII

TheoryWaves

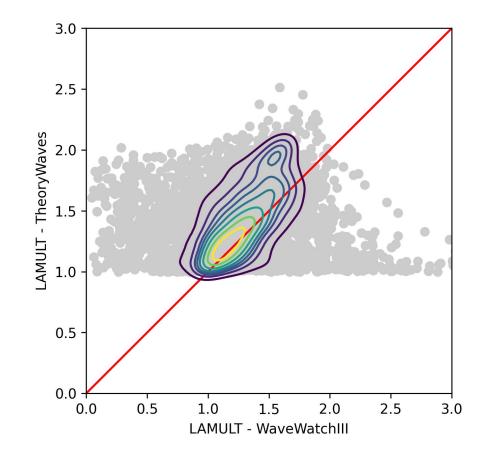
5

- 4

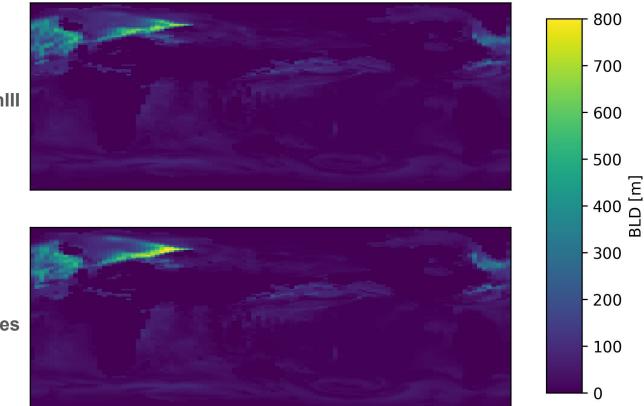
- 3


- 2

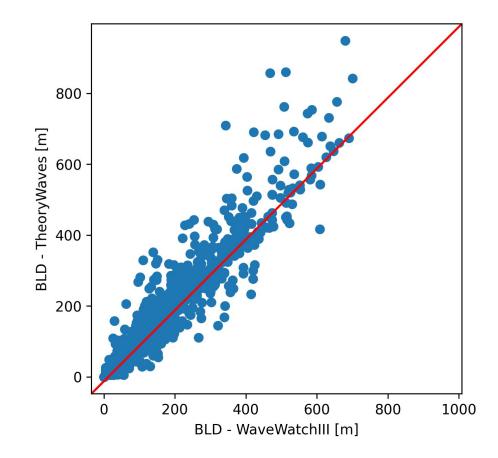
- 1

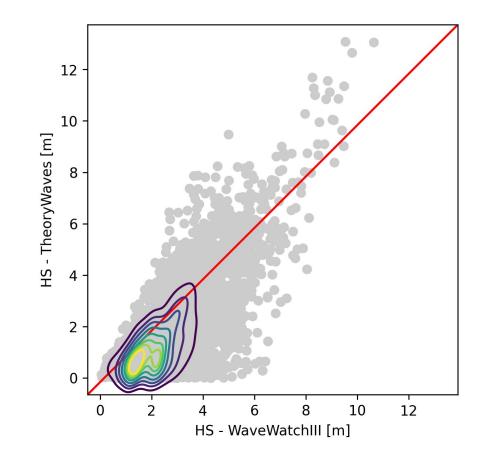

0

LAMULT


Langmuir Multiplier (LAMULT)

Langmuir Multiplier (LAMULT)


Boundary Layer Depth (BLD)


WaveWatchIII

Boundary Layer Depth (BLD)

Significant Wave Height (HS)

Conclusions

TheoryWaves reproduces the general patterns of LAMULT, BLD seen with WaveWatchIII TheoryWaves provides faster performance than WaveWatchIII

- Test case: 41% decrease in wave component run time (4727 s vs. 2750 s)
- Anticipate further significant improvements with refactoring

Future: interchangeability with PiCLES, WaveWatchIII, TheoryWaves in CESM

Questions

How best to make TheoryWaves available within CESM?

- URL for wave component in .gitmodule? Completely separate component?