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✢ Sources: jets, convection, mountains etc.
✢ Multiple scales: 100 m to 1000s km 

✢ Vertical coupling: carry near surface 
momentum to upper atmosphere
within hours. 10x faster propagation in the 
horizontal.
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Current GW Parameterizations have Notable Biases

Key properties:
1) Lateral propagation: of wave fluxes away from source

2) Refraction: changes in wavenumber as they propagate

3) Transience: temporal coherence of wave packets

phase structure resolved flux parameterized flux

Biases in:
a) QBO representation

b) “cold-pole” bias in Austral summer 
stratosphere

c) Midlatitude jet strength and 
mesospheric overturning circulation



Background atmospheric
conditions 

(resolved by climate models)

Gravity wave 
momentum fluxes from high-

resolution reanalysis/obs
(unresolved by climate models)

Learn momentum fluxes 
from high-resolution, GW-
resolving data

Couple the ML flux predictor to a 
coarse-resolution climate model

ML to Learn Subgrid-scale Gravity Wave Fluxes



We train three ML models with varying degrees of nonlocality

Model M1: inspired from traditional parameterizations
Dynamical variables in a column used to predict flux in the column

M1: Single Column



Model M2: Introducing slight nonlocality in space
Dynamical variables in 1 + 8 neighboring columns to predict fluxes in the central 
column

M2: Multiple Columns
We train three ML models with varying degrees of nonlocality



Model M3: Globally nonlocal Attention UNet (Oktay et al. 2018) 
Global input of dynamical variables to predict fluxes globally.

M3: Global Attention U-Net
We train three ML models with varying degrees of nonlocality



Background atmospheric
conditions 

(resolved by climate models)

Gravity wave 
momentum fluxes retrieved 

from high-resolution reanalysis
(unresolved by climate models)

Learn momentum fluxes 
from high-resolution, GW-
resolving data

Couple the ML flux predictor to a 
coarse-resolution climate model

ML to Learn Subgrid-scale Gravity Wave Fluxes

Trained on 4 years of ERA5 and 4 months (NDJF) of 1.4 km ECMWF-IFS



Evaluate performance beyond RMSE

Test 2. Seasonal AveragesTest 1. Temporal 
Evolution

Test 3. Flux distribution

Does the model generate
desired statistics?

Does the model generate
accurate global flux 
distribution?

Does the model correctly
learn the temporal wave 
evolution



ML models skillfully learn the intermittent and coherent evolution of GW fluxes in the 
atmosphere over both orographic and nonorographic hotspots. Nonlocal models perform 
better.

1. Temporal
Evolution



Attention UNet correctly identifies wave excitation and lateral propagation over multiple hotspots 
over the Southern Ocean (Andes, small islands, storm tracks, Antarctic Peninsula, etc.) 

Successful simulation of belts of midlatitude GW activity in both hemispheres without special 
provisions for recurrence.



2. Seasonal Average

All of M1, M2, M3 generate 
reasonable predictions.

Attention UNets generate the 
most accurate predictions in 
the midlatitudes
(where horizontal propagation
is most prominent).

M1

M3M2



3. Global Flux Distribution

Seasonal 
averages

daily 
averages

The seasonally averaged distributions 
are reproduced quite well.

… but the neural nets struggle with 
small values – predict zeros instead. 



Next, the learning is augmented by using limited-but-high-resolution
data which fully resolved GWs

Improving predictions using transfer learning



ML models trained only on ERA5
underestimate fluxes in 1km-IFS



Following Transfer Learning, models 
predict stronger fluxes in ERA5, while 
identifying the correct hotspots.



Following Transfer Learning, models 
predict stronger fluxes in ERA5, while 
identifying the correct hotspots.

Thus, the models effectively blend 
learnings from both low-fidelity 
high-volume and high-fidelity 
low-volume datasets.

Potential to learn from multiple 
high-resolution climate datasets.



Code:
github.com/DataWaveProject/nonlocal_gwfluxes
HiRes IFS data: https://osf.io/gx32s/

Submitted to JAMES (preprint: 
authorea.com//1263806



Key Conclusions
1. The three ML schemes learn nonlocal propagation, temporal coherence, 

and seasonal distributions of GW fluxes from high-resolution data. 

2. The model with the highest embedded nonlocality generates the 
best predictions.

3. Transfer learning allows blending multiple datasets to improve performance 

4. Limitation: the schemes proficiently predict large-amplitude GW packets, 
but predicting small values is still a challenge

1. Testing performance on dissimilar model outputs: high-resolution CAM and ICON runs.

2. Coupling to test online performance in CAM7: challenges

In Progress
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GWs form a belt of wave activity in the middle atmosphere

local GW 
generatio

n

propagation through 
strong shear

global 
spreadin
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1979-2022 
December
January
February
mean
From
reanalysis

Gupta, Sheshadri, Alexander, Birner (2024), GRL | Insights on Lateral Gravity Wave Propagation in the Extratropical Stratosphere from 44 Years of 
ERA5 Data

Green: Flux envelope, Color: Flux at 2 hPa (~45 
km)

1979-2022 
June
July
August
mean from
reanalysis



Critical Impacts of Gravity Waves

Tropical Quasi-Bienniel Oscillation 
(QBO)

Quiescent 
summer 

stratospher
e

~ 28 month 
period

QBO animation credits: Hamid Pahlavan  

Atmospheric GWs induce clear air turbulence 
(CAT) 
and influence upper tropospheric predictability.

Key drivers of global circulation and 
periodic
wind patterns, in the middle atmosphere.
Indirectly influencing Antarctic summer
heat extremes via polar vortex variability
(Choi et al., 2024).



The three models generate comparable distribution 
tails for all seasons

Prominent narrow bias in flux predictions by ANNs

Areas of weak GW activity (in summer stratosphere)
most challenging to simulate.

3. Global Flux Distribution

Seasonal 
averages

daily 
averages



Neural Network as a Collection of Perceptrons
Brain is a network of interconnected neurons. For any input/actions, only selected neurons fire at a given time. A multi-
layer perceptron (MLP) is a collection of neurons with equisized, fully-connected hidden layers. Similarly, a size-varying 
MLP without loops is called a feedforward neural network.

Consider a feedforward neural network arranged as an input layer, 2 hidden layers, and an output layer:

Forward Propagation

(1) Each layer maps to the next using a set of 
weights

(2) The linear transformation is followed by a non-
linear activation σ(.)

Feedforward Neural 
Network



Learning nonlocality through nonlocal architectures



Attention UNet Schematic



Daily Sampled Flux Distributions



Transfer Learning on out-of-set months



Transfer Learning on out-of-set months
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